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1. INTRODUCTION 

In a recent letter to the author, B. Pinchuk posed the following problem. 
Let ST denote the usual class of starlike functions 

f(z)=z+ f L&z”. (1.1) 
n=2 

These are normalized functions regular and univalent in E: IzI < 1, for 
which f( E) is starlike with respect to the origin. Let y be a circle contained 
in E and let [ be the center of y. The Pinchuk question is this: Iff(z) is in 
ST, is it true thatf(y) is a closed curve that is starlike with respect tof(i)? 
In Section 5 we will see that the answer is no. 

There seems to be no reason to demand that the complete circle y lies in 
E, and we replace this condition with the stronger condition that y is an 
arc of a circle contained in E, but we still ask that [ the center of y is also 
in E. Thus we have, 

DEFINITION 1. A function f(z) is said to be uniformly starlike in E if 
f(z) is in ST and has the property that for every circular arc y contained 
in E, with center [ also in E, the arc f(y) is starlike with respect to f(c). 
We let UST denote the class of all such functions. 

An arcf(Y) is starlike with respect to a point w0 =f(c) if arg(f(z) - u.~) 
is nondecreasing as z traces y in the positive direction. If “J is an arc of a 
circle, then the positive direction is the usual counterclockwise direction. 

In [3, p. 1091 we proved that if any arc y is given by z(t), then f(y) is 
starlike with respect to w0 iff 

Im (1.2) 
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for z on y. For a circular arc y, set z = [ + re”. Then z’(t) = i(z - [) and a 
brief computation will give 

THEOREM 1. Let f(z) have the form (1.1). Then f(z) is in UST zff 

Re f(z)-f(i) >O 
(z-Of’(z) 

(1.3) 

for every pair (z, [) in the polydisc E x E. 

Thus all the properties of functions in UST are contained implicitly in 
the relation (1.3). However, obtaining these properties is not easy. 

2. FUNCTIONS WITH POSITIVE REAL PART ON THE POLYLMSC 

Let Pc2) denote the set of functions 

P(z, 6’) = 1+ CC bmnz”‘C’ 
m+n>o 

(2.1) 

that are regular in E x E and satisfy the condition Re P 2 0 in that domain. 
Such functions have been the subject of numerous investigations [6]. 
Clearly if f(z) is in UST, then 

fz) -f(i) 
QCz, yZ-[)f’(Z) (2.2) 

is in Pt2) and l/Q(z, i) is also in PC*), but the set of functions of the form 
Qk i) or l/Qk 0 d oes not exhaust the set PC*). We set 

Qcz, o= (z-[)f’(z) 
f(z) -f(i) = 1 + 2 1 bmnzmjn 

m+n>O 
(2.3) 

and we define p,(c) and q”(z) by 

Qk i) = nzo p,(i) zn = f q,,(z) in. 
n=O 

(2.4 

LEMMA 1. Zf f(z) E UST, then 

PO(() =f4 
i ’ 

and pl(i) =f(W - 2a2il -i 

i2 
(2.5 
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q ( )&gz 0 = zf ‘(z)’ and Y,(-)J(;)-- 
$‘(z) 

(2.6) 

Further, for 2 und < in E 

Ip,(i)l 52 Rep,(C), und /q,(--)I 5 2 Re qd-). (2.7) 

Proof. Both (2.5) and (2.6) follow immediately from the defining 
Eq. (2.3) and (2.4). Each of the rearranged series in (2.4) gives a function 
of one variable with positive real part in E. Then the classical 
Caratheodory theorem gives (2.7). 1 

3. Two EXAMPLES 

The first example is given in, 

THEOREM 2. The function 

(3.1) F,(r)=&=z+ f An-‘zn 
)1 = 2 

is in UST iff IAl 5 1/$~0.7071. 

Proof. We first remark that if a is real, thenf(z) is in UST iff e-“f(e’“z) 
is in UST. Thus WLOG we may assume A 2 0 in (3.1). If we apply (2.2) 
to F,(z) we find, 

(3.2) 

Thus the numerator and denominator in (3.2),lie in a disc with center 1 
and radius A. Consideration of this disc shows that if A < l/a then 
Re Q(z, [) > 0 for all (z, <) in E x E. Further, if A > l/4 there is at least 
one pair in E x E for which Re Q(z, [) < 0. 1 

COROLLARY 1. The set UST has infinitely many members. 

COROLLARY 2. Let B(“’ be the least upper bound for la, 1 for all f(z) in 
UST. Then 

“-1 
5 B’“‘. (3.3) 
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It may be that B”” = ( l/fi)np’ f or small values of n, but the next 
example shows this cannot be so for n > 8. 

THEOREM 3. Zf F*(z) =z+Az”, n > 1, and IAl &,6/2n, then F2(z) is 
in UST. 

Proof: For this function 

(3.4) 

If (z, [) is in EXE and IA 1 < &2n, then Re Q(z, [) > 0. 1 

Note that Theorem 3 may still hold with a larger value of IAl. In fact a 
longer analysis will show that z + Az2 is in UST iff I Al 5 ,/?/4. We omit 
the details. 

If we compare the lower bounds for B’“) obtained in Theorems 2 and 3 
we observe that (l/4)“- ’ > ,,@2n for n = 3,4, . . . . 7. For n = 8 we have 
equality and for n > 8, the inequality sign is reversed. For n = 2 we have 
l/J2 > $14. 

It is natural to look for transformations which preserve the set UST. The 
transformation e ~ “f( eiaz is one such. However, no other transformation ) 
seems to be available. Pommerenke [5] introduced the concept of a linear- 
invariant family A4 and he showed that numerous theorems about the 
family A4 followed immediately if we only know that M is a linear-invariant 
family. By definition A4 is a linear-invariant family if 

(3.5) 

is also in A4 for every f in M and every c in E. If we apply (3.5) to f(z) = 
z/( 1 - AZ), we find that 

A,[z/( 1 -AZ)] = z/( 1 - Bz), B=(A-C)/(l-CA). (3.6) 

NowsetA=f<l/fiandc=-;.ThenB=4/5>1/$’.SofisinUST 
but ,4,[f] is not. In fact with a little more labor we can prove that for 
eachf(z) in UST, there is a C++(Z) such that A,[f] is not in UST. 

4. COEFFICIENT BOUNDS FOR UST 

Sakaguchi [7; 4; 3, pp. 164-1651 introduced the concept of functions 
starlike with respect to symmetrical points. Sakaguchi gave a purely 
geometric definition, but it is equivalent to the following. 
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DEFINITION 2. A function j’(z) of the form (1.1 ) is said to be starlike 
with respect to symmetrical points if 

2$‘(Z) 
Re,f(z)-.f-~)20 

(4.1 1 

for all z in E. We let STS denote the set of all such functions. 

Clearly, the left side of (4.1) is identical with Re[ l/Q(z, -:)I, see (2.2) 
and hence STS I UST. Sakaguchi proved that iff(z) is in STS and has the 
form (l.l), then la, 15 1 for n = 2, 3, . Consequently IanI 5 1 also holds 
for the set UST. However, as Charles Horowitz showed (in a letter to the 
author) we can do much better. 

THEOREM 4 (C. Horowitz). Iff(z) is in UST thenf’(z) lies in a halfplane 
bounded by a line through the origin, for all z in E. Further 

Ia, I 5 2/n, n = 2, 3, 4, . . . . (4.2) 

Proof: Set 

P(z, [) =f’(z) Q(z, i) =‘(‘;I:“). (4.3) 

Suppose that f(z) and f(i) are diametrically opposite for some pair z, [ 
in E. In other words suppose that argf(z)= argf(<) +rc. Now by 
symmetry P(z, [) = P([, z) and hence Q(z, [) = P(z, [)/f’(z) and Q(c, z) = 
P([, z)/f’([) are diametrically opposite to each other. Since z and [ are 
interior points of E, it follows that for some neighboring points in E 
either Re Q(z, i) < 0 or Re Q(c, z) < 0. This contradicts (1.3). Hence for 
some real CI, Re e’Y’(z) > 0 for all z in E. Consequently for the derivative 
nlu,I~2~cosal~2. 1 

THEOREM 5. Zff(z) is in UST and (zj = r < 1, then 

r 1 
- 1 + 2r 5 If( G -r + 2 In 
1 -r’ (4.4) 

Proof: The coefficient bounds (4.2) and the theory of dominant power 
series give the right side of (4.4). For the left side of (4.4) we return to (2.4) 
and (2.6). Since Re Q > 0, we have 

hI( 5 2 Re e,(z) 5 2 h(z)1 (4.5) 
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or, on multiplying by ]z2f’(z)l, 

If(z) - ZI c 2 Izf(z)l. (4.6) 

This, and the triangle inequality will give the left side of (4.4). 1 

COROLLARY 3. Let K( UST) be the Koebe constant for the family UST. 
Thus K( UST) = sup R such that f (E) contains the disc 1 WI < R for every f (z) 
in UST. Then 

l/3 5 K( UST) 5 1 - $14 z 0.56699. (4.7) 

Proof: The lower bound follows from (4.4) as r + 1 -. The upper bound 
is provided by the function F(z) = z + AZ*, where A = &/4. 1 

It is well known that if C,“=, n la,, I < 1, then f(E) is starlike with respect 
to w =O. See [2], but note there are quite a few unimportant misprints. 
For UST we have 

THEOREM 6. IfC,“=, n la,,1 <,/;ii2, then f(z) given by (1.1) is in UST. 

The proof is left for the reader. However, it is possible that in this 
theorem $12 can be replaced by the larger constant $12. 

5. THE PINCHUK QUESTION 

We return to the question raised in Section 1. Here we are concerned 
with f(y) when the circle y lies completely in E. We can assume that the 
circle y is internally tangent to aE, and then obtain our conclusion by a 
continuity argument. Thus in z = [ + re” we must impose the condition 
l[l + r < 1. Let F(z) = z/( 1 + z)* and [ = Ce”. Then a brief computation will 
give, 

l-zi l+z ~.- 
Q=(l+[)’ 1-z’ (5.1) 

There is a domain D of points (C, r, ~1, t) in RC4’ for which C+ r < 1 and 
Re Q < 0. For our purpose we only need one such point on the boundary 
of D. Using degree measure, the point C = 0.18, r = 0.82, c( = 175”, and 
t = 130” will give 

Re(1 -z[)(l +[)‘(l +z)(l-Z)x -0.0287~0. (5.2) 

Thus, the answer to the question raised by Pinchuk is no. 

409!155.2-6 



370 A. W. CiOODMAX 

After this paper was completed I learned that Johnny E. Brown [l] had 
found the same negative answer to Pinchuk’s question. In his work Brown 
considers starlikeness on circles ;‘: /z - z. 1 < p that lie in E, and for each I 
in (0, 1) he finds sup p such that if,f‘(r) is in S and Izo / = r with r + /) < I. 
then f(z) maps y onto a closed curve starlike with respect to ,f’(zo). Thus 
Brown’s work, which was done independently and probably earlier, goes 
much deeper into Pinchuk’s question, but is more complicated than our 
Section 5. Except for this section, there is no duplication of results in the 
two papers. 

6. UNIFORMLY CONVEX FUNCTIONS 

The idea contained in Definition 1 can be extended in a large number of 
ways. Here we mention only one. 

DEFINITION 3. A function of the form (1. l), regular and univalent in E 
is said to be uniformly convex in E if for every circular arc y contained in 
E whose center [ is also in E, the arcf(r) is a convex curve. We let UCV 
denote the set of all such functions. 

It is easy to prove that if g(z) has the form (l.l), then g(z) is in UCV 
iff 

1 +gz(z-;)]>~, (6.1) 

in E x E. The tools for the proof can be found in [3, p. 1 lo]. 
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