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INTRODUCTION 

As an extension of the property of uniqueness of solutions of nonlinear 
parabolic equations in one space dimension, it can be shown that the number 
of intersections of any two solutions of such an equation in a certain region 
cannot increase with time, unless in some way new intersections enter across 
the boundary of the region. This property enables useful deductions to be made 
about a solution, given its behavior at the boundaries of a region with respect to a 
family of known solutions. Such deductions are particularly useful when the 
known solutions, or some subset of them, act as “cluster points” in a larger 
space of solutions. The “intermediate asymptotic solutions” described by 
Zel’dovich and Barenblatt [1] form such cluster points; similarity solutions and 
traveling wave solutions are frequently occurring examples. 

In this paper the general parabolic equation considered is 

The function F(t, x, p, q, r) is assumed to be defined and continuous on some 
domain E in R5, and to be an increasing function of r in E. 

A UNIQUENESS THEOREM 

To consider uniqueness conditions for parabolic equations it is necessary to 
introduce the idea of a parabolic boundary (cf. 123). In Rz a past-neighborhood 
of a point (z, r) is, for some positive T, the set {(x, t): t < t, 3c2 + t2 < r”}. Then 
if G is an open connected domain in Rs lying between t = 0 and t = t, , the 
parabolic boundary R, of G is the set of points on the frontier of G which do 
not have a past-neighborhood in G. 

The following uniqueness theorem is a consequence of a theorem of 
Walter [2]: 
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THEOREM 1. Suppose u(x, t) is a solution of (1) existing on G and obeying 
there the growth restriction 

eh&(x, t) -+ 0 as IXl--tcO, forallt:O<t<t, and forallh<O. (2) 

Suppose that for all (p, q, r) sz@ciently small, for some K > 0 

I W> x, u> u, , u,,) - F@, x, u + P, uz + q, u,, + r>I 

< KlU + x2> I P I + (1 + I x I) I q I + I r II. 
(3) 

Then df v(x, t) is any other solution of (1) existing on G and taking the same values 
as u(x, t) on R, , and if o(x, t) is also subject to the growth condition (2) then 
u(x, t) = v(x, t) on (7. 

The conditions for uniqueness of solutions can be relaxed and varied some- 
what; more extensive discussion can be found in [2] or [3]. 

CONSERVATION OF INTERSECTIONS OF SOLUTIONS 

THEOREM 2. Let G be a connected domain in R2 lying between t = 0 and 
t = t, ) whose boundary consists of an interval I where t = t, together with a 
continuous parabolic boundary R, of G. If solutions u(x, t) and v(x, t) of (1) exist on 
G and obey the growth restriction (2), and if in the neighborhood of u the Lipschitx- 
type condition (3) is obeyed, then if the difference w(x, t) = u(x, t) - v(x, t) changes 
sign n times on R, , it does not change sign more than n times on I. 

Proof. Suppose (x, , tl) E I, and w(xI , tl) > 0. Let H be the maximal 
connected open subset of G adjacent to (x1 , tJ on which w(x, t) > 0. Let K, 
be the parabolic boundary of H. 

By Theorem 1, if w is zero on K, , then it will be zero at (x1 , tJ. So there must 
be a point (z, t) on K, where W(X, t) > 0. 

Suppose there is a past-neighborhood of (3, t) lying in G. Then there is a 
past-neighborhood, possibly smaller, which is in G and for which w(x, t) > 0, 
meaning that it is in H. This contradicts (3, t) E K, . Therefore no past-neigh- 
borhood of (%, t) lies in G, so (5, t) E R, . 

So every point on I for which w > 0 can be connected with a point on R, 
for which w > 0. Points where w < 0 can also be connected. Since the regions 
connecting the parts of I and Kg of alternating sign cannot cross, the conclusion 
of the theorem is established. 
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A GENERAL APPLICATION 

It is characteristic of diffusive processes that details of the initial conditions 
have diminishing influence on the shape of solutions as time progresses. Conse- 
quently, a subset of solutions may emerge as a focus to which other solutions 
in some sense tend. Traveling wave solutions for autonomous equations, and 
similarity solutions for equations with the appropriate invariance properties 
are examples. As Zel’dovich and Barenblatt [l] indicate in their review of 
intermediate asymptotic solutions, these two classes are interconvertible, 
although when converted to traveling waveform, similarity solutions are not 
solutions of an autonomous equation. For that reason they are not treated here, 
although the method described can be adapted to deal with them. 

The present application of Theorem 2 is to show how convergence of certain 
solutions of an autonomous parabolic equation to a wave of prescribed constant 
shape can be verified. 

If (1) is autonomous, solutions of the form U(x - mt) will obey the ordinary 
equation 

-mU’ = F(U, U’, U”), 

or, letting 

P = -iY, (5) 

mP = F(U, -P, P dP/dU). (6) 

The transformation 

is called the hodograph transformation, and the (u, p) plane is called the hodo- 
graph plane. To a differentiable function f(x) corresponds a trajectory in the 
hodograph plane, and conversely a trajectory in the hodograph plane determines 
a graph of a function in the (x, u) plane. This correspondence will be frequently 
invoked. Functions of the form U(x - mt) have stationary trajectories in the 
hodograph plane, and the aim of the analysis to follow is to show that certain 
solutions of (1) have trajectories converging to a time-invariant curve in the 
hodograph plane. 

Suppose that initial and boundary conditions are specified which determine a 
solution u(x, t) of (l), and the asymptotic form of this solution is sought. If the 
asymptotic form is a traveling wave, then it must be consistent, for large times, 
with those initial and boundary conditions. This requirement is restrictive and 
may uniquely specify a particular waveshape. Even where it does not (cf. [6]), 
there are likely to be elementary considerations indicating one of the possible 
waveforms as a limit. Suppose this wave has the form U&x - m,t), and its 
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trajectory in the hodograph plane is PO(u). It can be assumed that in the region 
of interest U, is a decreasing function. 

Then some special concepts can be defined. A left comb-function is a function 
U(X) defined and monotonic on some interval 1, for which: 

(i) for some m > m, , and all a > 0, U(, + x - mt) has only one inter- 
section with U(X, t) for all t and all x for which 01 + x + mt ~1, and 

(ii) U(x + a - mt) is a solution of (1). 

The corresponding left comb-region is defined as the set 

L(t) = {(x, 24): for some 01 > 0, 84 = U(a + x - mt)}. 

A right comb-function and comb-region are defined similarly, with m < m, 
and (II < 0. 

It is easy to verify that at each intersection of a comb-function with u, either 
u&x, t) 3 vl(a + x - mt), or u%(x, t) < u’(a + x - mt), with the same 
inequality holding for each LY. If the first inequality is true, the comb-function 
is called steep, and if the second is true, it is called shallow. 

The combination of comb-function and region is called a comb. With each 
left comb there may be associated an overfunction U+(X), defined on some 
interval J, and having the following properties: 

(i) for some m,: m, < m, < m, U+(x - m+t) is a solution of (l), 

(ii) if [x, U+(x - m+t)] EL(t) then U+(x - m+t) > u(x, t), and 

(iii) the range of U+ includes that of U. 

With each right comb an associated underfunction may be similarly defined. 
The strategy of proof is then as follows. One seeks a family of steep left combs, 
with comb-functions arbitrarily close to PO(u) in the hodograph plane, and each 
having an associated overfunction. Then, since the comb-function moves to the 
right with greater speed than the overfunction, eventually the graph of the latter 
lies within the comb-region. By hypothesis this ensures that u(x, t) also passes 
through the comb-region. At every point in the comb-region where u intersects 
a comb-function, it does so in such a way that u, < u’. Therefore, if P(m, u) 
is the hodograph trajectory of the comb-function, then for large t, p(u, t) ,< 
P(m, u), where P can be made arbitrarily close to PO . 

Alternatively, one could seek a family of steep right combs, with associated 
underfunctions, with a similar argument. A third possibility is to find families 
of right and left steep combs, which will eventually overlap and cover the whole 
x-interval. 

An analogous argument is then used with shallow combs, to show that for 
large enough times, p(u, t) must exceed functions arbitrarily close to P,(U), 
For both arguments the choice of the various methods should be exercised with 
care, since some may be more difficult than others, or even unavailable. 
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Theorem 2 will be needed to establish that certain functions are comb- 
functions, or over- or underfunctions. 

APPLICATION: THE NONLINEAR FOKKER-PLANCK EQUATION 

The nonlinear Fokker-Planck equation 

describes the motion under gravity and capillarity of a liquid in an unsaturated 
porous medium. The difhrsivity D and conductivity K are assumed to be 
positive, monotonic, and convex. With an initial function u(x, 0) prescribed for 
x > 0, and a boundary condition at x = 0, t > 0, one has the infiltration problem 
of soil physics. This has been extensively analyzed [4], and a demonstration of a 
tendency to traveling waveshape for a particular set of conditions has been 
obtained [5l. The method described here works for various initial and boundary 
conditions. 

Suppose that 0 < U(X, 0) < 1 for x > 0, and that for some a > 0, U(X, 0) = 0 
for x > a. Suppose too that at x = 0 the constant flux condition, 

D(u) uz(O, t) - K(u) = -K(l), (9) 

applies. Equation (6) becomes 

m = d/du(DP + K) (10) 

with the explicit solution 

P(u) = [-K(u) + mu + AI/D(u). (11) 

Here the choice of m and A is arbitrary. Since D is assumed positive, the solu- 
tions are quite regular when 0 < u < 1. There is just one choice of m and A 
for which P(0) = P(1) = 0; the corresponding wave is the only one which 
could be of the right form to indicate the eventual shape of the time-varying 
solution. Its parameter m is denoted ma; then A = K(1) - ma and the corres- 
ponding hodograph trajectory is denoted P@(u). By decreasing m slightly, and 
increasing or decreasing A, functions P+(u) and P-(u) are produced which are 
respectively greater and less than P&u), but arbitrarily close, in [O, 11. The 
functions U+(x - mt - a) corresponding to P+ have negative slope for all u in 
[0, l] and so, for large OL, have only one intersection with u(x, 0) on the line 
u = 0. Also for large LY, U+( -mt - CX) > 1, so unless ~(0, t) > 1 for some t, 
U+ is a steep right comb-function. 

Since u = constant is a solution of (8) and since from (9) u,(O, t) > 0 if 
~(0, t) > 1, it is not possible that ~(0, t) > 1. For if at t = t, , ~(0, t) reaches 
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1 + E > 1 for the first time, then u(x, t,) Q 1 + E for x > 0, from Theorem 2, 
since u = 1 + E is a solution of (8). This contradicts u,(O, t) > 0. 

When A < A, and m < me, the zeros of P-(u) lie between 0 and 1, and so 
do the limits of the corresponding traveling wave V . The upper limit can be 
made arbitrarily close to 1, and since u(x, 0) is continuous and less than 1 in 
[0, u] it has an upper bound b < 1. So there exist right shallow combs which 
have initially no intersections at all with u(x, 0), and subsequently can have no 
more than one, since at x = 0 

XJJax = [K(U) - mU - AI/D(U), 

> [K(u) - KUWW, since K(1) = A, + m,, > A + mU, 
= au/ax if u(0, t) = u. 

An underfunction U- can be constructed with A = A, and m < me, with m 
arbitrarily close to m, . The range of U- includes 0, so for some 01, U-(a) = 0. 
Then U-(x + CX) has no intersection with u(x, 0) when x > 0, and when t > 0, 

alax U-(LX + x - mt) = [K(U-) - mu- - A,]/D(U-), 

> [K(F) -moU- -A,]/D(U-), 
= u,(O, t) if u(0, t) = u-. 

Then by Theorem 2 it is impossible that U- and u should intersect for x > 0 
unless there is first an intersection at x = 0; this is impossible by the inequality 
just proved. So U- is an underfunction. 

So by the argument outlined above, with steep and shallow right combs each 
with an associated underfunction, it can be shown that after a sufficient period 
of time the shape of u(x, t) is arbitrarily close to that of U, , the traveling wave 
solution. 

It is clear from the method that it is not necessary that the flux at x = 0 be 
constant; it is enough that it tends to a constant value. The flux condition 
prevents u(x, t) from forming new intersections with comb- or underfunctions 
at x = 0; a restriction on ~(0, t) could do this as well, and the method can be 
used with moving boundary conditions. The condition that u(x, 0) be zero for 
large x can be relaxed. 

REMARKS 

Use of Theorem 2 yields methods which are insensitive to the details of the 
initial and boundary conditions; this is to be expected, because in diffusive 
processes these details become progressively less important. 

The method described has been applied [6] to solutions of a diffusion equation 
with regeneration ut = u,, +f(u). Here f(0) =f(l) = 0, and Jif(u) du > 0. 
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The initial function u(x, 0) is prescribed for all x. The problem is complicated 
by singularities in the first-order hodograph equation (6), so that there are 
various possible waves, and the choice is determined by the way in which u tends 
to zero as x tends to infinity. 

The application described here uses functions having one intersection; 
functions having two intersections can be used to show that the velocity of the 
profile is locally well behaved, and converges to that of the traveling wave. 

The fundamental theorem, Theorem 2, appears to apply only to equations 
with one space dimension, since its proof uses the property that in two dimen- 
sions one continuous curve cannot appear on both sides of another curve without 
crossing it. 
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