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Abstract

Results concerning recurrence and ergodicity are proved in an abstract Hilbert space settin
on the proof of Khintchine’s recurrence theorem for sets, and on the Hilbert space characteriz
ergodicity. These results are carried over to a non-commutative∗-algebraic setting using the GNS
construction. This generalizes the corresponding measure theoretic results, in particular a v
of Khintchine’s theorem for ergodic systems, where the image of one set overlaps with anoth
instead of with itself.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The inspiration for this paper is the following theorem of Khintchine dating from 1
(see [4] for a proof):

Khintchine’s theorem. Let (X,Σ,µ) be a probability space(that is to say,µ is a measure
on a σ -algebraΣ of subsets of a setX, with µ(X) = 1), and consider a mappin
T :X → X such thatT −1(S) ∈ Σ andµ(T −1(S)) � µ(S) for all S ∈ Σ . Then for any
A ∈Σ andε > 0, the set

E = {
k ∈ N: µ

(
A∩ T −k(A)

)
>µ(A)2 − ε}

is relatively dense inN = {1,2,3, . . .}.
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We will call (X,Σ,µ,T ), as given above, ameasure theoretic dynamical syste.
Recall that the relatively denseness ofE in N means that there exists ann ∈ N such that
E ∩ {j, j + 1, . . . , j + n− 1} is non-empty for everyj ∈ N. Khintchine’s theorem is a
example of a recurrence result. It tells us that for everyk ∈ E, the setA contains a se
A∩ T −k(A) of measure larger thanµ(A)2 − ε which is mapped back intoA by T k .

A question that arises from Khintchine’s theorem is whether, givenA,B ∈Σ andε > 0,
the set

F = {
k ∈ N: µ

(
A∩ T −k(B)

)
>µ(A)µ(B)− ε}

is relatively dense inN. This is clearly not true in general, for example, ifT is the identity
andA,B andε are chosen such thatµ(A)µ(B) > ε whileA∩B is empty, thenF is empty.
T has to “mix” the measure space sufficiently forF to be non-empty. In [5] it is shown fo
the case whereµ(T −1(S))= µ(S) for all S ∈Σ , that if for every pairA,B ∈Σ of positive
measure there exists somek ∈ N such thatµ(A∩T −k(B)) > 0, then the dynamical syste
is ergodic. Ergodicity therefore seems like the natural concept to use when consider
question posed above. This is indeed what we will do.

The notion of ergodicity originally developed as a way to characterize system
classical statistical mechanics for which the time mean and the phase space mean
observable are equal. For our purposes it will be most convenient to define ergodici
measure theoretic dynamical system(X,Σ,µ,T ) as follows (refer to [4], for example)
(X,Σ,µ,T ) is called ergodic if the fixed points of the linear Hilbert space opera
U :L2(µ)→ L2(µ): f 
→ f ◦ T form a one-dimensional subspace ofL2(µ). (It is easy to
verify thatU is well-defined onL2(µ).)

As we shall see, the ideas we have discussed so far are not really measure th
in nature. This is in large part due to the fact that the proof of Khintchine’s theore
essentially a Hilbert space proof using the mean ergodic theorem. This proof can
most part be written purely in Hilbert space terms, hence giving an abstract Hilbert
result. Along with the Hilbert space characterization of ergodicity given above, this m
that a fair amount of ergodic theory can be done purely in an abstract Hilbert space s
This is the approach taken in Section 3, using the mean ergodic theorem as the bas

Having built up some ergodic theory in abstract Hilbert spaces, nothing is to
us from applying the results to mathematical structures other than measure th
dynamical systems. The mathematical structure we will consider is much more g
than measure theoretic dynamical systems and can easily be motivated as follows:
measure theoretic dynamical system(X,Σ,µ,T ) we obtain the unital∗-algebraB∞(Σ)
of all bounded complex-valued measurable functions defined onX, and two linear map
pings

ϕ :B∞(Σ)→ C: f 
→
∫
f dµ

and

τ :B∞(Σ)→ B∞(Σ): f 
→ f ◦ T (1)

with the following properties:ϕ(1) = 1, ϕ(f ∗f ) � 0, τ (1) = 1 andϕ(τ(f )∗τ (f )) �
ϕ(f ∗f ) for all f ∈ B∞(Σ), wheref ∗ = f defines the involution onB∞(Σ), making it a
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∗-algebra. We can view this abstractly by replacingB∞(Σ) with any unital∗-algebra and
considering linear mappingsϕ andτ on it with the properties mentioned above. (Aunital
∗-algebraA is an algebra with an involution, and a unit element denoted by 1, that is t
1A=A=A1 for allA ∈ A. We will only work with the case of complex scalars.) The m
obvious generalization this brings is that the unital∗-algebra need not be commutativ
for example, the bounded linear operators on a Hilbert space. Also note thatτ in (1) is
a ∗-homomorphism ofB∞(Σ), but we will not need this property ofτ in the abstrac
∗-algebraic setting. We describe the∗-algebraic setting in more detail in Section 2, and
Section 4 the Hilbert space results are applied to this setting using the GNS-constru

In Section 5 we obtain the measure theoretic results as a special case, and also
discuss another special case, namely von Neumann algebras.

2. ∗-dynamical systems and ergodicity

By astateon a unital∗-algebraA we mean a linear functionalϕ onA which is positive
(i.e.,ϕ(A∗A)� 0 for allA ∈ A) with ϕ(1)= 1. Motivated by our remarks in Section 1, w
give the following definition:

Definition 2.1. Let ϕ be a state on a unital∗-algebraA. Consider any linear functio
τ :A → A such that

τ (1)= 1

and

ϕ
(
τ (A)∗τ (A)

)
� ϕ(A∗A)

for all A ∈ A. Then we call(A, ϕ, τ ) a∗-dynamical system.

LetL(V ) denote the algebra of all linear operatorsV → V on the vector spaceV .

Definition 2.2. Let ϕ be a state on a unital∗-algebraA. A cyclic representationof (A, ϕ)
is a triple (G,π,Ω), whereG is an inner product space,π :A → L(G) is linear with
π(1)= 1, π(AB)= π(A)π(B), Ω ∈ G, π(A)Ω = G, and〈π(A)Ω,π(B)Ω〉 = ϕ(A∗B),
for all A,B ∈ A.

A cyclic representation as in Definition 2.2 exists by the GNS-construction (ref
[1] for example, where the construction is performed forC∗-algebras, but it also work
for unital ∗-algebras). We will not need the propertyπ(AB) = π(A)π(B) in this paper
however. The term “cyclic” refers to the fact thatπ(A)Ω = G. Note that

ι :A → G: A 
→ π(A)Ω (2)

is a linear surjection such thatι(1)=Ω , and that

U0 :G → G: ι(A) 
→ ι
(
τ (A)

)
(3)
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is a well-defined linear operator with‖U0‖ � 1 for τ as in Definition 2.1, since
‖ι(τ (A))‖2 = ϕ(τ(A)∗τ (A)) � ϕ(A∗A) = ‖ι(A)‖2. We define a seminorm‖ · ‖ϕ on A

by

‖A‖ϕ = √
ϕ(A∗A)= ∥∥ι(A)∥∥

for all A ∈ A. We now want to define the concept of ergodicity for a∗-dynamical system.

Definition 2.3. A ∗-dynamical system(A, ϕ, τ ) is calledergodic if it has the following
property: For any sequence(An) in A such that‖τ (An)−An‖ϕ → 0 and such that for an
ε > 0 there exists anN ∈ N for which ‖Am − An‖ϕ < ε if m> N andn > N , it follows
that‖An − α‖ϕ → 0 for someα ∈ C.

In Section 4 we will give a simple example of an ergodic∗-dynamical system whos
∗-algebra is non-commutative. Recall that for any vectorsx andy in a Hilbert spaceH, we
denote byx ⊗ y the bounded linear operatorH → H defined by(x ⊗ y)z = x〈y, z〉. The
motivation for Definition 2.3 is the following proposition:

Proposition 2.4.Consider a∗-dynamical system(A, ϕ, τ ) and letU0 be given by(3) in
terms of any cyclic representation of(A, ϕ). LetU :H → H be the bounded linear extensio
ofU0 to the completionH of G, and letP be the projection ofH onto the subspace of fixe
points ofU . Then(A, ϕ, τ ) is ergodic if and only ifP =Ω ⊗Ω , that is to say, if and only
if the fixed points ofU form a one-dimensional subspace ofH.

Proof. Since‖Ω‖2 = ϕ(1∗1) = 1, we know thatΩ ⊗ Ω is the projection ofH onto
the one-dimensional subspaceCΩ . Also note thatUΩ = Ω , sinceΩ = ι(1), hence
CΩ ⊂ PH.

Suppose(A, ϕ, τ ) is ergodic and letx be a fixed point ofU . Consider any sequenc
(xn) in G such thatxn → x, sayxn = ι(An). Then‖τ (An)− An‖ϕ = ‖Uxn − xn‖ → 0,
sinceU is continuous, while for anyε > 0 there exists someN for which ‖Am −
An‖ϕ = ‖xm − xn‖ < ε if m > N andn > N . Since(A, ϕ, τ ) is ergodic, it follows that
‖xn − ι(α)‖ = ‖An − α‖ϕ → 0 for someα ∈ C, but thenx = ι(α) = αΩ . Therefore
PH = CΩ which means thatP =Ω ⊗Ω .

Conversely, supposeP = Ω ⊗ Ω and consider any sequence(An) in A such that
‖τ (An) − An‖ϕ → 0 and such that for anyε > 0 there exists someN for which
‖Am −An‖ϕ < ε if m>N andn > N . Thenxn = ι(An) is a Cauchy sequence and hen
convergent inH, since‖xm − xn‖ = ‖Am −An‖ϕ . Sayxn → x, thenUxn → Ux sinceU
is continuous. Since‖Uxn − xn‖ = ‖τ (An)−An‖ϕ → 0, it follows thatUxn → x, hence
Ux = x. This means thatx ∈ PH which implies thatx = αΩ for someα ∈ C. Therefore
‖An − α‖ϕ = ‖xn − αΩ‖ → 0, and so we conclude that(A, ϕ, τ ) is ergodic. ✷

Proposition 2.4 tells us that Definition 2.3 includes the measure theoretic definit
a special case. This can be seen as follows: From a measure theoretic dynamical
(X,Σ,µ,T )we obtain the∗-dynamical system(B∞(Σ),ϕ, τ ), whereϕ(f )= ∫

f dµ and
τ (f )= f ◦ T for all f ∈ B∞(Σ). A cyclic representation of(B∞(Σ),ϕ, τ ) is (G,π,Ω)
with G = {[g]: g ∈ B∞(Σ)}, π(f )[g] = [fg] for all f,g ∈ B∞(Σ), andΩ = [1], where
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[g] denotes the equivalence class of all measurable complex-valued functions
measure space that are almost everywhere equal tog. The completion ofG is L2(µ),
andU in Proposition 2.4 is now given by

Uf = f ◦ T
for all f ∈ L2(µ), where here we have dropped the[·] notation, as is standard forL2-
spaces (f andf ◦ T now denote equivalence classes of functions). Proposition 2.4 te
that(B∞(Σ),ϕ, τ ) is ergodic if and only if the fixed points ofU form a one-dimensiona
subspace ofL2(µ), in other words if and only if(X,Σ,µ,T ) is ergodic, as was mentione
in Section 1.

Finally we remark that we use Definition 2.3 as the definition of ergodicity, sin
is formulated purely in terms of the objectsA, ϕ and τ appearing in the∗-dynamical
system(A, ϕ, τ ), unlike Proposition 2.4 which involves a cyclic representation of th
objects. However, as a characterization of ergodicity, Proposition 2.4 is generally
to use. Of course, one might wonder if Definition 2.3 could not be simplified by u
a single element rather than a sequence. WithU as in Proposition 2.4, andx = ι(A)

for someA ∈ A, we haveUx = x if and only if ‖Ux − x‖ = 0, which is equivalent to
‖τ (A) − A‖ϕ = 0. For ergodicity we need this to imply thatx = αΩ for someα ∈ C,
which is equivalent to‖A− α‖ϕ = ‖x − αΩ‖ = 0. However, we cannot define ergodic
as “‖τ (A)− A‖ϕ = 0 implies that‖A− α‖ϕ = 0 for someα ∈ C,” since Proposition 2.4
would no longer hold: There would be examples of ergodic∗-dynamical systems for whic
the fixed points ofU do not form a one-dimensional subspace ofH. (In Appendix A
we give such an example.) Our theory would then fall apart, since much of our
work is based on the fact that for ergodic systems the fixed point space ofU is one-
dimensional. For example, the characterization of ergodicity in terms of the equa
means of the sort mentioned in Section 1 (but extended to∗-dynamical systems), implie
this one-dimensionality. Also, this one-dimensionality is used in our proof of the vari
of Khintchine’s theorem mentioned in Section 1. (See Sections 3 and 4 for details
use of a sequence rather than a single element is therefore necessary in Definition

3. Some ergodic theory in Hilbert spaces

Our main tool in this section is the

Mean ergodic theorem.Consider a linear operatorU :H → H with ‖U‖ � 1 on a Hilbert
spaceH. LetP be the projection ofH onto the subspace of fixed points ofU . For anyx ∈ H

we then have

1

n

n−1∑
k=0

Ukx→ Px

asn→ ∞.

Refer to [4] for a proof. We now state and prove a generalized Hilbert space vers
Khintchine’s theorem:
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Theorem 3.1.Let H, U andP be as in the mean ergodic theorem above. Consider
x, y ∈ H andε > 0. Then the set

E = {
k ∈ N:

∣∣〈x,Uky〉∣∣> ∣∣〈x,Py〉∣∣ − ε}
is relatively dense inN.

Proof. The proof is essentially the same as that of Khintchine’s theorem. By the
ergodic theorem there exists ann ∈ N such that∥∥∥∥∥1

n

n−1∑
k=0

Uky − Py
∥∥∥∥∥< ε

‖x‖ + 1
.

SinceUPy = Py and‖U‖ � 1, it follows for anyj ∈ N that∥∥∥∥∥1

n

j+n−1∑
k=j

Uky − Py
∥∥∥∥∥ �

∥∥∥∥∥1

n

n−1∑
k=0

Uky − Py
∥∥∥∥∥< ε

‖x‖ + 1

and therefore∣∣∣∣∣
〈
x,

1

n

j+n−1∑
k=j

Uky − Py
〉∣∣∣∣∣ � ‖x‖

∥∥∥∥∥1

n

j+n−1∑
k=j

Uky − Py
∥∥∥∥∥< ε.

Hence

∣∣〈x,Py〉∣∣ − ε <
∣∣∣∣∣1

n

j+n−1∑
k=j

〈x,Uky〉
∣∣∣∣∣ � 1

n

j+n−1∑
k=j

∣∣〈x,Uky〉∣∣
and so|〈x,Uky〉|> |〈x,Py〉| − ε for somek ∈ {j, j + 1, . . . , j + n− 1}, in other wordsE
is relatively dense inN. ✷

Khintchine’s theorem corresponds to the case wherey = x. The following two
propositions are the Hilbert space building blocks for two characterizations of ergo
to be considered in the next section.

Proposition 3.2.Let H, U andP be as in the mean ergodic theorem above. Conside
Ω ∈ H and letT be any total set inH. Then the following hold:

(i) If P =Ω ⊗Ω , then∥∥∥∥∥1

n

n−1∑
k=0

Uky −Ω〈Ω,y〉
∥∥∥∥∥ → 0 (4)

asn→ ∞, for everyy ∈ H.
(ii) If (4) holds for everyy ∈ T, thenP =Ω ⊗Ω .
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Proof. By the mean ergodic theorem we know that∥∥∥∥∥1

n

n−1∑
k=0

Uky − Py
∥∥∥∥∥ → 0 (5)

for everyy ∈ H asn→ ∞, but forP =Ω⊗Ω we havePy =Ω〈Ω,y〉 and this proves (i)
To prove (ii), consider anyy ∈ T. From (4) and (5) it then follows thatPy =Ω〈Ω,y〉 =

(Ω ⊗ Ω)y. Since by definition the linear span ofT is dense inH, and sinceP and
Ω ⊗ Ω are bounded (and hence continuous) linear operators onH, we conclude tha
P =Ω ⊗Ω . ✷
Proposition 3.3.Let H, U andP be as in the mean ergodic theorem above. Conside
Ω ∈ H and letS andT be total sets inH. Then the following hold:

(i) If P =Ω ⊗Ω , then

1

n

n−1∑
k=0

〈x,Uky〉 → 〈x,Ω〉〈Ω,y〉 (6)

asn→ ∞, for all x, y ∈ H.
(ii) If (6) holds for allx ∈ S andy ∈ T, thenP =Ω ⊗Ω .

Proof. Statement (i) follows immediately from Proposition 3.2(i) by simply taking
inner product ofx with the expression inside the norm in (4).

To prove (ii), consider anyx ∈ S andy ∈ T. From the mean ergodic theorem it follow
that

1

n

n−1∑
k=0

〈x,Uky〉 → 〈x,Py〉

asn→ ∞. Combining this with (6) we see that〈x,Py〉 = 〈x,Ω〉〈Ω,y〉 = 〈x, (Ω⊗Ω)y〉.
Since the linear span ofS is dense inH, this implies thatPy = (Ω ⊗ Ω)y. Hence
P =Ω ⊗Ω as in the proof of Proposition 3.2(ii).✷

The reason for using total sets will become clear in Sections 4 and 5.

4. Ergodic results for ∗-dynamical systems

In this section we carry the results of Section 3 over to∗-dynamical systems using cycl
representations. Firstly we give a∗-dynamical generalization of Khintchine’s theore
which follows from Theorem 3.1:

Theorem 4.1.Let (A, ϕ, τ ) be a∗-dynamical system, and consider anyA ∈ A andε > 0.
Then the set

E = {
k ∈ N:

∣∣ϕ(
A∗τ k(A)

)∣∣> ∣∣ϕ(A)∣∣2 − ε}
is relatively dense inN.
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Proof. LetU andP be defined as in Proposition 2.4 in terms of any cyclic represent
of (A, ϕ). Setx = ι(A). From (3) it is clear thatΩ = ι(1) is a fixed point ofU , so〈Ω,x〉 =
〈PΩ,x〉 = 〈Ω,Px〉. It follows that |ϕ(A)| = |ϕ(1∗A)| = |〈Ω,x〉| � ‖Ω‖‖Px‖ = ‖Px‖.
We also haveϕ(A∗τ k(A)) = 〈x,Ukx〉. Hence by Theorem 3.1, withy = x, the setE is
relatively dense inN. ✷

A C∗-algebraic version of Theorem 4.1 was previously obtained in [3]. Next we
Theorem 3.1 to prove a variant of Theorem 4.1:

Theorem 4.2.Let (A, ϕ, τ ) be an ergodic∗-dynamical system, and consider anyA,B ∈ A

andε > 0. Then the set

E = {
k ∈ N:

∣∣ϕ(
Aτk(B)

)∣∣> ∣∣ϕ(A)ϕ(B)∣∣ − ε}
is relatively dense inN.

Proof. LetU andP be defined as in Proposition 2.4 in terms of any cyclic represent
of (A, ϕ). Set x = ι(A∗) and y = ι(B). By Proposition 2.4 we havePx = αΩ and
Py = βΩ whereα = 〈x,Ω〉 = ϕ(A∗∗1) = ϕ(A) andβ = ϕ(B). Therefore|〈x,Py〉| =
|〈Px,Py〉| = |αβ|‖Ω‖2 = |ϕ(A)ϕ(B)|. Furthermore,ϕ(Aτk(B))= 〈x,Uky〉. HenceE is
relatively dense inN by Theorem 3.1. ✷

We are now going to prove two characterizations of ergodicity using Proposition
and 3.3, respectively. But first we need to consider a notion of totality of a set in a
∗-algebra. (Remember that an abstract unital∗-algebra has no norm.)

Definition 4.3.Let ϕ be a state on a unital∗-algebraA. A subsetT of A is calledϕ-dense
in A if it is dense in the seminormed space(A,‖ · ‖ϕ). A subsetT of A is calledϕ-total in
A if the linear span ofT is ϕ-dense inA.

Trivially, a unital∗-algebra isϕ-total in itself for any stateϕ.

Lemma 4.4.Letϕ be a state on a unital∗-algebraA, and consider any subsetT of A. Letι
be given by(2) in terms of any cyclic representation of(A, ϕ), and letH be the completion
of G. ThenT is ϕ-total in A if and only if ι(T) is total inH.

Proof. SupposeT is ϕ-total in A, that is to say the linear spanB of T is ϕ-dense inA.
Thenι(B) is dense inG = ι(A), since for anyA ∈ A there exists a sequence(An) in B

such that‖ι(An) − ι(A)‖ = ‖An − A‖ϕ → 0. But by definitionG is dense inH, hence
ι(B) is dense inH. Sinceι is linear, this means thatι(T) is total inH.

Conversely, supposeι(T) is total in H, then ι(B) is dense inH. It follows that B

is ϕ-dense inA, since for anyA ∈ A there exists a sequence(An) in B such that
‖An −A‖ϕ = ‖ι(An)− ι(A)‖ → 0. In other words,T is ϕ-total in A. ✷
Proposition 4.5.Let (A, ϕ, τ ) be a∗-dynamical system, and consider anyϕ-total setT
in A. Then the following hold:
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(i) If (A, ϕ, τ ) is ergodic, then∥∥∥∥∥1

n

n−1∑
k=0

τ k(A)− ϕ(A)
∥∥∥∥∥
ϕ

→ 0 (7)

asn→ ∞, for everyA ∈ A.
(ii) If (7) holds for everyA ∈ T, then(A, ϕ, τ ) is ergodic.

Proof. LetU andP be defined as in Proposition 2.4 in terms of any cyclic represent
of (A, ϕ). Suppose(A, ϕ, τ ) is ergodic. For anyA ∈ A we then have∥∥∥∥∥1

n

n−1∑
k=0

τ k(A)− ϕ(A)
∥∥∥∥∥
ϕ

=
∥∥∥∥∥1

n

n−1∑
k=0

Ukι(A)− ι(ϕ(A))
∥∥∥∥∥ → 0 (8)

as n → ∞, by Proposition 3.2(i) and Proposition 2.4, sinceι(ϕ(A)) = ι(1)ϕ(A) =
Ωϕ(1∗A)=Ω〈Ω, ι(A)〉. This proves (i).

Now suppose (7), and therefore (8), hold for everyA ∈ T. Since ι(T) is total in H

according to Lemma 4.4, it follows from Proposition 3.2(ii) and the identityι(ϕ(A)) =
Ω〈Ω, ι(A)〉, that P = Ω ⊗ Ω . So (A, ϕ, τ ) is ergodic by Proposition 2.4, confirm
ing (ii). ✷

In the spirit of the original motivation behind the concept of ergodicity, this propos
characterizes ergodic∗-dynamical systems as those for which thetime meanof each
elementA of the ∗-algebra converges in the seminorm‖ · ‖ϕ to the “phase space
meanϕ(A). A better name for the latter would be thesystem meanin this case, since ther
is no phase space involved. For a measure theoretic dynamical system(X,Σ, τ,µ), the
stateϕ is given byϕ(f )= ∫

f dµ which is indeed the phase space mean off ∈ B∞(Σ),
whereX is the phase space. We will come back to this in Section 5.

For any subsetS of a ∗-algebra, we writeS∗ = {A∗: A ∈ S}.

Proposition 4.6.Let (A, ϕ, τ ) be a∗-dynamical system, and consider anyϕ-total setsS
andT in A. Then the following hold:

(i) If (A, ϕ, τ ) is ergodic, then

1

n

n−1∑
k=0

ϕ
(
Aτk(B)

) → ϕ(A)ϕ(B) (9)

asn→ ∞, for all A,B ∈ A.
(ii) If (9) holds for allA ∈ S∗ andB ∈ T, then(A, ϕ, τ ) is ergodic.

Proof. LetU andP be defined as in Proposition 2.4 in terms of any cyclic represent
of (A, ϕ). Suppose(A, ϕ, τ ) is ergodic. ThenP =Ω ⊗Ω by Proposition 2.4, and so b
Proposition 3.3(i) it follows that

1

n

n−1∑
ϕ
(
Aτk(B)

) = 1

n

n−1∑〈
ι(A∗),Ukι(B)

〉 → ϕ(A)ϕ(B) (10)

k=0 k=0
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as n → ∞, since〈ι(A∗),Ω〉 = ϕ(A) and 〈Ω, ι(B)〉 = ϕ(B), as in the proof of Theo
rem 4.2. This proves (i). (Alternatively, (i) can be derived from Proposition 4.5(i) usin
Cauchy–Schwarz inequality|ϕ(AC)| � ‖A∗‖ϕ‖C‖ϕ with C = (1/n)∑n−1

k=0 τ
k(B)−ϕ(B).

This is essentially how Proposition 3.3(i) was derived from Proposition 3.2(i).)
Now suppose (9), and therefore (10), hold for allA ∈ S∗ andB ∈ T. Sinceι(S) and

ι(T) are total inH according to Lemma 4.4, it follows from Proposition 3.3(ii) and
identities〈ι(A∗),Ω〉 = ϕ(A) and 〈Ω, ι(B)〉 = ϕ(B), thatP = Ω ⊗ Ω . So (A, ϕ, τ ) is
ergodic by Proposition 2.4, confirming (ii).✷

This characterizes ergodicity in terms ofmixing. We now give a simple example of a
ergodic∗-dynamical system whose∗-algebra is non-commutative:

Example 4.7.Let A be the unital∗-algebra of(2 × 2)-matrices with entries inC, the
involution being the conjugate transpose. Letϕ be the normalized trace onA, that is to say
ϕ = (1/2)Tr. Defineτ :A → A by

τ

(
a11 a12
a21 a22

)
=

(
a22 c1a12
c2a21 a11

)

for some fixedc1, c2 ∈ C with |c1| � 1, |c2| � 1,c1 �= 1 andc2 �= 1. The conditions|c1| � 1
and |c2| � 1 are necessary and sufficient for(A, ϕ, τ ) to be a∗-dynamical system. Not
that for anyc ∈ C with |c| � 1, it follows from the mean ergodic theorem that

1

n

n−1∑
k=0

ck

converges to 0 ifc �= 1, and to 1 otherwise. Using this fact and Proposition 4.6(ii) w
S = T = A (and some calculations), it can be verified that the conditionsc1 �= 1 and
c2 �= 1 are necessary and sufficient for(A, ϕ, τ ) to be ergodic, assuming that|c1| � 1 and
|c2| � 1.

5. Measure theory and von Neumann algebras

As was mentioned in Section 2, from a measure theoretic dynamical system(X,Σ,

µ,T ) we obtain the∗-dynamical system(B∞(Σ),ϕ, τ ), where ϕ(f ) = ∫
f dµ and

τ (f ) = f ◦ T . This allows us to apply the results of Section 4 to measure theo
dynamical systems. For example, if(X,Σ,µ,T ) is ergodic, then we know from Section
that (B∞(Σ),ϕ, τ ) is ergodic. Hence for this∗-dynamical system Theorem 4.2 tells
that for anyA,B ∈Σ andε > 0, the set{

k ∈ N:
∣∣ϕ(
χAτ

k(χB)
)∣∣> ∣∣ϕ(χA)ϕ(χB)∣∣ − ε}

is relatively dense inN, but this set is exactly the setF from Section 1. (Hereχ denotes
characteristic functions.) So we have answered our original question:
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Corollary 5.1. Let (X,Σ,µ,T ) be an ergodic measure theoretic dynamical system. T
for anyA,B ∈Σ andε > 0, the set

F = {
k ∈ N: µ

(
A∩ T −k(B)

)
>µ(A)µ(B)− ε}

is relatively dense inN.

This result says that for everyk ∈ F , the setA contains a setA ∩ T −k(B) of measure
larger thanµ(A)µ(B) − ε, which is mapped intoB by T k. Using a similar argumen
Khintchine’s theorem follows from Theorem 4.1.

Likewise, Propositions 4.5 and 4.6 can be applied to the measure theoretic ca
example, Proposition 4.5(i) tells us that if(X,Σ,µ,T ) is ergodic, then

∫ ∣∣∣∣∣1

n

n−1∑
k=0

f ◦ T k − ϕ(f )
∣∣∣∣∣
2

dµ→ 0 (11)

asn→ ∞, for everyf ∈ B∞(Σ). Note that this result is not pointwise and is theref
not quite as strong as the usual measure theoretic statement of equality of the tim
and the phase space mean. This is of course where Birkhoff’s pointwise ergodic th
comes into play (see, for example, [4]).

What about the converse? Well, in order to effectively apply Propositions 4
and 4.6(ii) to the measure theoretic case, we need to know what the measure th
significance of aϕ-total set inB∞(Σ) is. The basic fact we will use is the followin
simple proposition which follows from Lebesgue’s dominated convergence theorem

Proposition 5.2. Let (X,Σ,µ) be a probability space and setϕ(f ) = ∫
f dµ for all

f ∈B∞(Σ). Then the setT = {χS : S ∈Σ} is ϕ-total in B∞(Σ).

From this we see that if (11) holds for all measurable characteristic functionf ,
then (B∞(Σ),ϕ, τ ) is ergodic by Proposition 4.5(ii), hence(X,Σ,µ,T ) is ergodic as
mentioned in Section 2.

Finally, with reference to Proposition 4.6(ii), we note thatT∗ = T for T as in Propo-
sition 5.2.

Next we briefly look at von Neumann algebras, as they are well-known examp
unital ∗-algebras. Consider a von Neumann algebraM and suppose(M, ϕ, τ ) is a ∗-
dynamical system. For example,τ might be a∗-homomorphism leavingϕ invariant, that is
to say,ϕ(τ(A))= ϕ(A) for allA ∈ M. Then the results of Section 4 can be applied dire
to (M, ϕ, τ ). As a more explicit (and ergodic) example, we note thatA in Example 4.7 is a
von Neumann algebra on the Hilbert spaceC2. We can also mention thatτ in Example 4.7
is not a homomorphism.

We now describe one suitable choice for theϕ-total sets appearing in Propositions 4
and 4.6. LetP be the projections ofM. It is known thatM is the norm closure of th
linear span ofP, as is mentioned, for example, in [2, p. 326]. Since any stateϕ on M

is continuous by virtue of being positive, it follows thatP is ϕ-total in M. Note also,
regarding Proposition 4.6(ii), thatP∗ = P. This is all very similar to the measure theore
case in Proposition 5.2, since the measurable characteristic functions onX are exactly the
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projections ofB∞(Σ). This similarity should not be too surprising, since the theory of
Neumann algebras is often described as “non-commutative measure theory” becaus
close analogy with measure theory.
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Appendix A

This appendix is devoted to the construction of a∗-dynamical system(A, ϕ, τ ) with the
property that if‖τ (A) − A‖ϕ = 0, then‖A − α‖ϕ = 0 for someα ∈ C, but for which
the fixed points of the operatorU defined in Proposition 2.4 in terms of some cyc
representation, form a vector subspace ofH with dimension greater than one. This w
prove the necessity of a sequence, rather than a single element, in Definition 2.3, i
for Proposition 2.4 to hold.

First some general considerations. Consider a dense vector subspaceG of a Hilbert
spaceH, and letL(H) be the bounded linear operatorsH → H. Set

A := {
A|G: A ∈ L(H), AG ⊂ G andA∗

G ⊂ G
}

whereA|G denotes the restriction ofA to G. For anyA ∈ A, denote by�A the (unique)
bounded linear extension ofA to H. Now define

A∗ := �A∗|G
for all A ∈ A, then it is easily verified thatA becomes a unital∗-algebra. (For example
for A,B ∈ A it is clear thatAB is a bounded linear operatorG → G which therefore
has the extension�A.�B ∈ L(H) for which �A.�BG ⊂ G and (�A.�B)∗G = �B∗ �A∗G ⊂ G by
the definition ofA. HenceAB ∈ A, and(AB)∗ = (�A.�B)∗|G = (�B∗ �A∗)|G = �B∗(�A∗|G)=�B∗A∗ = B∗A∗. Similarly for the other defining properties of a unital∗-algebra.) Note tha
for A ∈ A andx, y ∈ G we have

〈x,Ay〉 = 〈x, �Ay〉 = 〈�A∗x, y〉 = 〈A∗x, y〉.
For a given norm oneΩ ∈ G we define a stateϕ onA by

ϕ(A)= 〈Ω,AΩ〉.
Next we construct a cyclic representation of(A, ϕ). Let

π :A →L(G): A 
→A;
then clearlyπ is linear with π(1) = 1 and π(AB) = π(A)π(B). Note that for any
x, y ∈ G we have(x ⊗ y)∗ = y ⊗ x, hence(x ⊗ y)G ⊂ G and (x ⊗ y)∗G ⊂ G, so
(x ⊗ y)|G ∈ A. Now,π((x ⊗Ω)|G)Ω = x〈Ω,Ω〉 = x, henceπ(A)Ω = G. Furthermore
〈π(A)Ω,π(B)Ω〉 = 〈AΩ,BΩ〉 = 〈Ω,A∗BΩ〉 = ϕ(A∗B). Thus (G,π,Ω) is a cyclic
representation of(A, ϕ).
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Suppose we have a unitary operatorU :H → H such thatUG = G andUΩ =Ω . Then
U∗G =U−1G = G, soV := U |G ∈ A, andV ∗ = U∗|G. It follows thatVAV ∗ ∈ A for all
A ∈ A, hence we can define a linear functionτ :A → A by

τ (A)= VAV ∗.

Clearly V ∗V = 1 = V V ∗, so τ (1) = 1 and ϕ(τ(A)∗τ (A)) = ϕ(VA∗AV ∗) = 〈U∗Ω,
A∗AU∗Ω〉 = ϕ(A∗A), sinceU∗Ω = U−1Ω = Ω . Therefore(A, ϕ, τ ) is a ∗-dynamical
system. Note thatU |G satisfies (3), namelyUπ(A)Ω = UAΩ = UAU∗Ω = τ (A)Ω =
π(τ(A))Ω , henceU is the operator which appears in Proposition 2.4.

Assume{x ∈ G: Ux = x} = CΩ . If ‖τ (A)− A‖ϕ = 0, it then follows forx = ι(A),
with ι given by (2), that‖Ux − x‖ = ‖ι(τ (A)−A)‖ = ‖τ (A)−A‖ϕ = 0, sox = αΩ for
someα ∈ C. Therefore‖A− α‖ϕ = ‖ι(A− α)‖ = ‖x − αΩ‖ = 0.

In other words, assuming that the fixed points ofU in G form the one-dimensiona
subspaceCΩ , it follows that‖τ (A)−A‖ϕ = 0 implies that‖A−α‖ϕ = 0 for someα ∈ C.

It remains to construct an example of aU with all the properties mentioned abov
whose fixed point space inH has dimension greater than one. The following example
constructed by Zsidó:

Let H be a separable Hilbert space with an orthonormal basis of the form

{Ω,y} ∪ {uk: k ∈ Z}
(that is to say, this is a total orthonormal set inH) and define the linear operatorU :H → H

by

UΩ =Ω,
Uy = y,
Uuk = uk+1, k ∈ Z.

SinceU is a surjective isometry, it is unitary. LetG be the linear span of

{Ω} ∪ {y + uk: k ∈ Z}.
ThenUG = G. Furthermore,G is dense inH. Indeed,∥∥∥∥∥y − 1

n

n∑
k=1

(y + uk)
∥∥∥∥∥ = 1

n

∥∥∥∥∥
n∑
k=1

uk

∥∥∥∥∥ = 1√
n

→ 0

implies thaty ∈ �G , the closure ofG, hence also

uk = (y + uk)− y ∈ �G
for k ∈ Z.

Next we show that

{x ∈ G: Ux = x} = CΩ.

If αΩ + ∑n
k=−n βk(y + uk) ∈ G is left fixed byU , then

αΩ +
n∑
βky +

n∑
βkuk+1 = αΩ +

n∑
βky +

n∑
βkuk
k=−n k=−n k=−n k=−n
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and it follows thatβ−n = 0, and thatβk+1 = βk for k = −n, . . . , n− 1. Thus

αΩ +
n∑

k=−n
βk(y + uk)= αΩ.

On the other hand,

{x ∈ H: Ux = x}
clearly contains the two-dimensional vector space spanned byΩ andy.
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