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Abstract

Results concerning recurrence and ergodicity are proved in an abstract Hilbert space setting based
on the proof of Khintchine’s recurrence theorem for sets, and on the Hilbert space characterization of
ergodicity. These results are carried over to a non-commutatalgebraic setting using the GNS-
construction. This generalizes the corresponding measure theoretic results, in particular a variation
of Khintchine’s theorem for ergodic systems, where the image of one set overlaps with another set,
instead of with itself.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The inspiration for this paper is the following theorem of Khintchine dating from 1934
(see [4] for a proof):

Khintchine's theorem. Let (X, X, 1) be a probability spacéthat is to sayu is a measure

on a o-algebra ¥ of subsets of a seX, with u(X) = 1), and consider a mapping
T:X — X such thatT=1(S) € ¥ and u(T~1(S)) < u(S) for all S € . Then for any

A € ¥ ande > 0, the set

E={keN: n(ANT*(A)) > u(a)?—¢}
is relatively dense iN={1, 2,3, .. .}.
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We will call (X, >, u,T), as given above, aneasure theoretic dynamical system
Recall that the relatively densenessmin N means that there exists ane N such that
En{j,j+1,...,j+n—1}is non-empty for every € N. Khintchine’s theorem is an
example of a recurrence result. It tells us that for every E, the setA contains a set
ANT¥(A) of measure larger thgm(A)? — e which is mapped back intd by 7%,

A question that arises from Khintchine’s theorem is whether, giveB € X ande > 0,
the set

F={keN: u(ANT*(B)) > u(A)u(B) — ¢}

is relatively dense itN. This is clearly not true in general, for exampleTifis the identity

andA, B ande are chosen such tha{ A)u(B) > ¢ while AN B is empty, therF is empty.

T has to “mix” the measure space sufficiently foto be non-empty. In [5] it is shown for

the case wherg (T ~1(5)) = (S) forall S € ¥, that if for every paitd, B € X of positive
measure there exists some N such thaj. (AN 7T % (B)) > 0, then the dynamical system

is ergodic. Ergodicity therefore seems like the natural concept to use when considering the
guestion posed above. This is indeed what we will do.

The notion of ergodicity originally developed as a way to characterize systems in
classical statistical mechanics for which the time mean and the phase space mean of any
observable are equal. For our purposes it will be most convenient to define ergodicity of a
measure theoretic dynamical systém, X, u, T') as follows (refer to [4], for example):

(X, X, n,T) is calledergodicif the fixed points of the linear Hilbert space operator
U:L?(u) — L?(u): f+— foT form aone-dimensional subspaceldf.). (Itis easy to
verify thatU is well-defined onL?(u).)

As we shall see, the ideas we have discussed so far are not really measure theoretic
in nature. This is in large part due to the fact that the proof of Khintchine's theorem is
essentially a Hilbert space proof using the mean ergodic theorem. This proof can for the
most part be written purely in Hilbert space terms, hence giving an abstract Hilbert space
result. Along with the Hilbert space characterization of ergodicity given above, this means
that a fair amount of ergodic theory can be done purely in an abstract Hilbert space setting.
This is the approach taken in Section 3, using the mean ergodic theorem as the basic tool.

Having built up some ergodic theory in abstract Hilbert spaces, nothing is to stop
us from applying the results to mathematical structures other than measure theoretic
dynamical systems. The mathematical structure we will consider is much more general
than measure theoretic dynamical systems and can easily be motivated as follows: From a
measure theoretic dynamical systém X, i, T) we obtain the unitak-algebraB., (%)
of all bounded complex-valued measurable functions defined ,cend two linear map-

pings
¢@:Bso(X)— C: fr—)/fd,u
and
T:Boo(X) > Boo(X): f+> foT Q)

with the following propertiesip(1) = 1, o(f*f) > 0, (1) = 1 ando(z(f)*t(f)) <
o(f*f)forall f € Boo(X), wheref* = f defines the involution oB,(X), making it a
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x-algebra. We can view this abstractly by replackg (%) with any unitalx-algebra and
considering linear mappingsandz on it with the properties mentioned above. (Aital
x-algebra®l is an algebra with an involution, and a unit element denoted by 1, that is to say
1A=A= Alforall A € 2. We will only work with the case of complex scalars.) The most
obvious generalization this brings is that the unitedlgebra need not be commutative,
for example, the bounded linear operators on a Hilbert space. Also note thdtl) is
a x-homomorphism ofB,, (X), but we will not need this property of in the abstract
x-algebraic setting. We describe thalgebraic setting in more detail in Section 2, and in
Section 4 the Hilbert space results are applied to this setting using the GNS-construction.
In Section 5 we obtain the measure theoretic results as a special case, and also briefly
discuss another special case, namely von Neumann algebras.

2. =-dynamical systems and ergodicity

By astateon a unitak-algebrall we mean a linear functional on2( which is positive
(i.e.,p(A*A) > 0 forall A € ) with (1) = 1. Motivated by our remarks in Section 1, we
give the following definition:

Definition 2.1. Let ¢ be a state on a unital-algebra?l. Consider any linear function
7.2 — A such that

=1
and

P(T(A)*T(A)) < p(A*A)

forall A € 2. Then we calk2l, ¢, t) a*-dynamical system
Let L(V) denote the algebra of all linear operatdrs> V on the vector spacg.

Definition 2.2. Let ¢ be a state on a unitatalgebra?l. A cyclic representationf (2, ¢)
is a triple (&, 7, £2), where® is an inner product space,:2 — L(®) is linear with
7(1)=1,7(AB) =7(A)n(B), 2 € &, n(WR2 =&, and(n(A)2, 1(B)R) = (A*B),
forall A, B e 2.

A cyclic representation as in Definition 2.2 exists by the GNS-construction (refer to
[1] for example, where the construction is performed @5ralgebras, but it also works
for unital x-algebras). We will not need the properttyAB) = = (A)7 (B) in this paper
however. The term “cyclic” refers to the fact that2() 2 = &. Note that

:A—> B A ma(A)R (2)
is a linear surjection such thgtl) = §2, and that

Up:®—> & (A L('L’(A)) 3
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is a well-defined linear operator witiUp|| < 1 for r as in Definition 2.1, since
le(z (A% = p(r(A)*T(A)) < p(A*A) = [|L(A)]|%. We define a seminorr - ||, on A
by

IAlly = Vo (A*A) = |u(A)]|

for all A € 2. We now want to define the concept of ergodicity for-dynamical system.

Definition 2.3. A x-dynamical systeni, ¢, ) is calledergodicif it has the following
property: For any sequencd,,) in & such that|z(A,) — A, |, — 0 and such that for any
¢ > 0 there exists av € N for which [|A,, — A,ll, < ¢ if m > N andn > N, it follows
that||A, — a|l, — O for somex € C.

In Section 4 we will give a simple example of an ergogdidynamical system whose
x-algebra is non-commutative. Recall that for any vectoasidy in a Hilbert space), we
denote byx ® y the bounded linear operatér— $) defined by(x ® y)z = x({y, z). The
motivation for Definition 2.3 is the following proposition:

Proposition 2.4.Consider ax-dynamical systenfl, ¢, r) and letUp be given by3) in
terms of any cyclic representation@f, ¢). LetU : § — $ be the bounded linear extension
of Up to the completior) of &, and letP be the projection of) onto the subspace of fixed
points ofU. Then(2, ¢, 7) is ergodic if and only ifP = 2 ® £2, that is to say, if and only
if the fixed points o/ form a one-dimensional subspacesof

Proof. Since||$2]|° = ¢(1*1) = 1, we know that2 ® £ is the projection ofy onto
the one-dimensional subspa€&?. Also note thatU 2 = £2, since 2 = (1), hence
C2 C PH.

Suppose, ¢, 7) is ergodic and lek be a fixed point ofU. Consider any sequence
(xn) in & such thaty, — x, sayx, = t(A,). Then||t(4,) — Aslly = IlUxy — x|l = O,
since U is continuous, while for any > 0 there exists some&/ for which ||A,, —
Anllg = llxm — xull <& if m > N andn > N. Since(2, ¢, 7) is ergodic, it follows that
X, — (@) = |1Ax — ]y — O for somea € C, but thenx = 1(«) = af2. Therefore
P$H =CS2 whichmeanstha? = 2 ® 2.

Conversely, suppos® = 2 ® 2 and consider any sequenca,) in 20 such that
lz(A,) — Aqll, = O and such that for any > O there exists some&v for which
|Am — Anlly < € if m > N andn > N. Thenx, =1(4,) is a Cauchy sequence and hence
convergent i, sincel|x,, — x|l = |An — Anlly. Sayx, — x, thenUx, — Ux sinceU
is continuous. Sinc§Ux, — x,|| = |t (A,) — Anlly, — O, it follows thatUx,, — x, hence
Ux = x. This means that € P$ which implies thatc = «£2 for somea € C. Therefore
A, —ally = llx, —a82| — 0, and so we conclude thélll, ¢, ) is ergodic. O

Proposition 2.4 tells us that Definition 2.3 includes the measure theoretic definition as
a special case. This can be seen as follows: From a measure theoretic dynamical system
(X, X, u, T) we obtain the--dynamical systeniBo. (X), ¢, t), wherep(f) = [ fdn and
(f) = foT forall f e Boo(X). A cyclic representation ofBo(X), ¢, 7) is (&, 7, 2)
with & = {[g]: g € Boo(2)}, m(f)lgl =[fg] forall f, g € Bo(X), ands2 = [1], where
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[¢] denotes the equivalence class of all measurable complex-valued functions on the
measure space that are almost everywhere equal e completion of® is L?(u),
andU in Proposition 2.4 is now given by

Uf=foT

for all f € L?(w), where here we have dropped the notation, as is standard far2-
spaces ( and f o T now denote equivalence classes of functions). Proposition 2.4 tells us
that (B~ (X)), ¢, 7) is ergodic if and only if the fixed points df form a one-dimensional
subspace of 2(u), in other words if and only it X, X, 11, T) is ergodic, as was mentioned

in Section 1.

Finally we remark that we use Definition 2.3 as the definition of ergodicity, since it
is formulated purely in terms of the objec®s ¢ andt appearing in thex-dynamical
system(2L, ¢, T), unlike Proposition 2.4 which involves a cyclic representation of these
objects. However, as a characterization of ergodicity, Proposition 2.4 is generally easier
to use. Of course, one might wonder if Definition 2.3 could not be simplified by using
a single element rather than a sequence. Witlas in Proposition 2.4, ang = ((A)
for someA € 2, we haveUx = x if and only if |[Ux — x|| = 0, which is equivalent to
z(A) — All, = 0. For ergodicity we need this to imply that= «£2 for somea € C,
which is equivalenttdlA — ||, = [lx — a$2]|| = 0. However, we cannot define ergodicity
as “|t(A) — All, = 0 implies that| A — «||, = O for somex € C,” since Proposition 2.4
would no longer hold: There would be examples of ergaditynamical systems for which
the fixed points ofU do not form a one-dimensional subspacefpf(In Appendix A
we give such an example.) Our theory would then fall apart, since much of our later
work is based on the fact that for ergodic systems the fixed point spatk isfone-
dimensional. For example, the characterization of ergodicity in terms of the equality of
means of the sort mentioned in Section 1 (but extendeddgnamical systems), implies
this one-dimensionality. Also, this one-dimensionality is used in our proof of the variation
of Khintchine’s theorem mentioned in Section 1. (See Sections 3 and 4 for details.) The
use of a sequence rather than a single element is therefore necessary in Definition 2.3.

3. Some ergodic theory in Hilbert spaces
Our main tool in this section is the

Mean ergodic theorem.Consider a linear operatoV/ : $ — $ with ||U| < 1 on a Hilbert
spaces). Let P be the projection ofy onto the subspace of fixed pointdafFor anyx € $
we then have

1 n—1

—Zka—> Px
nk:O

asn — 00.

Refer to [4] for a proof. We now state and prove a generalized Hilbert space version of
Khintchine’s theorem:
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Theorem 3.1.Let $), U and P be as in the mean ergodic theorem above. Consider any
x,y € $H ande > 0. Then the set

E={keN: |(x,Uy)|> |(x, Py)| — ¢}

is relatively dense iN.

Proof. The proof is essentially the same as that of Khintchine’s theorem. By the mean
ergodic theorem there exists are N such that

1n—1
S vt py
k=0

SinceU Py = Py and||U| < 1, it follows for any; € N that

1n71
=Y Uty—py
k=0

&

< .
xll +1

1j+n—1
= > Uy—py
k=j

and therefore

1j+n71
= Uty —P
3z eren)

&
xll +1

< <

jt+n—1

1 i
< x| = Uy — Py| <e.
llx | ;. kE_j y y

Hence
1j+—n71 ) 1j+n71 )
[, Py)[—e < |= 3 G UM <= D0 [, Uty
k=j k=j

and so|(x, U¥y)| > |(x, Py)| — e forsomek € {j, j+ 1, ..., j +n — 1}, in other wordsE
is relatively dense ilN. O

Khintchine's theorem corresponds to the case whgre x. The following two
propositions are the Hilbert space building blocks for two characterizations of ergodicity
to be considered in the next section.

Proposition 3.2.Let 9, U and P be as in the mean ergodic theorem above. Consider an
2 € $ and letT be any total set irfy. Then the following hold

() If P=£2 ® £, then

1n—l
Nuky e
=) Uty —2(2.y)
k=0

-0 (4)

asn — oo, for everyy € §.
(i) If (4) holds for every € T, thenP = 2 ® £2.
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Proof. By the mean ergodic theorem we know that
n—1

1 k
2 Uy =Py
k=0

foreveryy € ) asn — oo, butfor P = 2 ® 2 we havePy = £2(£2, y) and this proves (i).

To prove (ii), consider any € €. From (4) and (5) it then follows thaty = £2(£2, y) =
(2 ® £2)y. Since by definition the linear span @f is dense inf), and sinceP and
2 ® 2 are bounded (and hence continuous) linear operator$,owe conclude that
P=2®%2. O

-0 (5)

Proposition 3.3.Let$, U and P be as in the mean ergodic theorem above. Consider an
2 € $and letS and¥ be total sets irf. Then the following hold

(i) If P=2 ® 2, then

1n—l
=D Uty = (x, 2)(82, ) (6)
k=0

asn — oo, forall x,y € 9.
(ii) If (6) holdsforallx e & andy € ¥,thenP =2 ® £2.

Proof. Statement (i) follows immediately from Proposition 3.2(i) by simply taking the
inner product ofc with the expression inside the normin (4).

To prove (ii), consider any € & andy € ¥. From the mean ergodic theorem it follows
that

11171
=Y Uy = (x, Py)
" =0

asn — oo. Combining this with (6) we see théat, Py) = (x, 2){(£2, y) = (x, (2 @ £2)y).
Since the linear span db is dense in$), this implies thatPy = (2 ® §2)y. Hence
P =2 ® £2 as in the proof of Proposition 3.2(ii).O

The reason for using total sets will become clear in Sections 4 and 5.

4. Ergodic results for x-dynamical systems

In this section we carry the results of Section 3 ovet-ttynamical systems using cyclic
representations. Firstly we give sadynamical generalization of Khintchine’s theorem
which follows from Theorem 3.1:

Theorem 4.1.Let (X, ¢, ) be ax-dynamical system, and consider afiye 2l ande > 0.
Then the set
2
E={keN: |p(A*t* Q)| > |p(A)|" — &}
is relatively dense iN.
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Proof. Let U and P be defined as in Proposition 2.4 in terms of any cyclic representation
of (2, ). Setx = 1(A). From (3) itis clear thaf2 = ((1) is a fixed pointofU, so(£2, x) =
(P$2,x) = (82, Px). It follows that|p(A)| = |p(1*A)| = [($2, x)| < 2| Px]| = || Px]|.

We also havep(A*t¥(A)) = (x, U¥x). Hence by Theorem 3.1, with = x, the setE is
relatively dense ilN. O

A C*-algebraic version of Theorem 4.1 was previously obtained in [3]. Next we use
Theorem 3.1 to prove a variant of Theorem 4.1:

Theorem 4.2.Let (2, ¢, t) be an ergodie-dynamical system, and consider afiyB € 2
ande > 0. Then the set

E={keN: |p(AT"(B))|> |p(A)p(B)| - ¢}

is relatively dense iN.

Proof. Let U and P be defined as in Proposition 2.4 in terms of any cyclic representation
of (A, ¢). Setx = ((A*) and y = «(B). By Proposition 2.4 we havéx = a2 and

Py = B2 wherea = (x, 2) = p(A*™1) = p(A) and 8 = ¢(B). Therefore|(x, Py)| =
[(Px, Py)| = |@B|12112 = |¢(A)¢(B)|. Furthermorep(AtX(B)) = (x, UXy). HenceE is
relatively dense ilN by Theorem 3.1. O

We are now going to prove two characterizations of ergodicity using Propositions 3.2
and 3.3, respectively. But first we need to consider a notion of totality of a set in a unital
x-algebra. (Remember that an abstract unitalgebra has no norm.)

Definition 4.3. Let ¢ be a state on a unitatalgebral(. A subset? of 2l is calledy-dense
in 2 if it is dense in the seminormed spa@t, | - ||,). A subsett of 2 is calledyp-total in
2 if the linear span oft is ¢-dense irl.

Trivially, a unital x-algebra isp-total in itself for any state.

Lemma 4.4.Lety be a state on a unital-algebra®(, and consider any subsg&tof2l. Let:
be given by2) in terms of any cyclic representation &, ¢), and let$) be the completion
of . ThenT is p-total in 2L if and only if (%) is total in §.

Proof. Supposes is ¢-total in 2, that is to say the linear spa8 of ¥ is ¢-dense in.
Then:((®B) is dense in® = ((2(), since for anyA € 2 there exists a sequen¢a,,) in B
such that||¢(4,) — t(A)]| = |A, — All, — 0. But by definition® is dense inf), hence
t(*B) is dense i. Since is linear, this means thatX) is total in ).

Conversely, supposg®) is total in §, then((®8) is dense inf. It follows that %5
is p-dense in, since for anyA € 2l there exists a sequendd,) in B such that
lA, — Allp = [t(An) — t(A)|| = 0. In other words¥ is ¢-total in2A. O

Proposition 4.5.Let (2, ¢, t) be ax-dynamical system, and consider apitotal set¥
in 2. Then the following hold
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() If (A, ¢, 1) is ergodic, then

1 n—1
=Y T -4
k=0
asn — oo, for everyA e 2.
(i) If (7) holds for everyA € T, then(2, ¢, 7) is ergodic.

-0 7

12

Proof. Let U and P be defined as in Proposition 2.4 in terms of any cyclic representation
of (2, ¢). Suppose&Ll, ¢, 7) is ergodic. For any € 2 we then have

| w

asn — oo, by Proposition 3.2(i) and Proposition 2.4, sinagg@(A)) = «(L)p(A) =
Qe(1*A) = £2(£2, 1(A)). This proves (i).

Now suppose (7), and therefore (8), hold for evdrnge €. Since((%) is total in $
according to Lemma 4.4, it follows from Proposition 3.2(ii) and the identiiy(A)) =
(2,1(A), that P = 2 ® 2. So (A, ¢, 1) is ergodic by Proposition 2.4, confirm-
ing (i). O

—0 (8)

11171
=3 ) - e(A)
" =0

1 n—1
=3 URA) = i(p(A))
=0

In the spirit of the original motivation behind the concept of ergodicity, this proposition
characterizes ergodie-dynamical systems as those for which tfirae meanof each
elementA of the x-algebra converges in the seminofm ||, to the “phase space”
meang(A). A better name for the latter would be thgstem meaim this case, since there
is no phase space involved. For a measure theoretic dynamical sy&tex z, u), the
statey is given byg(f) = [ f du which is indeed the phase space meaif @ B (X),
whereX is the phase space. We will come back to this in Section 5.

For any subseb of ax-algebra, we write5* = {A*: A € &}.

Proposition 4.6.Let (2, ¢, ) be ax-dynamical system, and consider aptotal sets&
and< in 2. Then the following hold

@) If (A, ¢, ) is ergodic, then
1 n—1
=Y _¢(AT8(B) > ¢(A)p(B) ©)
k=0
asn — oo, forall A, B e 2.
(ii) If (9) holdsforallA € 6* and B € T, then(%, ¢, 7) is ergodic.

Proof. Let U and P be defined as in Proposition 2.4 in terms of any cyclic representation
of (2, ). Suppose, ¢, 7) is ergodic. ThenP = 2 ® 2 by Proposition 2.4, and so by
Proposition 3.3(i) it follows that

1 n—1 1 n—1

=Y o(ATH(B) = =) (1(A%), UKi(B)) — ¢(A)p(B) (10)

n k=0 n

k=0
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asn — 0o, since (t(A*), 2) = ¢(A) and (£2, «(B)) = ¢(B), as in the proof of Theo-
rem 4.2. This proves (i). (Alternatively, (i) can be derived from Proposition 4.5(i) using the
Cauchy—Schwarzinequalitp (AC)| < [|A* |, [ICll, with C = (1/n) ZZ;}) ™*(B)—¢(B).
This is essentially how Proposition 3.3(i) was derived from Proposition 3.2(i).)

Now suppose (9), and therefore (10), hold for 4l G* and B € ¥. Since((&) and
(%) are total in$) according to Lemma 4.4, it follows from Proposition 3.3(ii) and the
identities (t(A*), £2) = ¢(A) and (2, «(B)) = ¢(B), thatP = 2 ® 2. So (A, ¢, 1) IS
ergodic by Proposition 2.4, confirming (ii).0

This characterizes ergodicity in termsmifxing We now give a simple example of an
ergodick-dynamical system whosealgebra is non-commutative:

Example 4.7.Let 2 be the unitalx-algebra of(2 x 2)-matrices with entries irC, the
involution being the conjugate transpose. kdie the normalized trace &, that is to say
¢ = (1/2)Tr. Definetr : 2l — 2 by

(91 a2 _ ( a2 c1a12
a1 azz c2a21 di1
for some fixed1, c2 € Cwith |c1] < 1,]c2] < 1,c1# 1andea # 1. The conditiongep| < 1

and|cz| < 1 are necessary and sufficient 1, ¢, t) to be ax-dynamical system. Note
that for anyc € C with |c| < 1, it follows from the mean ergodic theorem that

converges to 0 it # 1, and to 1 otherwise. Using this fact and Proposition 4.6(ii) with
& =% =92 (and some calculations), it can be verified that the conditiang 1 and

c2 # 1 are necessary and sufficient {@f, ¢, t) to be ergodic, assuming that | < 1 and
lc2| < 1.

5. Measure theory and von Neumann algebras

As was mentioned in Section 2, from a measure theoretic dynamical system,
w, T) we obtain thex-dynamical system(B.(X), ¢, 1), where ¢(f) = [ fdun and
7(f) = f o T. This allows us to apply the results of Section 4 to measure theoretic
dynamical systems. For example(K, X, u, T) is ergodic, then we know from Section 2
that (B (X), ¢, T) is ergodic. Hence for thig-dynamical system Theorem 4.2 tells us
that for anyA, B € X ande > 0, the set

{keN: lp(xat (xm)| > lo(xa)e(xp)| — €}

is relatively dense ilN, but this set is exactly the sé&t from Section 1. (Hereg; denotes
characteristic functions.) So we have answered our original question:
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Corollary 5.1. Let (X, X, u, T) be an ergodic measure theoretic dynamical system. Then
foranyA, B € X ande > 0, the set

F={keN: u(ANT*(B)) > u(A)u(B) — ¢}

is relatively dense imN.

This result says that for evekye F, the setA contains a seA N T%(B) of measure
larger thanu(A)u(B) — e, which is mapped inta8 by T*. Using a similar argument,
Khintchine's theorem follows from Theorem 4.1.

Likewise, Propositions 4.5 and 4.6 can be applied to the measure theoretic case. For
example, Proposition 4.5(i) tells us that X, X, i, T) is ergodic, then

1n71
/‘;ZfoT"—w(f)
k=0

asn — oo, for every f € Bo,(X). Note that this result is not pointwise and is therefore

not quite as strong as the usual measure theoretic statement of equality of the time mean
and the phase space mean. This is of course where Birkhoff's pointwise ergodic theorem
comes into play (see, for example, [4]).

What about the converse? Well, in order to effectively apply Propositions 4.5(ii)
and 4.6(ii) to the measure theoretic case, we need to know what the measure theoretic
significance of ap-total set in B, () is. The basic fact we will use is the following
simple proposition which follows from Lebesgue’s dominated convergence theorem:

2
dp—0 (11)

Proposition 5.2. Let (X, ¥, 1) be a probability space and set(f) = [ fdu for all
f € B (X). Thenthe sef = {x5: S € X'} is p-total in By (X).

From this we see that if (11) holds for all measurable characteristic functfons
then (Bso(X), ¢, T) is ergodic by Proposition 4.5(ii), hend&, X, u, T) is ergodic as
mentioned in Section 2.

Finally, with reference to Proposition 4.6(ii), we note that= < for ¥ as in Propo-
sition 5.2.

Next we briefly look at von Neumann algebras, as they are well-known examples of
unital x-algebras. Consider a von Neumann algebtaand supposéi, ¢, 7) is a *-
dynamical system. For exampiemight be ak-homomorphism leaving invariant, that is
to say.p(t(A)) = ¢(A) forall A € 90t. Then the results of Section 4 can be applied directly
to (M, ¢, 7). As a more explicit (and ergodic) example, we note that Example 4.7 is a
von Neumann algebra on the Hilbert spdte We can also mention thatin Example 4.7
is not a homomorphism.

We now describe one suitable choice for thotal sets appearing in Propositions 4.5
and 4.6. Let]3 be the projections ofit. It is known that9t is the norm closure of the
linear span of3, as is mentioned, for example, in [2, p. 326]. Since any state M
is continuous by virtue of being positive, it follows thgit is ¢-total in 9t. Note also,
regarding Proposition 4.6(ii), thg§t* = B. This is all very similar to the measure theoretic
case in Proposition 5.2, since the measurable characteristic functichsmnexactly the
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projections ofB.. (X). This similarity should not be too surprising, since the theory of von
Neumann algebras is often described as “hon-commutative measure theory” because of the
close analogy with measure theory.
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Appendix A

This appendix is devoted to the construction eéfdynamical systen@l, ¢, T) with the
property that if|z(A) — All, =0, then||A — «||, = 0 for somewa € C, but for which
the fixed points of the operatdy/ defined in Proposition 2.4 in terms of some cyclic
representation, form a vector subspacehofvith dimension greater than one. This will
prove the necessity of a sequence, rather than a single element, in Definition 2.3, in order
for Proposition 2.4 to hold.

First some general considerations. Consider a dense vector sul#pafce Hilbert
space), and let($) be the bounded linear operatais— §). Set

A:={Als: A€ £(9), A6 C G andA*® C &}

whereA|g denotes the restriction of to &. For anyA € 2, denote byA the (unique)
bounded linear extension df to §. Now define

A* = A¥|g

for all A € 2, then it is easily verified thall becomes a unitat-algebra. (For example,
for A, B € 2 it is clear thatAB is a bounded linear operat@y — & which therefore
has the extensiod.B € £(£)) for which A.B& C & and (A.B)*® = B*A*® C & by
the definition ofdl. HenceAB € A, and(AB)* = (A.B)*|¢ = (B*A*)|s = B*(A*|s) =
B*A* = B*A*. Similarly for the other defining properties of a unitahlgebra.) Note that
for A e 2 andx, y € & we have

(x, Ay) = (x, Ay) = (A*x, y) = (A*x, ).

For a given norm on& € & we define a state on 2l by
p(A) =(£2,A82).

Next we construct a cyclic representation(®f ¢). Let
T:A->L(B): A A;

then clearlyr is linear with 7 (1) = 1 and7(AB) = n(A)w(B). Note that for any
x,y € ® we have(x ® y)* =y ® x, hence(x ® y)& C & and (x ® y)*® C &, so
(x®y)|e €A Now, 7((x ® 2)|)2 =x(82, 2) = x, hencer ()2 = &. Furthermore,
(m(A)R2,1(B)2) = (A2, BR) = (2, A*BR) = ¢(A*B). Thus (&, , 2) is a cyclic
representation of(, ¢).
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Suppose we have a unitary operaltbr$) — $ such that/& = & andU 2 = 2. Then
U6 =U"16=6,s0V :=U|g €A, andV* = U*|g. It follows that V AV* € 2 for all
A €2, hence we can define a linear functior?l — 2( by

T(A)=VAV*.
Clearly V*V =1=VV* sot(1l) =1 andp(z(A)*t(A)) = p(VA*AV*) = (U*$2,
A*AU*RQ) = p(A*A), sinceU*2 = U102 = 2. Therefore(, ¢, t) is ax-dynamical
system. Note thal/ | satisfies (3), namelY/n(A)2 =UAR = UAU*2 =t(A)2 =
m(t(A))S$2, hencel is the operator which appears in Proposition 2.4.

Assume{x € &: Ux =x} =C8. If ||[t(4) — All, =0, it then follows forx = ((A),
with ¢ given by (2), that| Ux — x| = [l«(z (A) — A)|| = [T (A) — Al|, = 0, sox = a2 for
somex € C. Thereforg|A —all, = [[t(A —a)|| =[x —af2||=0.

In other words, assuming that the fixed pointstofin & form the one-dimensional
subspac€s2, it follows that| 7 (A) — A||, = 0 implies that| A — «||, = O for somex € C.

It remains to construct an example oftawith all the properties mentioned above,
whose fixed point space i has dimension greater than one. The following example was
constructed by Zsidé:

Let  be a separable Hilbert space with an orthonormal basis of the form

{2, y}Ulug: k € Z}

(that is to say, this is a total orthonormal sefjhand define the linear operator: $ — 9
by

U2 =9,
Uy=y,
Uuy =up+1, keZ.
SinceU is a surjective isometry, it is unitary. Leét be the linear span of
{2} Uy +ur: keZ).
ThenU® = &. Furthermoreg is dense irf). Indeed,
1
n

1 n n
y—;Z(y—i—uk) kgluk =7—>0

k=1
implies thaty € &, the closure o, hence also

1
n

= +u)—ye®d

fork € Z.
Next we show that

{xe®: Ux=x}=Cg2.
If a2 +>0__, Bu(y +up) € & is left fixed byU, then

n n n n
a2+ Y Fy+ Y, Busi=aR+ Y fy+ Y Pk

k=—n k=—n k=—n k=—n
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and it follows that8_,, = 0, and tha8y 1 = B fork = —n,...,n — 1. Thus

a2 + Z Br(y +up) =asf2.

k=—n
On the other hand,
{(xeH: Ux=x}

clearly contains the two-dimensional vector space spanne&gl agdy.
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