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The techniques of topological dynamics and differential-dynamical systems are
used to study polynomials orthogonal with respect to a measure supported on the
unit circle. It is assumed that the reflection coefficients associated with these poly-
nomials form a stationary stochastic ergodic process. In particular, the techniques
mentioned above are used to prove a gap labelling result. � 1996 Academic Press, Inc.

1. INTRODUCTION

The purpose of this paper is to use the techniques of topological
dynamics and differential dynamical systems to study solutions 8n(z) to the
difference equation

8n(z)=T(z, n) 8n&1(z) n�1, (1.1)

where the matrix T(z, n) is given by

T(z, n)=an \ z
:� nz

:n

1 + (1.2)

with
an=(1&|:n | 2)&1�2. (1.3)

Here the :n are complex numbers of modulus strictly less than one for all n.
Such difference equations arise in a number of mathematical and physical
problems. For instance, if we take 80(z)=( 1

1) then it is well known that
8(z, n) has the form 8(z, n)=( ,n(z)

,n*(z)), ,n*(z)=zn,� n(1�z), where the ,n(z) are
polynomials in z of degree n orthonormal with respect to a unique positive
probability measure _ supported on the unit circle K. That is,

|
K

,n(z) ,m(z) d_(%)=$n, m z=ei%.
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This difference equation also arises in one-dimensional lossless layered
medium models in seismology and transmission lines (Bruckstein and
Kailath [3], Bube and Burridge [4], Robinson and Treitel [25]). In the
layered media models acoustic waves are partially reflected at the interface
between layers where there is a change in the acoustic impedance. If the
acoustic impedance of the n th layer Zn>0 for all n then :n=(Zn&1&Zn)�
(Zn&1+Zn), which shows that |:n|<1. For this problem the relevant
quantities are ( D$0(z)

U $0(z)), where D$0(z) is the z transform of the downward
waves at the bottom of the zeroth level and U$0(z) is the z transform of
the upward waves at the bottom of the zeroth level. It is presumably the
coefficients of U$0(z) that produce the seismic trace. If Dn(z) and Un(z) are
respectively the z transforms of the downward and upward waves at the
top of the n th level, then [25, pp. 301�308]

\D$0(z)
U$0(z)+=a1 \ 1

:1

:1

1 +\
D1(z)
U1(z)+

and

9(z, n)=\D� n(z)
U� n(z)+=z(n+1)�2 \D$n(z)

U$n(z)+
satisfies the equation

8(z, n)=T &1(z, n+1) 9(z, n+1).

If we consider mn(z)=U� n(z)�D� n(z)=U$n(z)�D$n(z) then mn(z) satisfies the
equation

mn(z)=
1&:n+1 mn+1(z)
mn+1(z)&:n+1

and mn(z) is one of the Weyl m functions introduced below.
The problem we consider here is the study of the orthogonality measure

_ and the Weyl m functions in the case when [:n] form a stationary
stochastic sequence. More precisely there are a probability space (0, +),
+ a Borel probability measure, a bimeasurable bijection s: 0 � 0, and a
measurable function g: 0 � [z # C | |z|<1]= open unit disc such that

:n=g(sn(|)) (&�<n<�) (1.4)

for some | # 0. Thus :n depends on |, and we pose questions involving
the properties of [T(z, n)] which are true for +-almost all | # 0. Hence we
consider problems related to random layered media models.

We begin in Section 2 by recasting (1.1) as

8n(z)=(An+zBn) 8n&1(z) (1.5)
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and review the necessary spectral theory associated with (1.1) introducing
the concepts that will be used in the sequel. Also, in this section we intro-
duce the Floquet exponent w~ (z) associated with Eq. (1.1), which is a
complex number,

w~ (z)=#~ (z)+i
(\~ (z)+Arg z)

2
|z|�1,

where #~ (z) is the so-called Lyapunov exponent and \~ (z) is the rotation number.
In this section the notion of exponential dicotomy is introduced and related
to the boundedness of solutions (1.1). In order to study the deeper properties
of \~ (z) we apply (in Section 3) the well-known suspension construction (e.g.,
Ellis [8]) to the family of matrices [T(z, n)] to obtain a two-dimensional
system of Atkinson type

Ju$=Au+*Bu (1.6)

where J=( i
0

0
&i), *=&i log z, A and B are symmetric 2_2 matrices, and

B is negative semi-definite. If 8(*, t) is the fundamental matrix solution of
(1.6) satisfying 8(*, 0)=2_2 identity matrix, then

8(&i log z, n)=T(z, n) T(z, n&1) } } } T(z, 1)=2(z, n) (1.7)

for all positive integers n. This establishes a basic and simple connection
between solutions of (1.6) and the solutions of (1.1). If :n is a stationary
stochastic ergodic process then the suspension of 2(z, n), produces a ran-
dom family of differential equations (1.6)|̂ indexed by |̂ # 0� where (0� , +̂)
is the suspension of (0, +) as described below. The recent techniques
developed by Johnson and Moser [17], Johnson and Nerurkar [18],
Kotani [20], and others to study (1.6) when the coefficients are ``random''
can now be used to study (1.1). In particular there is a Floquet exponent
w(*) for Eq. (1.6)|̂ which is introduced in a way completely analogous to
the way this quantity is introduced for the random Schro� dinger operator
(Johnson and Moser [17]). In this case the Floquet exponent is a complex
number

w(*)=#(*)+i\(*)

defined for Im *�0. If * is real, then #(*) and \(*) are respectively the
Lyapunov exponent and rotation number. The relation between the dis-
crete Floquet exponent w~ and the continuous exponent w is

w~ (z)=w(&i log z)+
log z

2
, (1.8)
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which connects the Lyapunov exponent for the discrete problem with the
one associated with (1.6). Furthermore the connection between the rotation
number \~ , which appears as the conjugate function to the Lyapunov, #̂ and
the rotation number \ associated with the differential equation allows us to
impart important dynamical information to \~ not otherwise available. Next
(in Section 4) we prove the following.

1. The complement of the set of isolated points in the topological
support of the measure _(dz)=_|(dz) (| # 0) is independent of | for
+&a.a. |, and can be described as the set of non-constancy points of the
monotone, non-increasing function \(&i log z) for |z|=1. Thus this set 7
can be determined in a simple way.

2. (Gap-Labelling). The intervals in the open set K&7 are labelled
by the values of \(&i log z), which for z # K&7 lie in a countable sub-
group of R determined by the topology of 0 (see below).

3. (Pastur and Ishii). If #(&i log z) is positive on a Borel subset
B/K, then for +&a.a. | there is no absolutely continuous component of
_|(dz) in B.

4. (Kotani). The absolutely continuous component _ac
| (dz) is inde-

pendent of | for +&a.a. |, and the support of _ac
| (dz) equals the set of

z # K for which #(&i log z)=0.

Most of the results listed above use the rotation number and Lyapunov
exponent to characterize the boundary values of the associated m functions.
For unity of presentation we state and prove our results in the case when
(i) |:n|�1&$ for some positive $ (&�<n<�); (ii) there exist positive
numbers =>0, T>0 such that for every n0 there exits an n, n0�n�no+T
so that |:n|�=. The first assumption allows us to give 0 a compact metric
topology. On the other hand, the topology of 0 is only used to discuss the
gap-labelling result but is not necessary for results (3) and (4) above.
Indeed these results can be proved under a less restrictive assumption,
namely that

|
0

log(1&|:n(|)| ) d|>&�.

These proofs use functional analytical techniques and are given in Geronimo
[9] and Geronimo and Teplaev [11]. A version of (1) is also proven in
these papers where the ``integrated density of states'' k replaces the rotation
number \.

The relation between the rotation number and the integrated density of
states is well known in the theory of the random Schro� dinger operator and
is in fact proved using classical Sturm oscillation theory. One of the
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contributions of the present paper is to define a rotation number for (1.1)
which has the same relation to the integrated density of states k of [9] and
[11] as the relation existing between these quantities for the random
Schro� dinger operator. A second contribution is to formulate and prove the
gap-labelling result (2). Third, we point out that our approach to these
results is based on techniques and results of dynamical systems, and thus
complements the probabilistic and functional-analytic approach of [9, 11].
Finally, the Kotani-type result can be strengthened in a very useful way
when 0 is compact: see Geronimo and Johnson [10] for an application to
the inverse problem for orthogonal polynomials.

2. SPECTRAL THEORY

We begin this section with a quick review of spectral theory (see Atkinson
[1, Chap. 3]. Consider (1.5) with

Bn=an \ 1
:� n

0
0+ (2.1)

and

An=an \0
0

:n

1 + . (2.2)

If J� =( 1
0

0
&1), then B-

n J� An=A-
nJ� Bn=0, B-

nJ� Bn=( 1 0
0 0), and A-

nJ� An=( 0 0
0 1).

Thus for any two solutions 8n and 9n of (1.5) we find

8-
n+1(z1) J� 9n+1(z2)

=(z� 1z2&1) 8-
n(z1) B-

n+1J� Bn+1 9n(z2)+8-
n(z1) J� 9n(z2).

In particular let Y(z, n) be a fundamental solution to (1.5) with Y(z, 0)=I;
then

Y -(z1 , N1) J� Y(z2 , N1)&Y -(z1 , &M1) J� Y(z2 , &M1)

=(z� 1z2&1) :
N1&1

k=&M1

Y -(z1 , k&1) WY(z2 , k&1), (2.3)

with W=Wk=B-
kJ� Bk=( 1 0

0 0) for all k.
Consider the following boundary value problem. Let L1=( c1

d1

0
0) and

K1=( 0
0

e1
f1

) where |c1|=|d1|{0, |e1|=| f1|{0, and c1 �d1=( f1 �e1). Note
that

L-
1J� L1=K -

1J� K1=0. (2.4)
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We search for nonzero vectors v such that 8n is a solution of (1.5) with
8N1

=K1v and 8&M1
=L1v. It is not difficult to see that the eigenfunctions

associated with this boundary value problem are the roots of the poly-
nomial det(K1&Y(z, N1) Y&1(z, &M1) L1). Furthermore it can be shown
[1, Chap. 3] that these eigenvalues lie on the unit circle, are simple, and
the eigenvectors associated with different eigenvalues are orthogonal. For
0�%<2? let [zj=ei%j ] be the eigenvalues associated with the boundary
value problem being considered and let [ui ] be the corresponding nor-
malized eigenvectors, i.e.,

:
N1&1

n=&M1

u-
i (n) Wuj (n)=$ij . (2.5)

Let T� (1)(%) be the spectral matrix associated with the boundary value
problem being considered defined as follows: T� (1) is constant on each arc
between successive eigenvalues in [0, 2?], is right continuous at each
eigenvalue, and for each eigenvalue ei%j

lim
% � %j

+
T� (1)(ei%)& lim

% � %j
&

T� (1)(ei%)=ui (0) u-
i (0). (2.6)

We assume that [Bn] is such that if [8n] is any solution of (1.5) which is
not identically zero then �N1&1

n=&M1
8-

nW8n{0. Let 9n be a solution of the
difference equation

9n(z)=(An+zBn) 9n&1(z)+Bn /n&1 , (2.7)

with 9&M1
=L1v and 9N1

=K1v for some vector v. If z is not an eigenvalue
of the homogeneous problem then 9n is unique and v (which may be zero)
is determined in terms of /. Furthermore, 9n can be represented as

9nt|
2?

0
Y(%, n) dT� (1)(%) 9� (%), (2.8)

where 9� (%) is the ``Fourier Transform'' of 9n ; i.e.,

9� (%)= :
N1&1

n=&M1

Y -(%, n) W9n . (2.9)

Note that (2.8) may only faithfully reproduce the part of 9n not in the
kernel of W. Since W �i ui (n) u-

i (m) W=$n, m W, [1, Eq. (7.3.7)], the
meaning of (2.8) is

&9&8&W={ :
N1&1

n=&M1

(9n&8n)- W(9n&8n)=
1�2

=0, (2.10)
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where

8n=|
2?

0
Y(%, n) dT� (1)(%) 9� (%). (2.11)

We also find that

&9� &2=|
2?

0
9� -(%) dT� (1)(%) 9� (%)= :

N1&1

n=&M1

9 -
n W9n=&9&2

W . (2.12)

Let 9nt�i ci ui (n), where

ci= :
N1&1

n=&M1

u-
i (n) W9n ,

and let di=�N1&1
n=&M1

u-
i (n) W/n . By routine manipulations using (2.7)

and the boundary conditions satisfied by 9n it is not difficult to show
[1, Eq. (9.6.37)] that if z is not an eigenvalue of the boundary value
problem being considered then (z� i&z) ci=di . Therefore �i |z� 1&z| 2 |ci |

2=
�i |di |

2. Now (2.8), (2.9), and Bessel's inequality imply that

|
2?

0
|ei%&z| 2 9� -(%) dT� (1)(%) 9� (%)�&/&2

W . (2.13)

Provided z is not an eigenvalue of the boundary value problem, any
solution u of the equation

u(n)=T(z, n) u(n&1)+�(n)

with u(&M1)=L1v and u(N1)=K1 v can be written as

u(n)= :
N1

i=&M1+1

R(n, i) �(i),

where R(n, m) is the Green's function given by

R(n, m)={Y(z, n)(F 1(z)&1�2I ) Y(z, m)&1 n<m
Y(z, n)(F 1(z)+1�2I ) Y(z, m)&1 n�m,

where

F 1(z)=1�2[Y(z, &M1)&1 L1+Y(z, N1)&1 K1]

_[Y(z, N1)&1 K1&Y(z, &M1)&1 L1]&1,
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is the characteristic function. Note that R(n, m) satisfies the equation

R(n, m)&T(z, n) R(n&1, m)=$n, mI. (2.14)

If we set F� 1(z)=F 1(z) J&1 then a simple calculation shows that
Re F� 1(z)>0 for |z|<1.

Let 9+(z, n, N1)=( � 1
+(z, n, N1)

� 2
+(z, n, N1)) and 9&(z, n, &M1)=( � 1

&(z, n, &M1)
� 2

&(z, n, &M1)) be

solutions of (1.5) satisfying the boundary conditions

9+(z, N1 , N1)=\ e1

f1+ and 9&(z1 , &M1 , &M1)=\c1

d1+ .

Since

�2
+(z, n, N1)

�1
+(z, n, N1)

=z \ �2
+(z, n+1, N1)��1

+(z, n+1, N1)&:� n+1

1&:n+1�2
+(z, n+1, N1)��1

+(z, n+1, N1)+ , (2.15)

and

�1
&(z, n, &M1)

�2
&(z, n, &M1)

=
z

�1
&(z, n&1, &M1)

�2
&(z, n&1, &M1)

+:n

:� nz
�1

&(z, n&1, &M1)
�2

&(z, n&1, &M1

+1
, (2.16)

it follows from the inequalities |(za+:n)�(:n za+1)|<1 and |z(a&:n )�
(1&:n a)|<1 for |z|<1 and |a|�1 that �2

+(z, n, N1)��1
+(z, n, N1) and

�1
&(z, n, &M1)��2

&(z, n, &M1) are both less than one in magnitude for
|z|<1. Set m~ +(z, N1)=�2

+(z, 0, N1)��1
+(z, 0, N1) and m~ &(z, &M1)=

�1
&(z, 0, &M1)��2

&(z, 0, &M1). From (1.2) we find that

det(K1&Y(z, N1) Y&1(z, &M1) L1)

=zN1 det(Y(z, N1)&1 K1&Y &1(z, &M1) L1)

=zN1 �1
+(z, 0, N1) �2

&(z, 0, &M1)(1&m~ +(z, N1) m~ &(z, &M1)). (2.17)

Because �2
+(z, n, N1)��1

+(z, n, N1) and �1
&(z, n, &M1)��2

&(z, n, &M1) are
bounded for |z|�1 it follows from the uniqueness of the initial value
problem that �1

+(z, n, N1) and �2
&(z, n, &M1) are non-zero for |z|{0.

Consequently (2.17) shows that the eigenvalues of the boundary value
problem under consideration are at the points on the unit circle where
m~ +(z, N1)=m~ &(z, &M1) with |m~ &(z, N1)|=|m~ &(z, &M1)|=1. We now
consider the coefficients in the power series for m~ &(z, &M1). It follows
from (2.16) that the contribution of �1

&(z, &i, &M1)��2
&(z, &i, &M1) to

the power series coefficients of �1
&(z, 0, &M1)��2

&(z, 0, &M1) does not
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appear until the i th coefficient of the series for �1
&(z, 0, &M1)�

�2
&(z, 0, &M1). This implies that the contribution of �1

&(z, &M1 , &M1)�
�2

&(z, &M1 , &M1)=c1 �d1 does not appear until the M1 coefficient in
the series for m~ &(z, &M1). Therefore all the coefficients cm in the power
series expansion for m~ &(z, &M1) for m<M1 are independent of M1 .
Thus we can let M1 � � and limM1 � � m~ &(z, &M1)=m~ &(z) where the
convergence is uniform on compact subsets of the open unit disk. An
analogous argument shows m~ +(z, N1) � m~ +(z). A geometric description of
the process will be given in Section 4. Note that |m~ &(z)|<1 and
|m~ +(z)|<1 for |z|<1.

If we consider the projection operator whose range is ( 1
m~ +(z, N1)) and

whose kernel is ( m~ &(z, &M1)
1 ) we find

P� 1=
\ 1

+m~ +(z, N1)
&m~ &(z, &M1)

&m~ &(z, &M1) m~ +(z, N1)+
1&m~ &(z, &M1) m~ +(z, N1)

. (2.18)

In terms of P� 1 the characteristic function F 1 has the representation F 1(z)=
(P� 1& 1

2 I ) and F� 1(z)=(P� 1& 1
2I ) J� &1 which gives

F� 1(z)=
\

1
2 (1+m~ &(z, &M1) m~ +(z, N1))

m~ +(z, N1)
m~ &(z, &1)

1
2 (1+m~ &(z, &M1) m~ +(z, N1))+

1&m~ &(z, &M1) m~ +(z, N1)
.

(2.19)

Since F� 1(z) has positive real part for |z|<1 it has the representation

F� 1(z)=
1
2i \

0
&:� 0

:0

0 ++|
K

ei,+z
ei,&z

dT� (1).

From the arguments above we find that T� (1) converges weakly as N1 and
M1 tend to infinity to a unique matrix measure T supported on the unit
circle. Thus

F� 1(z) � F� (z)=
1
2i \

0
&:� 0

:0

0 ++|
K

ei%+z
ei%&z

dT� (%) (2.20)

with �K dT� = 1
2 ( 1

:� 0
:� 0
1 ). Set

g(z)=tr F� (z)=
1+m~ +m~ &

1&m~ +m~ &

, (2.21)
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which is a Caratheodory function and has the representation

g(z)=|
K

ei%+z
ei%&z

dv (2.22)

where g(0)=� dv=1.
Let s be the bimeasurable bijection discussed in the Introduction and let

:n satisfy (1.4). Furthermore we will suppose that s is ergodic, i.e., s&1A=
A O +(A) # [0, 1]. We assume that :n�0.

Lemma 2.1. Suppose s: 0 � 0 is an ergodic automorphism and [:n] is
not identically zero. Then there is a unique measure k such that for +-almost
every |,

E(g)=E \1+m~ +m~ &

1&m~ +m~ &+=|
K

ei%+z
ei%&z

dk(%) |z|<1.

Proof. The result follows from Fubini's Theorem.

Lemma 2.2. Suppose s: 0 � 0 is an ergodic automorphism, [:n] is not
identically zero and

E(log(1&|:1(|)| ))>&�. (2.23)

Then

lim
n � �

1
n

log &Y(z, n)&= lim
n � �

1
n

log &Y&1(z, &n)&

= lim
n � �

1
2n

log &Y(z, n) Y(z, &n)&1&=#~ (z) (2.24)

exists and is independent of | for each fixed z # C and +-almost every |.
Furthermore, #~ (z) is subharmonic and greater than or equal to zero.

Proof. The proof follows from Kingman's subadditive ergodic theorem
(Krengel [21], Ruelle [26]; see also Geronimo and Teplaev [11],
Geronimo [9], Craig and Simon [6], and Herman [13]).

#~ (z) is the Lyapunov exponent associated equations (1.5). Before deriving
the so-called Thouless formula (Avron and Simon [2], Johnson and Moser
[17]) we need
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Lemma 2.3. With the hypothesis of the previous lemma

#~ (z)= lim
n � �

1
2n

log |,(z, 2n+1, &n)+,*(z, 2n+1, &n)|

uniformly on compact subsets of C"K.

Proof. Using the Hilbert�Schmidt norm we find

&Y(z, n) Y&1(z, &n)&2

=|A+(z, n)| 2 {_1+ }A&(z, n)
A+(z, n) }

2

&+ }B+(z, n)
A+(z, n) }

2

_1+ }B&(z, n)
B+(z, n) }

2

&= ,

where A\(z, n) = ,(z, 2n+1, &n) \ ,*(z, 2n+1, &n), and B\(z, n) =
,1(z, 2n+1, &n)\,2(z, 2n+1, &n) with

\ ,(z, 2n, &n)
,*(z, 2n, &n)+=Y(z, n) Y(z, &n)&1 \1

1+
and

\,1(z, 2n, &n)
,2(z, 2n, &n)+=Y(z, n) Y&1(z, &n) \ 1

&1+ .

Suppose |z|<1, then

A&(z, n)
A+(z, n)

=
1&,(z, 2n, &n)�,*(z, 2n, &n)
1+,(z, 2n, &n)�,*(z, 2n, &n)

since ,*(z, 2n, &n) has all its zeros outside the unit circle (Geronimus
[12]). This implies that

} ,(z, 2n, &n)
,*(z, 2n, &n) }<1

for |z|<1 since |,(z, 2n, &n)|=|,*(z, 2n, &n)| for |z|=1. Thus, A&(z, n)�
A+(z, n) is a Caratheodory function and has the representation

A&(z, n)
A+(z, n)

=ivn+|
?

&?

ei,+z
ei,&z

d_n(%).

Hence we find that for each compact subset K� of the open unit disc there
is constant c depending only on K� such that (A&(z, n)�A+(z, n))<
c�(1&|:n| ). If |z|>1 then the same bound with a different constant is
obtained if the fact that ,(z, 2n, &n) has all its zeros inside the unit circle
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is used. With similar arguments it is not difficult to see (Geronimo [9])
that |B&(z, n)�B+(z, n)|�c�(1&|:n| ) and |B+(z, n)�A+(z, n)|<c, where c
depends only upon the compact subset K� # C"K and not on n. The result
now follows since (1�n) log(1&|:n| ) � 0 by (2.23). K

Theorem 2.4. Suppose s: 0 � 0 is an ergodic automorphism, [:n] is not
identically zero, and (2.23) holds. Then

#~ (z)=R+|
K

log |z&ei,| dk(,) (2.25)

for all z where R=limn � 0(1�n) log >n
i=1 an<� for +-almost all |.

(Here we have adopted the convention that �K log |z&ei,| dk is equal to
&� if the integral diverges to &�.)

Proof. If we return to the boundary value problem considered at the
beginning of this section and set M1=N1 , L1=( 1

1
0
0), and K1=( 0

0
1

&1) then

det(K1&Y(z, N1) Y&1(z, &N1) L1)=,(z, 2N, &N1)+,*(z, 2N, &N1).

Thus for n finite we have

1
2n

log |,*(z, 2n&n)+,(z, 2n, &n)|

=
1
2n

:
n

j=&n+1

ln aj+|
K

log |z&ei,| dk(n)(%).

Equation (2.22), Lemma 2.2, and the fact that ln |z&ei,| is continuous
for z not on the unit circle now give the result for |z|{1. The result for
|z|=1 follow since both sides of (2.25) are subharmonic and equal for all
|z|{1. K

We now define the Floquet exponent associated with the system. To this
end set

w~ (z)#R+|
K

ln(z&ei,) dk(,)

##~ (z)+i
\~ +Arg z

2
, |z|<1, (2.26)

where we use the principal branch of the logarithm. From (2.26) we find
that

1
i

�w~
�%

&
1
2

=&
1
2 |

K

ei,+z
ei,&z

dk(,)=
1
i

�#~
�%

+
1
2

�\~
�%

, z=rei%, r<1.
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This implies that

�\~
�%

=&|
K

1&|z| 2

|z&ei,| 2 dk(,).

Therefore �\~ ��% has radial boundary values Lebesgue almost everywhere
and

lim
r � 1 |

K
f (ei%)

�\~
�%

d%=|
K

f (ei%) d\~ =&|
K

f (ei%) dk.

Since k is log Holder continuous and \~ is continuous (see Section 4) we
find for any sub arc I of the unit circle

|
I

d\~ (%)=&|
I

dk(%)=&|
I

E(tr dT� (%)), (2.27)

where the last formula follows from (2.18), (2.19), and Lemma 2.2.
It is convenient at this point to topologize the set 0. We do so by

first identifying | # 0 with the biinfinite sequence i(|)=[g(sn(|)) |
&�<n<�], which we view as a element of the biinfinite product C�.
Let 0� =cls[i(|) | | # 0] where the closure is taken in the topology of
pointwise convergence. Then 0� is compact and the image measure i(+)=+~
is ergodic with respect to the shift transformation on 0� . We suppose
without loss of generality that 0� is the topological support of the measure
+~ . In what follows we identify (0, +) with (0� , +~ ) and drop the tilde.

Another useful concept is that of exponential dichotomy (ED) (Coppel [5]).

Definition 2.5. Let z # C&[0] be fixed. Equations (1.5) are said to
have ED over 0 if there are constants L>0, ;>0 and a continuous
projection-valued function P: | � P| (thus each P| : C2 � C2 is linear and
P2

|=P|) such that

&Y(z, n)(I&P|) Y(z, m)&1&�Le ;(n&m) n<m,

&Y(z, n) P| Y(z, m)&1&�Le&;(n&m) n�m.

Thus Eq. (1.5) has ED if and only if the space of solutions of these
equations admits a hyperbolic splitting. Note that the dimension of P| is
a constant on each connected component of 0.

The importance of exponential dichotomy derives from the fact that it
is a very robust property [5] and from the fact that P is continuous
resp. smooth in parameters when the difference equation with which it is
associated is continuous resp. smooth in these same parameters

We now prove the main result of this section.
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Theorem 2.6. Suppose s: 0 � 0 is an ergodic automorphism,
ess sup | g(|)|<1 (see Eq. (1.4)), and that there exist positive numbers =, T
such that for each | # 0, every interval [n0+1, n0+T ]/Z of length T con-
tains a number n such that | g(sn(|))|�=. Let I=(%1 , %2), 0�%1<%2<2?.
Then Eq. (1.5) has ED over 0 for all z=ei%, % # I, if and only if the rotation
number \~ (%) is constant on I.

The proof, which is based on arguments found in Johnson and Nerurkar
[18] and is given for the convenience of the reader, will be presented after
the following preparatory lemmas.

Lemma 2.7. Under the hypothesis of the above theorem, let 8n be a
solution of (1.5). Then �n # Z 8-

nW8n=0 if and only if 8n=0 for all n.

Proof. From the definition of W we see that �n # Z 8-
nW8n=

�n # Z |,1
n| 2, where 8n=( ,1

n
,2

n
). Therefore if �n # Z 81

nW8n=0, ,1
n=0 for all n.

From (1.5) we see that this implies that :n ,2
0(n&1)=0 for all n. But there

is an n1 such that :n1
{0 so ,2

n1&1=0; hence 8n1&1=0 which implies that
8n(z1)=0 for all n. K

Suppose that z1=ei%1 is not an eigenvalue of (1.5). (Here we have let N1

and M1 go to infinity.) Suppose 8n(z1) is a bounded solution of (1.5) such
that � 8-

nW8n=�. Let K0=[m0 , n0] be a large interval containing zero
and consider the following control problem. We look for a function / with
the following properties, (1) support //[m0 , m0+1] _ [n0 , n0+1], (2) if
h is a solution of h(n)=(An+z1 Bn) h(n&1)+Bn /(n) with h(0)=80 then
support h=[m0&1, n0+2], and (3) /(n) is bounded independently of the
interval K0 .

Definition 2.8. An invariant compact subset M/0 is said to be
minimal if every | # M has a dense orbit: cls[sn(|)&�<n<�]=M for
all | # M.

Lemma 2.9. Suppose that s: 0 � 0 is an ergodic automorphism,
ess sup | g(|)|<1, and that there exist positive numbers =, T such that for
each | # 0, every interval [n0 , n0+T ]/Z of length T contains a number n
such that | g(sn(|))|�=. Let | # 0 and write :n=:n(|) (&�<n<�).
Then there are a control / and a solution h satisfying (1), (2), and (3).

Proof. Let [m0 , n0], [m1 , n1], ..., [mi , ni]... be an infinite set of increas-
ing intervals such that 0<c1<|:nj |, |:mj |<c2<1 for fixed c1 and c2 .
Such intervals exist because of the assumptions on [:n]. If we choose
/(n)=( /1(n)

0 ) with 8n(z)=( ,1
n(z)

,2
n(z)

) then /1(m0+1)=z1(,1
m0

(z1)&,2
m0

(z1)�:� m0
),
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/1(m0)=,2
m0

(z1)�:m0
, /1(n0)=&,2

n(z1)�an0
:� n0

, /1(n0+1)=&z1(,1
n0

(z1)&
,2

n0
(z1)�:� n0

) and /(n)=0 otherwise is the control having the desired
properties. K

Lemma 2.10. With the hypotheses of Theorem 2.6 the map | � dT� | is
weakly continuous, i.e., | � �K 9 -(%) dT� |(%) 9(%) is continuous.

Proof. This is most easily seen by using the topology on 0 introduced
above and recalling that the shift map is continuous. This plus the con-
tinuity of the m functions in terms of | gives the result. K

Now we turn to the

Proof of Theorem 2.6. Let | # 0. We begin by showing that if \ is
constant on I, that is, if \(%1)&\(%2)=0 (\ is a monotonic function on
0�%<2?) then the only bounded solution of (1.5) for all % # I is the zero
solution. A theorem of Selgrade [29] then implies that, if | # M and M is
a minimal subset of 0, then ED holds over M for all % # I. Let |0 # M,
M a minimal set, and %0 # I such that 80(n)=8n, |0

(ei%0, n) is a bounded
solution of (1.5) for all n. Note that the constancy of \ on I, (2.27), and
Lemma 2.10 show that

|
%2

%1

tr dT� |0
(%)=0. (2.28)

This follows by approximating the characteristic function of I by
continuous functions and using the dominated convergence theorem. We
assume that � 8-

0(n) W80(n)=� for otherwise ,0(n) would be an eigen-
value for (1.5) violating (2.28). Let / be the control given in Lemma 2.9
and note that hn=80(n) for n # [m0 , n0]. Let [m1 , n1], [m2 , n2] } } }
[mi , ni] with m1<m0&1, n1>n0+1 be a sequence of nested intervals
such that ni � � and mi � &�. Let matrices Li and Ki be chosen so that
the boundary value problems on each interval [ni , mi], i=0, 1, ... do not
admit z0=ei%0 as an eigenvalue and let Ti be the spectral matrix associated
with the boundary value problem on [mi , ni]. Set

h� (%)= :
ni&1

n=mi

Y -(%, n) Whn= :
n1&1

n=m1

Y -(%, n) Whn .

The last inequality follows since support hn/[n1 , m1]. Y(%, n), z=ei% is
the fundamental matrix for (1.5) with Y(%, 0)=I. From (2.4) we find

|
I

h� (%)- dT jh� (%)= :
%i # I } :

nj&1

n=mj

u-
i (n) Whn }

2

= :
%i # I } :

n1&1

n=m1

u-
i (n) Whn }

2

,
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where ui (n)=Y(%1 , n) ui (%). By Schwarz's inequality we get

:
%i # I } :

n1&1

n=m1

u-
i (m) Whn }

2

�&h&2
W :

%i # I } :
n1&1

n=m1

u-
i (n) Wui (n) }

with &h&2
W=�n1&1

n=m1
h-

nWhn . In order to recast

:
n1&1

n=m1

u-
i (n) Wui (n)

in a suitable form we make the following observation. Suppose that
|0 is replaced by sl (|0) and the intervals [mi , ni] are replaced by
[mi&l, ni&l ]. Then the boundary value problem considered above
becomes x(n)=[An+l+zBn+l ] x(n&1) with x(ni&l )=Kiv, x(mi&l )=
Li v, v{0. Let T� i

l=T� i
sl(|0) be the spectral matrix corresponding to this

boundary value problem. Then T� i
l is constant except at the eigenvalues

zj=ei%j with %j the same as when l=0 and lim% � %j
+ T� i

l (%)&
lim% � %j

& T� i
l (%)=uj (l ) uj (l )-. With this in mind we see that

:
%j # I

:
ni&1

n=mi

u-
j (n) Wuj (n)= :

ni&1

n=mi
|

I
d(tr WT� i

n(%)). (2.29)

Since (2.28) also applies for T� n we find from the dominated convergence
theorem that limi � � �ni&1

n=mi
�I d(tr(WT� i

n))=0. Therefore

lim
j � � |

I
h� -(%) dT� j

sn(|0)h� (%)=0. (2.30)

If ==min 1
2 ( |ei%1&ei%0 |, |ei%2&ei%0 | ) then the fact that &h&W>0 and (2.30)

show that

|
2?

0
|ei%&z0| 2 h� - dT� jh� =|

|ei%&z0 |>2= _ |ei%&z0 |�2=
|ei%&z0| 2 h� - dT� jh

�=2 |
2?

0
h� - dT� jh� ,

for j sufficiently large. However, (2.12) and (2.13) imply that

&/&2
W�=2 |

2?

0
h� - dT� ih==2 &h&2

W ,

for large enough i. This yields a contradiction since &/&W is independent of
the size of [m0 , n0] while by hypothesis &h&W � � as this interval grows.
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Thus 8n=0 and we have ED over the minimal set M. Now however the
projections P| must have constant rank=1, so a result of Sacker and Sell
[27] now implies that (1.5) has ED over all 0 which completes the
proof. K

3. THE SUSPENSION

We now study (1.5) by introducing a differential system whose solutions
reflect behavior of iterates of (1.5). We do this by ``suspending'' the prob-
ability space (0, +) and the difference equation (1.5). We first consider
the suspension of a measure-preserving automorphism s of an abstract
probability space (0, +). Consider the product space 0_R, and define
ŝ: 0_R � 0_R: ŝ(|, t)=(s(|), t&1). The group of mappings _=
[ŝn | &�<n<�] acts freely on 0_R in the sense that if ŝn(|, t)=(|, t)
for some point (|, t) # 0_R and some integer n, then n=0 and ŝn is the
identity.

Let 0� be the quotient space

0� =(0_R)�_.

Thus 0� is the set of equivalence classes [|, t] of pairs (|, t) under the
equivalence relation

(|1 , t1)t(|2 , t2) � |2=sn|1 and t2=t1&n

for some n # Z. Clearly each element of 0� has a unique representative
[|, t] where 0�t<1. We see further that [|, 1]=[s(|), 0].

There is a Borel structure B� on 0� induced by the product Borel structure
B on 0_R: thus B # B� if and only if ?&1(B) # B where ?: 0_R �
0� : (|, t) � [|, t] is the projection. We define a probability measure +̂ on
0� as follows. Fix t # R, and let +t be the measure on [[|, t] | | # 0]/0�
induced by +. More precisely: the map it : 0 � 0� : | � [|, t] is a measure
isomorphism onto its image, and we define

+t(B)=+(i &1
t (B)) (B # B� ).

The measure +t is well defined because of the invariance of + with respect
to s. Now define

+̂(B)=|
1

0
+t(B) dt (B # B� ).

In this way we obtain a _-additive measure +̂ on B� .
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Next note that, for each t # R, the map {t : 0� � 0� : {t[|, s]=[|, s+t]
is a bimeasurable bijection. Moreover, {0=i dy and {t b {s={t+s for all
t, s # R. That is, [{t | t # R] is a one-parameter group of measure auto-
morphisms of (0� , B� ).

Using the invariance of + with respect to s, one can now show:

Proposition 3.1. For each t # R and B # B� , one has

+̂({t(B))=+̂(B).

Thus the measure +̂ is invariant with respect to the one-parameter group
[{t | t # R].

We turn to the construction of the suspension of the matrix T(z, n)
defined in (1.2). Fix a complex number z{0 and consider the map
Tz : 0_Z+ � GL(2, C) given by (1.2). We suppose that :n is given by
(1.4). The map Tz defines an integer cocycle 2z on 0_Z as we now
explain. First of all, an integer cocycle is a +-measurable map 2 which
satisfies the conditions

2(|, 0)=I=identity matrix,
(3.1)

2(|, n1+n2)=2(sn1(|), n2) 2(|, n1)

for | # 0, n1 , n2 # Z. A measurable map T: 0 � GL(2, C) generates a
cocycle 2 in a natural way:

2(|, 0)=I

2(|, n)=T(sn&1(|)) } } } T(s(|)) T(|) (n�1), (3.2)

2(|, &n)=T(s&n(|))&1 } } } T(s&1(|))&1 (n�1).

Now set T(|)=Tz(|, 1)=a1(
z

:1 z
:1
1 ) and let 2z(|, n) be the cocycle defined

by the formulas (3.2).
Now we will ``suspend'' the cocycle 2z so as to obtain a (``real'') cocycle

8z : 0� _R � GL(2, C), i.e., a mapping which is measurable with respect to
the natural Borel structures and which satisfies

8z(|̂, 0)=I
(3.3)

8z(|̂, t1+t2)=8z({t1
(|̂), t2) 8z(|̂, t1)

for |̂ # 0� and t1 , t2 # R. Actually we will see that 8z is naturally a function
of log z and not of z, and hence can (and will) be viewed as defined on the
Riemann surface of

*=&i log z. (3.4)
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The key observation is that the map | � Tz(|, 1) is homotopic to the
identity map | � I. In fact, let f : [0, 1] � [0, 1] be a motonically increasing
C� function such that f (0)=0, f (1)=1, and Dnf (0)=Dnf (1)=0 for all
derivatives of order n�1. Define T� * : 0_[0, 1] � GL(2, C),

T� *(|, t)=c0(t) \ z f (t)

f (t) :1(|) z f (t)

f (t) :1(|)
1 + , (3.5)

where *=&i log z and we have written :1(|)=g(|). The quantity c0(t)
interpolates a1 : c0(t)=(1&f 2(t) |:1(|)| 2)&1�2. Clearly

T� *(|, 1)=a1 \ z
:1(|) z

:1(|)
1 +=Tz(|, 1).

Observe that T� * is a function of * and not of z because of the factor z f (t)

in its definition.
We now define the cocycle 8*(|̂, t) as the fundamental matrix solution

of a differential equation. If |̂=[|, s] # 0� where | # 0 and 0�s<1,
define

Q(|̂)=
d
dt

T� *(|, t)| t=s } T*(|, s)&1. (3.6)

Then Q is well defined, as one easily verifies, in fact using the flatness of
f at the edges Q([|, 0])=0=Q([|, 1]) for each | # 0. Furthermore Q is
measurable in |̂, and the map t � Q({t(|̂)) is continuous for all |̂ # 0� .

Define 8*(|̂, t) to be the fundamental matrix solution of the differential
equation

x$=Q({t(|̂)) x (3.7)

which satisfies 8*(|̂, 0)=I. Then 8* automatically satisfies the cocycle
condition (3.3). Furthermore, if |̂=[|, 0] # 0� , then

8*(|̂, t)=T� *(|, t) (0�t�1), (3.8)

and so 8*(|̂, 1)=Tz(|) if *=&i log z. It follows that

8*(|̂, n)=2z(|, n) (n # Z) (3.9)

for each point |̂ # 0� of the form |̂=[|, 0]. Thus 8* interpolates 2z in a
natural way.

The real cocycle 8* : 0� _R � GL(2, C) just defined is the suspension of
T(z, n), or more precisely of the integer cocycle 2z . We now observe that
if |z|=1, then 8*(|̂, t) preserves the indefinite form B on C2 defined by

B(u, v)=(u, Jv) (u, v # C2),
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where ( , ) denotes the Euclidean inner product and

J=\ i
0

0
&i + .

That is,

(8*(|̂, t) u, J8*(|̂, t) v) =(u, Jv)

if * # R. This can be checked as follows: if |z|=1 (i.e., if * # R), then (3.5)
implies that T� *(|, t) preserves B, and it follows from (3.6) that 8*(|̂, t)
preserves B as well. In group-theoretic language, 8*(|̂, t) belongs to the
group U(1, 1) when * # R.

Finally we note that the random family of differential equations can be
written out explicitly. In fact, let |̂=[|, s] # 0� where 0�s<1, and define

;(|̂)=c2
0(s) \ 0

&if $(s) :1(|)
if $(s) :1(|)

0 +
(3.10)

1(|̂)=c2
0(s) \ &f $(s)

f (s) f $(s) :1(|)
f (s) f $(s) :1(|)

&f 2(s) f $(s) |:1(|)| 2+ .

Using (3.6), one can calculate that 8*(|̂, t) is the fundamental matrix
solution of the differential equation

Ju$=[;({t(|̂))+*1({t(|̂))] u (3.11)|̂

satisfying 8*(|̂, 0)=I (|̂ # 0� ). It is easily seen that t � 1({t(|̂)) is negative
semi-definite when f (s) f $(s)>0.

Thus we can study the behavior of Tz(|, n), and ultimately the corre-
sponding orthogonal polynomials, by studying the solutions of the differen-
tial equations (3.11)|̂ .

4. THE m-FUNCTIONS AND THE FLOQUET EXPONENT

In this section, we will apply methods of Johnson [15] and Johnson and
Nerurkar [18] to the differential equations (3.11)|̂ . We summarize the
facts which form the starting point of this section. The cocycle 8*(|̂, t) is
the fundamental matrix solution of

J
du
dt

=(;({t(|̂))+*1({t(|̂)) u (4.1)|̂
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where J=( i
0

0
&i ) and the matrices ;, 1 are given in (3.10). The quantity *

equals &i log z, hence is real exactly when |z|=1. If * # R, then 8*(|̂, t) #
U(1, 1), the group of 2_2 complex matrices preserving the form

B(u, v)=(u, Jv) (u, v # C2).

In applying the theory of [15], and [18] it is convenient to make the
following

4.1. Assumption. The coefficient function :1(|)=g(|) satisfies

&g&�=ess sup
| # 0

| g(|)|<1,

and there exist numbers =, T>0 such that, for each | # 0, every interval
[n0+1, n0+T ]/Z of length T contains a number n such that
|:1(sn(|))|�=.

As we noted in Section 1, all of our results except the gap-labelling result
5.6 can be formulated and proved under the weaker assumption

|
0

log(1&|:1(|)| ) +(d|)>&�.

We make Assumption 4.1 because it allows for a direct application of the
theory of [15], and [18] and because we can prove our gap-labelling
result (2).

Because of 4.1, the functions

t � ;({t(|̂))

t � 1({t(|̂))

are uniformly bounded and uniformly continuous functions of t, as can
easily be verified. We may thus compactify 0� . The details of the construc-
tion are carried out in [16] and we outline them here. Each |̂ # 0� defines
a function of t by the formula t � (;({t(|̂), 1({t(|̂)). This function takes
values in the set H=L�(R, Her)_L�(R, Her) where Her is the set of
hermitian 2_2 complex matrices. There is a flow {(1) defined on H by
translation:

{ (1)
t (g, #)(s)=(g(t+s), #(t+s)) (t, s # R).

The measure +̂ on 0� induces a measure +̂1 on H in a natural way [16]. We
agree to identify +̂ with +̂1 and 0� 1 with the topological support of +̂1 in H
(the topological support is compact).
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Summing up, we agree to identify (0� , +̂) with the space 0� 1 and Radon
measure +̂1 on 0� 1 constructed above. We note that the functions ; and 1
in (4.1)|̂ correspond to continuous matrix-valued functions ;1 and 11 on
0� 1 via the above correspondence. We drop the subscripts in what follows.

The next step is to define the Weyl m-functions. We will do this in two
equivalent ways and show that the results obtained coincide.

It is convenient to take a geometric point of view. Let P1
C be the usual

complex one-dimensional projective space of (complex) lines through the
origin in C2. We can identify P1

C with the usual Riemann complex number
sphere in the following way: let (a, b) # C2 be a non-zero vector, and
consider the line l=[(ca, cb) | c # C] which contains (a, b). Then m=b�a
parametrizes l, and each m in the Riemann sphere parametrizes exactly one
line l # P1

C . We will use this parametrization m of P1
C in our subsequent

considerations.
Fix *=&i log z # C and |̂ # 0� . The cocycle 8*(|̂, t) induces a one-

parameter group of homeomorphisms [{~ t | t # R] of 0� _P1
C ,

{~ t(|̂, l )=({t(|̂), 8*(|̂, t) } l ),

where 8*(|̂, t) } l is the image of the complex line l/C2 under the linear
map 8*(|̂, t): C2 � C2. In terms of the coordinate m, we have

{~ t(|̂, m)=({t(|̂), m(t)),

where m satisfies a Riccati equation. Indeed, writing

J&1[;({t(|̂))+*1({t(|̂))]=\a~ (t) b� (t)
c~ (t) d� (t)+ ,

we have

m$=c~ (t)+(d� (t)&a~ (t)) m&b� (t) m2. (4.2)

Alternatively, write

8*(|̂, t)=\â(t) b� (t)
ĉ(t) d� (t)+ .

Then

m(t)=
ĉ(t)+d� (t) m(0)

â(t)+b� (t) m(0)
, (4.3)

i.e., m(t) is related to m(0) via a linear fractional transformation.
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Next let K0 be the unit circle in m-space:

K0=[m # P1
C | |m|=1].

Let * # R. Since 8*(|̂, t) # U(1, 1), one checks that

8*(|̂, t) } K0=K0 (|̂ # 0� , t # R).

Let D\ be the discs D+=[m # P1
C | |m|<1], D&=[m # P1

C | |m|>1].
To define the Weyl functions, let Im *>0; i.e., |z|<1. Pick t large

positive, and consider the image

8*({t(|̂), &t) K0#Kt/P2
C .

Since 8* acts as a linear fractional transformation, the image Kt is a circle
in m-space, and it can be checked that Kt lies in D+. Using the bounded-
ness of ; and 1, it can further be checked that, as t � �, Kt shrinks to a
point in D+. This point is denoted m+(|̂, *) and defines one of the Weyl
functions. Of course, we have just copied the Weyl limit point construction.
In an analogous way, we choose t large positive and consider the circle

8*({&t(|̂), t) } K0/D&.

Once again the image circle shrinks to a point as t � �; this point is
denoted m&(|̂, *). Let H +=[* # C | Im *>0] be the upper half-plane.
One checks that m\(|̂, } ): H+ � D\ are holomorphic. Moreover these
functions are continuous in |̂ for each * # H+. We can define the m-func-
tions for * # H &=[* # C | Im *<0] as well; we find that m\(|̂, } ):
H& � D� in this case.

It is important to note that we can also define the m-functions using the
integer cocycle 2z(|, n) (see Section 2; recall that 2z(|, n) was defined
using the transfer matrix T(z, n)). For this, recall that, by (3.9),

8*(|̂, n)=2z(|, n)

when |̂=[|, 0] and n # Z. Recalling further that {n(|̂)=[sn(|), 0], we
have

8*({n(|̂), &n) } K0=2z(sn(|), &n) } K0
(4.4)

8*({&n(|̂), n) } K0=2z(s&n(|), n) } K0 .

Thus m\(|̂, *)=limn � � 2z(s\n(|), �n) } K0 when |̂=[|, 0] which
from (2.15) and (2.16) means m~ +(z)=m+(|̂, *) and m~ &(z)=1�m&(|̂, *).

There is a different way to define the m-functions. For this, we need the
concept of exponential dichotomy (ED for short), as developed by Coppel [5],
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Palmer [23], Selgrade [29], and others. This concept was discussed for the
difference equations (1.5) in Section 2.

Definition 4.2. Equations (4.1)|̂ are said to have an exponential
dichotomy if there are constants C>0, $>0 and a projection-valued
function P=P*(|̂): C2 � C2 on 0� such that

&8*(|̂, t) P*(|̂) 8*(|̂, s)&1&�Ce&$(t&s) (t�s)

&8*(|̂, t)(I&P*(|̂)) 8*(|̂, s)&1&�Ce$(t&s) (t�s).

The following result is a special case of Theorem 3.1 of Johnson [15].

Theorem 4.3. Suppose Im *{0. Then Eqs. (4.1)|̂ have an ED, and thed
imension of the range of P*(|̂) (hence the dimension of the kernel of P*(|̂))
equals one for all |̂ # 0� .

It is shown in [15] that the m-coordinate of the complex line range
P*(|̂) is just m+(|̂, *), while the m-coordinate of kernel P*(|̂) is
m&(|̂, *).

We thus see that the Weyl functions m\(|̂, *) are defined by the hyper-
bolic splitting of the space of solutions of equations (4.1)|̂ . They can thus
be interpreted from a ``dynamical'' point of view.

Now we define the Floquet exponent w=w(*) if Im *>0. Fix |̂ # 0� ,
* # H +, and let m0(t)=m+({t(|̂), *). Thus m0(t) is a solution of the
Riccati equation (4.2):

m$=c~ +(d� &a~ ) m&b� m2.

We explicitly write out the coefficients a~ , b� , c~ , d� :

a~ =ic2
0*f $

b� =c2
0:1 f $[1&i*f ]

c~ =c2
0:� 1 f $[1+i*f ]

d� =&ic2
0*f 2f $ |:1| 2.

In particular, if *=&i log z where z=ei% # K, we have

a~ &d� =i%c2
0 f $[1+f 2 |:1| 2], (4.5)

so that a~ &d� is pure imaginary when * # R.
We linearize (4.2) around the solution m0(t)=m+({t(|̂), *), and obtain

($m)$=[(d� &a~ )&2b� m0(t)] $m.
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Definition 4.4. The Floquet exponent w(*) is

w(*)=|
0�

[d� (|̂)&a~ (|̂)&2b� (|̂) m+(|̂, *)] +̂(d|̂). (4.6)

Thus w(*) is the space-average of the coefficient in the variational
equation for $m. Using the Birkhoff ergodic theorem, we have

w(*)= lim
T � �

1
T |

T

0
[d� ({t(|̂))&a~ ({t(|̂))&2b� ({t(|̂)) m+({t(|̂), *)] dt (4.7)

for +̂-a.a. |̂ # 0� .
We see that Re w(*) measures the average exponential rate of growth of

$m, while Im w(*) measures the average rate of rotation ``around'' m+ .
From Theorem 4.3 we see that the equations (4.1)|̂ have ED for Im *>0.
Hence the definition of m+ shows that solutions move away from it at a
non-negative exponential rate. Thus Re w(*)�0, and since Re w(*) is
harmonic in H+, we have

Re w(*)>0 (Im *>0). (4.8)

Next we interpret Re w(*) in terms of the (upper) Lyapounov exponent
of equations (4.1)|̂ .

Proposition 4.5. Fix * # C. For +̂-a.e. |̂ # 0� , the limit

lim
t � �

1
t

ln &8*(|̂, t)&

exists and is independent of |̂.

This limit (which is constant +̂-a.e.) is called the Lyapounov exponent of
equations (4.1)|̂ . From (2.24), (3.9), and the above proposition we see
that the Lyapunov exponent equals #~ (z).

Write #(*)=Re w(*). The relation between # and #~ is given by

Observation 4.6 [12, p. 235]. #~ (z)=#(*)+Re(i*�2)=#(*)+ 1
2 log |z| if

*=&i log |z| and Im *>0.

We take Observation 4.6 as motivation for correcting an error on p. 235
of [12]. There an assertion is made which implies that the Lyapunov expo-
nent of Eqs. (4.1)|̂ for Im *>0 equals #(*). However formula (26) on the
same p. 235 of [12] shows that the correct relation is #̂=Re(w+M),
where M is the mean value of the trace of the matrix ( a~

c~
b�
d� ) of (4.2). Now

a~ +d� =
i*
2

f $, 0�t<1
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if |̂=[|, t] # 0� is a point such that 0�t<1. The mean value of the trace
can then be computed as

lim
t � �

1
t |

t

0
[a~ (s)+d� (s)] ds=

i*
2

lim
t � �

[t]+f (t&[t])
t

=
i*
2

,

where [t] denotes the integer part of t. This hold for |̂=[|, 0] # 0� , for
a.a | # 0. Hence we obtain 4.6.

Now we discuss the rotation number for Eqs. (4.1)|̂ when * is real. As
noted earlier, 8*(|̂, t) } K0=K0 where K0=[m # P2

C | |m|=1]. Let

�=Arg m,

so that � is an angular coordinate on K0 . If m0 # K0 , let m(t) be the solu-
tion of the Riccati equation (4.2) satisfying m(0)=m0 , and let �(t)=
Arg m(t) be a continuous determination of the argument. Define

\(*)= lim
t � �

1
2

�(t)
t

. (4.9)

It can be shown (Johnson and Moser [17]) that, for fixed * # R, the
limit in (4.9) exists for +̂-almost all |̂ and is constant +̂-a.e.

Theorem 4.7 (Johnson and Moser [17]). The function * � \(*) is
continuous and monotone non-increasing. Furthermore, if * # R, then

lim
= � 0+

Re w(*+i=)=#(*) Lebesgue a.e.;

lim
= � 0+

Im w(*+i=)=\(*) for all * # R.

It can actually be shown that Re w(*+i=) � #(*) for all * # R, though
one needs a more sophisticated argument than that given in Johnson [15].

We turn to the spectral theory of the Eqs. (4.1)|̂ . Write u=( u1
u2

), and
consider the boundary value problem

_J
d
dt

&;({t(|̂))& u=*1({t(|̂)) u
(4.10)|̂

u2(&a)=u2(a)=0.

Here a is a fixed positive real number. Let |*1|�|*2|� } } } be an enumer-
ation of the equivalues of (4.10)|̂ , and let T(*) be the corresponding 2_2
spectral matrix. Thus T(0)=0, T(*) is hermitian nondecreasing for real *,
and

T(*+
i )&T(*&

i )=ei (0) ei*(0)
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where * means adjoint and ei (t) is an eigenvector of (4.10)|̂ , normalized
so that

|
a

&a
(ei (t), 1({t(|̂)) ei (t)) =1.

Note that ei ei* is a 2_2 matrix because ei is a column vector, and note
also that ei (t) is unique up to a complex factor of modulus 1.

Following Johnson [15] (which starts from [1]), we introduce the
``characteristic function''

F(|̂, *)=(Q(|̂, *)& 1
2 I ) J &1, (4.11)

where Q(|̂, *) is the projection on C2 whose range is the complex line
m+(|̂, *) and whose kernel is the complex line m&(|̂, *). Explicitly: if
N=( 1

m+

1
m&

), then F(|̂, *)=(N( 1
0

0
0) N&1& 1

2 I ) J &1, or

F(|̂, *)=
i

m+&m& \ m&

m+m&

1
m+++\+i�2

0
0

&i�2+ .

We have [15]

&Tr
Im F(|̂, *)

Im *
=|

�

&�
Tr

dT|̂(t)
|t&*| 2 . (4.12)

A proof of (4.12) will be given at the end of this section for completeness.
The following formula is fundamental [15, Eq. 28]:

dw
d*

=&|
0�

Tr[F(|̂, *) 1(|̂)] d+̂(|̂) (Im *>0). (4.13)

Using (4.13) together with Theorem 4.7 we obtain another basic relation
(see Johnson [15]),

1
? |

I
d\(t)=|

0� \|I
Tr[dT|̂(t) 1(|̂)]+ d+̂(|̂) (4.14)

for each finite interval I/R.
We will use a final result, proved in the generality needed here in [18]

(see also Theorem 2.6). Recall that 0� is the topological support of the
measure +̂.
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Theorem 4.8. Let I=(a, b) be a finite open interval in R. Equations
(4.10)|̂ have an exponential dichotomy for all * # I if and only if the rotation
number \( } ) is constant on I, i.e., if and only if

\(a)=\(b).

We finish this section with a proof of formula (4.12). First of all, it
follows from [1, Ch. 9] and standard arguments that * � &Tr F(|̂, *) is
holomorphic in H+=[* | Im *>0] with positive imaginary part, and has
the representation

&Tr F(|̂, *)=a(|̂)+b(|̂) *+|
�

&� \ 1
t&*

&
t

1+t2+ Tr dT|̂(t),

for real functions a(|̂) and b(|̂)�0. Formula (4.12) is equivalent to the
statement b(|̂)=0, hence we show that indeed b(|̂)=0 for all |̂ # 0� .

For this, we use the Floquet exponent w(*). First of all, by (4.13) (whose
proof does not use (4.12); see Johnson [15]) we have Im w$(*)<0 if
* # H +. Furthermore, by (4.8), iw(*) has positive imaginary part for
* # H +. From basic theory of functions holomorphic in H+ with positive
imaginary part, we have

&w$(*)=a0+b0 *+|
�

&� \ 1
t&*

&
t

1+t2+ d\(t), (4.15)

where a0=�0� a(|̂) d+̂(|̂) and b0=�0� b(|̂) d+̂(|̂). It is easy to check that
the integral in (4.15) is o(*) in any closed subsector of H+. Hence
integrating (4.15), we get

w(*)=w~ &a0*&
b0

2
*2+o(*2),

where w~ is a constant. But iw(*) has a representation analogous to (4.15),
hence w(*)=O(*) in closed subsectors of H+. We conclude that b0=0
everywhere on the topological support of +̂ because b is certainly con-
tinuous. This proves (4.12).

5. RESULTS

We begin with a preliminary result which is a corollary of (4.14) and
Theorem 4.8. Define the measure

d%|̂(*)=Tr dT|̂(*) (* # R),
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where dT|̂( } ) is the spectral matrix of (4.10)|̂ . The support of d%|̂ is the
complement of the largest open set A/R satisfying �A d%|̂(*)=0. Write
3|̂ for the support of d%|̂ .

Theorem 5.1. There is a set 0� 0/0� satisfying +̂(0� &0� 0)=0 such that,
if |̂ # 0� 0 , then

R&3|̂=[* # R | equations (4.10)|̂ have an ED ]#E.

In particular, 3|̂ is independent of |̂ # 0� 0 .

Proof. Let I/R be an open interval on which Eqs. (4.10)|̂ have an
ED. By (4.14) and Theorem 4.8, �I d%|̂(*)=0 for +̂-a.a. |̂, and it follows
that there is a set 0� 1/0� satisfying +̂(0� &0� 1)=0 with the property that,
if |̂ # 0� 1 , then E/R&3|̂ .

We prove that R&3|̂/E for +̂-a.a. |̂. Let |̂1 # 0� 1 be a point with
dense orbit; that is cls[{t(|̂) | t # R]=0� . Since Supp +̂=0� , almost all
points in 0� have this property. It is easy to check that 3{t(|̂1)=3|̂1

for all
t # R (for example see the proof of Thm. 2.6). Using weak-* continuity in
|̂ of the measures d%|̂ , we see that

R&3|̂1
/R&3|̂

for all |̂ # 0� .
Now, if E %R&3|̂1

, then there is an open nonempty interval I/R&3|̂

for all |̂ # 0� which satisfies I & E=<. But now we have a contradiction
with (4.14) and Theorem 4.8.

We can restate Theorem 5.1 as follows: for +̂-a.e. |̂, the support of the
spectral measure d%|̂ equals the support of the non-negative measure &d\
(see Theorem 4.8). By continuity of \( } ) (Theorem 4.7), the support of
&d\ has no isolated points, hence we have

Corollary 5.2. The support 3|̂ has no isolated points for +̂-a.a. |̂ # 0� .

We now consider the relation between the measures d%|̂(*) and the
orthogonality measures d_|(z). We will need the following.

Remark 5.3. Let 0� 1/0� be a set of full +̂-measure which is invariant: if
|̂ # 0� 1 and t # R then {t(|̂) # 0� 1 . Let 01=[| # 0 | [|, 0] # 0� 1]. Then by
ergodicity +(01)=1.

Let | # 0, and identify | with [|, 0] # 0� for the moment. Recall that,
by (4.3) and (4.8), m\(|, *) are 2?-periodic in *, hence define functions of
z=e&i*. We will write m\(|, z) for these functions. It follows from (4.12)
that d%|(*) is also 2?-periodic, and thus we can write d%|=d%|(z) where
now z # K=[z # C | |z|=1].
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Our goal is to show that, for +-a.a. |, the set 3| coincides with the set
of non-isolated points of increase of _| . We call this latter set 7| .

The first step is to return to the definition of the coordinate m. Recall
that m=1 parametrizes the complex line containing ( 1

1). And, the
orthogonal polynomials ,n(z) arise by substituting the initial condition
�(z, 0)=( 1

1) in equation (1.1). With an eye to [1, Chap. 7, Sect. 6], we
wish to define a function holomorphic in |z|<1, with values in the upper
half-plane, having poles when m=1. Such a function is

m
�
(|, z)=i

1+m+(|, z)
1&m+(|, z)

. (5.1)

Compare now with Atkinson: we see that, except for a factor of &i, the
function in (5.1) coincides with the ``characteristic function'' of [1, p. 188].
As in [1, Sect. 7.6] or [11, Eq. 6.4], we see that

m
�
(|, z)=i |

K

z+\
\&z

d_|(\). (5.2)

This gives us a relation between the Weyl function m+(|, z) and the
orthogonality measure d_|(z).

To begin the second step, choose |0 # 0 such that the orbit [{t(|̂0) |
t # R] of |̂0=[|0 , 0] is dense in 0� (see Remark 5.3). Suppose that _|0

(z)
has only isolated discontinuities on an open interval I/K. Using (5.1) and
(5.2), we see that m+(|0 , z) extends holomorphically across I and that
|m+(|0 , z)|=1 if z # I. The geometric significance of these facts is that
(roughly speaking) ``if _|0

has l jumps in I, then m+(|0 , I ) covers K
l times.'' We leave it to the reader to make this precise, and remark that
the above statement and (3.3) imply that m+({t(|̂0), z) also extends
holomorphically across I for all t # R. Using continuity in |̂ of m+(|̂, z)
and the density of [{t(|̂0) | t # R], we can find a fixed open set D0 in the
z-plane which contains I such that z � m+(|̂, z) is holomorphic in D0 for
each |̂ # 0� , and such that |m+(|̂, z)|=1 if z # I, |̂ # 0� .

The third step is to use Definition 4.4 to see that the Floquet exponent w(*)
extends holomorphically across each interval I� =[*=&i log z | z # I ].
Hence the quantity #(z)=Re w(&i log z) extends harmonically through I.
Since #(z)>0 for |z|<1, the zeroes of # on I are isolated unless # vanishes
on I. We will see later, in our Kotani-type result 5.9 (whose proof is inde-
pendent of the present considerations) that in the latter case |m+(|̂, z)|<1
for z # I. Thus the zeroes of # on I are isolated, and #>0 except at the zeroes.

Suppose |z|<1. The quantity m+(|̂, z) parametrizes the unique complex
line l|̂/C2 with the following property: if 0{u0 # l| and u(t) is the solu-
tion of (4.10)|̂ satisfying u(0)=u0 , then u(t) � 0 exponentially as t � �.
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Now suppose that z # I, so that in particular |z|=1. Suppose that #(z)>0.
Then using Observation 4.6, one can show that, if l|̂ is the complex line
parameterized by m+(|̂, z) and if 0{u0 # l|̂ , then

&#(z)= lim
t � �

1
t

ln &u(t)&.

Thus if #(z)>0, then there is a continuous family [l|̂ | |̂ # 0� ] of lines giving
rise to exponentially decaying solutions of Eqs. (4.10)|̂ . The continuity in
|̂ implies, via Oseledec theory (Oseledec [22], Johnson et al. [19]) that
Eqs. (4.10)|̂ have ED if z # I, *=&i log z, and #(z)>0.

So far we have shown that K&7|0
consists (except perhaps for a

discrete set) of points z such that, if *=&i log z, then Eqs. (4.10)|̂ have
an ED. By Theorem 4.8 and continuity of the rotation number, the discrete
set is empty. Let us slightly redefine E to be E=[z # K | if *=&i log z,
then Eqs. (4.10)|̂ have an ED]. Then we can conclude that, for +-a.a. |,
K&7|/E.

Suppose on the other hand that I/E is an interval. It is then easy to see
that m+(|̂, z) is holomorphic across I for all |̂ # 0� (e.g., De Concini and
Johnson [7]). So we can conclude that

K&7|=E (+-a.a. | # 0).

Finally, note that the set 0� 1 of Theorem 5.1 is clearly invariant. If
|̂=[|, 0] # 0� , define 3|=[z # K | *=i log z # 3|̂]. Using Remark 5.3,
we get

Theorem 5.4. For +-a.a. | # 0:

3|=K&E=7| .

In words, the spectrum of d%| equals the complement of the dichotomy
set equals the essential spectrum of d_| .

We remark that one can prove as in, e.g., De Concini and Johnson [7],
that each subinterval of E contains at most one increase point of _| .

By Theorems 4.8 and 5.4, we have

Corollary 5.5. For +-a.a. |, the set 7| equals the set of increase points
of \=\(&i log z).

Let us write 7 for the common value of 7| for +-a.a. |. Then 7 is a
closed subset of K, and in general its complement K&7 may contain an
infinite number of intervals (or gaps). Our next result shows how to label
these gaps.
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Theorem 5.6 (Gap-labelling). There is a countable subgroup N of R,
which depends only on the topology of 0, with the following property. If I is
a subinterval of K&7, then 2\(*) # N for * # I.

Proof. We first introduce the Schwartzmann homomorphism h, which
maps the first C8 ech cohomology group H8 1(0� , R) with real coefficients into
R. The map h is defined as follows (Schwartzmann [28]). We can represent
an element c of H8 1(0� , R) by a continuous map fc : 0� � K. Letting Arg
denote the argument function on K, define

h(c)= lim
t � �

Arg fc({t(|̂))
t

.

By Schwartzmann [28], the limit exists and depends only on c for +̂-a.a.
|̂ # 0� , and defines a group homomorphism of H8 1(0� , R) into R. Let N be
the image of h.

Next let z0 # K&7, so that Eqs. (4.10)|̂ have an ED if *=&i log z0

(Theorem 5.4). From the arguments used in proving Theorem 5.4, we see
that m+(|̂, z0) # K for each |̂ # 0� . So the map

c0 : 0� � K : |̂ � m+(|̂, z0)

defines an element of H8 1(0� , R). By (4.5), we have

2\(*)=h(c0) # N.

This completes the proof of Theorem 5.6.

Remark 5.7. (1) Note that, if c([|, t])=e2?it (0�t�1, | # 0), then
c: 0� � K defines an element of H8 1(0� , R), and h(c)=2?. Thus 2?Z/N.

(2) It can be checked directly that \(*+2?)=\(*)&?. It is thus
natural to regard 2\ as a map from K into N0=N�2?Z. One can think of
N0 as ``the portion of N determined by 0.''

The next theorem gives a simple criterion for determining the absence
of the absolutely continuous component 7ac

w /7| of the orthogonality
measure d_| . We call it a Pastur�Ishii theorem because it is analogous to
a theorem proved by those authors (Pastur [24], Ishii [14]) for the
random Schro� dinger operator.

Theorem 5.8 (Pastur, Ishii). If #(z)>0 on a Borel subset B/K, then
B & 7ac

w =<.

Proof. The first problem is to give a precise definition of 7ac
w for | # 0.

We do this by referring to Eq. (5.2). Let

7ac
w =[z=ei� # K | lim

r � 1&
Im m

�
(|̂, rz)>0]. (5.3)
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Then up to a set of Lebesgue measure zero, 7ac
w equals the set of points

in K where the Radon�Nikodym derivative d_ac
w �d& of the absolutely

continuous component d_ac
w of d_w with respect to Lebesgue measure d& on

K exists and is not zero.
Next consider V=[(|, z) # 0_K | limr � 1& m

�
(|, rz) exists]. For each

| # 0 this set is of full Lebesgue measure, so by Fubini's theorem the set
V has full +_&-measure. Thus for &-a.a. z # B, there is a set 0z/0 of full
+-measure for which limr � 1& m

�
(|, rz) exists.

On the other hand, fix z # B. Since #(z)>0 and since Tr(;+*1 ) is pure
imaginary, the Oseledec theory [19, 23] implies that the solutions of
Eqs. (4.10)|̂ (with *=&i log z) define a splitting of 0� _C2 into a sum of
two measurable line bundles:

0� _C2=W� +�W� &.

The fibers l\(|̂)=[x # C2 | (|̂, x) # W� 1] are defined for +̂-a.a. |̂, say for
|̂ # 0� 1/0� . For each |̂ # 0� 1 , the vector 0{x=( a

b) # l \(|̂) has the
property that b�a # K. This follows from the fact that ;+*1 # U(1, 1).
Finally, there are no invariant measurable line bundles in 0� _C2 other
than W� + and W� &.

Now set limr � 1&[(m
�
(|, rz)+i)�(m

�
(|, rz)&i)]=m1(|) for | # 0z .

Further set 01=[| # 0 | [|, 0] # 0� 1]; by Remark 5.3 the set 01 has full
+-measure. The set [(|, m1(|) c) | # C, | # 0z] defines an invariant line
bundle in 0_C2, and it follows easily that it must coincide with W+=
[(|, x) # 0_C2 | ([|, 0], x) # W� +]. Thus limr � 1& m

�
(|, rz) # R _ [�].

So if | # 0z & 01 , then limr � 1& Im m
�
(|, rz) is not positive. Thus B&�ac

| =<
and the theorem is proved.

Our final result, of Kotani type (Kotani [20]), is of a character exactly
opposite to the one just proved.

Theorem 5.9 (Kotani). Let B/K be a Borel set such that #(z)=0 for
each z # B. Then for +-a.a. | # 0: B&7ac

w has Lebesgue measure zero.

Recall that 7ac
w was defined in (5.3).

Proof. First of all, it is convenient to change variables in the spectral
problem (4.10)|̂ . Define

u=Av, A=
1

- 2 \
1 &i

&1 &i+ , v # C2.
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Then Eqs. (4.10)|̂ take the form

J0v$=_\a0 b0

b0 c0++i* \ 0
&d0

d0

0 ++* \#1 #2

#2 #3+& v, (5.4)|̂

where now J0=( 0
&1

1
0), the functions (of |̂) a0 , b0 , c0 , d0 , #1 , #2 , #3 are

all real and continuous, and d0=f $(t)�2 for | # 0 and 0�t�1. We can
define m-functions m

�
\(|̂, *) for Eqs. (5.4)|̂ just as they were defined for

Eqs. (4.10)|̂ : we find that

m
�

\(|̂, z)=i
1+m\(|̂, *)
1&m\(|̂, *)

(5.5)

(compare with (5.1)). It follows that

sgn(Im m\(|̂, *) } Im *)=\1

if Im *{0. Moreover, m
�

\(|̂, } ) is holomorphic in Im *{0, and m
�

\( } , *)
is continuous for fixed *, Im *{0.

In the rest of the proof, we will use the new m-functions m
�

\ and make
no reference to those defined for Eqs. (4.10)|̂ . Accordingly, we drop the bar
and write m\(|̂, *) for m

�
\(|̂, *). This abuse of notation should cause no

difficulty.
The m-functions satisfy a Riccati equation, obtained by setting m=v2 �v1

in Eq. (5.4)|̂ . We obtain

m$=a0+2b0m+c0 m2+*[#3m2+2#2m+#1]. (5.6)

Note that the d0-term does not appear in (5.6). Note further that, if * # R
and m(0) is real, then the solution of Eq. (5.6) is real.

We now follow the arguments in De Concini and Johnson [7], which
are motivated by those of Kotani [20]. (See also Sun and Qian [30]).

First of all, note that

(Im m)$
Im m

=2 Re[b0+*#2+m(c0+*#3)]

+
Im *
Im m

[#1+2#2 Re m+#3[(Re m)2+(Im m)2]].

Next, fix |̂ # 0� and let m+(t)=m+(|̂, t). If we linearize (5.6) around
m+(t), we get

($m)$=[2b0+2*#2+2m+(c0+*#3)] $m.
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Hence

2#(*)=|
0�

Re[2b0+2*#2+2m+(c0+*#3)] d+̂(|̂)

(see Johnson [15]), and we have using the Birkhoff ergodic theorem
(see (4.6) and (4.7))

2#(*)=&Im * |
0� {

#1+2#2 Re m++#3[(Re m+)2+(Im m+)2]
Im m+ = d+̂(|̂).

(5.7)

In a similar way, replacing m+ by m& , we get

2#(*)=Im * |
0� {

#1+2#2 Re m&+#3[(Re m&)2+(Im m&)2]
Im m& = d+̂(|̂).

(5.8)

Now we use the analogue of formula (4.13) for the spectral problem
(5.4)|̂ (with J0=( 0

&1
1
0). This gives

Im
dw
d*

=Im |
0�

#1+#3m& m++#2(m&+m+)
m&&m+

d+̂(|̂)

=Im |
0�

#1+#3m& m++#2(m&+m+)
|m&&m+|2 (m� &&m� +) d+̂(|̂)

=|
0�

#1(Im m+&Im m&)+#3(Im[m& m+(m� &&m� +)]
|m&&m+| 2 d+̂(|̂)

+|
0�

#2 Im[(m&+m+)(m� &&m� +)]
|m&&m+|2 d+̂(|̂)

=|
0�

#1(Im m+&Im m&)+#3[ |m&|2 Im m+&|m+|2 Im m&]
|m&&m+|2 d+̂(|̂)

+|
0�

#2[2 Re m& Im m+&2 Re m+ Im m&]
|m&&m+|2 d+̂(|̂)

=|
0�

Im m+[#1+#3 |m&|2+2#2 Re m&]
|m&&m+|2 d+̂(|̂)

&|
0�

Im m&[#1+#3 |m+|2+2#2 Re m+]
|m&&m+| 2 d+̂(|̂). (5.9)
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Next write

Q(m)=#1+2#2 Re m+#3 |m| 2 (m # C),

and note that

Q(m)=[#1+2#2 Re m+#3(Re m)2]+#3(Im m)2 (m # C).

Since the ( y1 y2
y2 y3

)matrix is negative semi-definite (and negative definite if
f (t) f $(t){0), we have

[#1+2#2 Re m+#3(Re m)2]�0, Q(m)�0. (5.10)

We now prove:

Lemma 5.10. If Im *>0 there holds

&4 \Re w
Im *

+Im
dw
d* +

=|
0� {

Q(m+)
Im m+

&
Q(m&)
Im m&=

_{(Re m&&Re m+)2+(Im m&+Im m+)2

|m&&m+|2 = d+̂(|̂).

Proof. From Observation 4.6 and Eqs. (5.7)�(5.9) we have

&4 \Re w
Im *

+Im
dw
d* +

=|
0� {

Q(m+)
Im m+

&
Q(m&)
Im m&= d+̂(|̂)

&4 |
0� {

Im m+ } Q(m&)
|m&&m+|2 &

Im m& } Q(m+)
|m&&m+|2 = d+̂(|̂)

=|
0�

[Im m& } Q(m+)&Im m+ } Q(m&)]

_{ 1
Im m+ Im m&

+
4

|m&&m+|2= d+̂(|̂)
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=|
0�

[Im m&Q(m+)&Im m+Q(m&)]

_{ |m&&m+| 2+4 Im m& Im m+

Im m+ Im m& |m&&m+| 2 = d+̂(|̂)

=|
0� {

Q(m+)
Im m+

&
Q(m&)
Im m&=

_{(Re m&&Re m+)2+(Im m&+Im m+)2

|m&&m+|2 = d+̂(|̂).

This completes the proof of the lemma.

Next we repeat the proof of Lemma 4.1 of Kotani [20] to get:

Lemma 5.11 (Kotani [20]). Let d:ac(*) be the absolutely continuous
part of the measure d:, and let B

*
/R be a compact set such that #(*)=0

for a.a. * # B
*

. Then

lim
= � 0 |

B
*

Re w(*+i=)
=

d*=&lim
= � 0 |

B
*

Im w$(*+i=) d*=&|
B

*

d:ac(*).

The proof of Lemma 5.11 uses the inequality Re w�Im *+Im(dw�d*)�0
for Im *>0, and this in turn follows from Lemma 5.10.

We can now finish the proof of Theorem 5.9. First, a calculation shows
that #1(|̂)<0 on a set of positive +̂-measure (in fact

#1([|, t])=&
c2

0(t)
2

[ f $(t)+2f (t) f $(t) Re :1(|)+f 2(t) f $(t) |:1(|)| 2]

and the statement follows). We have

2 Re w(*+i=)
=

=|
0�

#1+2#2 Re m++#3 |m+| 2

Im m+

d+̂(|̂).

By definiteness of ( #1
#2

#2
#3

) and continuity of the entries, there is a set F/0�
of positive +̂-measure and a positive constant $ such that

#1+2#2 Re m++#3 |m+|2�&$ (|̂ # F ).

Using Fatou's lemma, we find that

|
F
|

B
*

$
Im m+(|̂, *+i0)

d*�&lim
= � 0 |

B
*
|

0�

#1+2#2 Re m++#3 |m+| 2

Im m+

d+̂(|̂)

=&2 |
B

*

d:ac(*),
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and hence Im m+(|̂, *+i0)>0 for Lebesgue-a.a. * # B
*

, for +̂-a.a. |̂ # 0� .
The set of such |̂ # 0� is invariant, hence (by ergodicity of +̂) has full
+̂-measure, hence by Remark 5.3 we obtain that, for +-a.a. | # 0,
the set B=[z=&i log * | * # B

*
] has the property that B&�ac

| has zero
Lebesgue measure. This completes the proof of Theorem 5.9.

We can strengthen the conclusion of Theorem 5.9 if #(z)=0 for a.a. z in
an interval I/K. In this case, # extends harmonically through I, and hence
w extends holomorphically through I. Using Lemma 5.10, one finds easily
that for +-a.a. |̂ # 0� :

Im m&(|̂, *+i0)=&Im m+(|̂, *+i0)

Re m&(|̂, *+i0)=Re m+(|̂, *+i0)

for a.a. * # I. By Schwarz reflection, m\ extend holomorphically through I.
In particular we have:

Corollary 5.12. If #(z)=0 a.e. on an interval I/K, then _|=_ac
| on

I and _ac
| has an analytic density function on I. Moreover the functions

m\( } , *) are continuous in |̂ for * # I.
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