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a b s t r a c t

This study is one of the first to focus on the unexpected drug leakage from discoidal

recombinant high-density lipoproteins (d-rHDLs) as a consequence of remodeling process,

mainly associated with lecithin-cholesterol acyltransferase (LCAT) during their metabolic

process. Here, a newly monocholesterylsuccinate (CHS) modified paclitaxel-loaded d-

rHDLs (cP-d-rHDLs) were constructed successfully through structural modification, thus

aiming to improve the performance of d-rHDLs. And next their in vitro physiochemical

properties and pharmacokinetics in SpragueeDawley rats were elaborately investigated.

Collectively our studies demonstrated that cP-d-rHDLs, whose remodeling behaviors were

restrained effectively after structural modification, exhibited more excellent and promising

properties as novel delivery vehicles for anti-cancer agents.

ª 2013 Shenyang Pharmaceutical University. Production and hosting by Elsevier B.V. All

rights reserved.
1. Introduction recognitions that the special receptor (scavenger receptor-BI,
High-density lipoproteins (HDLs) have recently attracted

extensive attention as functional drug carriers owing to their

attractive attributes [1], including favorable structure for

incorporation of hydrophobic drugs, endogenesis, and the

capacity to evade reticuloendothelial system (RES) thereby

prolonging systemic circulation [2]. Additionally, the
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SR-BI),which is over-expressed in most malignant cells and

mediate the selective uptake of HDLs, could provide strong

support for the application of HDLs as a potential drug

delivery system in cancer chemotherapy [3e5].

In the blood circulation, natural HDLs exist in two different

structural forms known as discoidal HDLs (d-HDLs) and

spherical HDLs (s-HDLs) (seen in Fig. 1) with unlike
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Fig. 1 e Degree of substitution of cA with different initial

molar ratio of CHS-NHSE and ApoA-I from 50:1 to 200:1.

(n [ 3).
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physicalechemical and biological properties of their own.

Nascent d-HDLs obtain cholesterol from peripheral tissues

and can be converted to mature s-HDLs induced by lecithin-

cholesterol acyltransferase (LCAT) [6]. Because of the lipo-

some-like structure, high affinity to SR-BI and an exclusive

role in intracellular cholesterol efflux during reverse choles-

terol transport (RCT) process thus hindering growth of tumor,

recombinant d-HDLs (d-rHDLs) have been increasingly

constituted as novel carriers for delivering anticancer agents

[3,7e10]. However, previous studies by our team have found

that drug-loaded d-rHDLs underwent the same remodeling

behaviors in vitro as that of endogenous d-rHDLs under the

action of LCAT [11], and the conversion evoked the leakage of

encapsulated drugs before the carriers adhere to targeting

cells, accordingly reduced the amounts of drugs exposed to

cancer cells, further decreased drug efficacy and led to side

effects [12]. Therefore, how to avoid the drug leakage ascribed

to the remodeling behaviors of d-rHDLs has become an

alarming problem to be solved urgently, especially for loading

anticarcinogens.

On the ground of related literature, the essence of remod-

eling behaviors is that LCAT, the one of key plasma factors

involved in the metabolism of d-rHDLs, catalyzes trans-

acylation of the sn-2 fatty acid of phospholipid to the free

hydroxyl group of cholesterol [13,14], thus generating choles-

terol esters (CE), then CE migrates from bilayer lipid mem-

brane to the center of d-HDLs constantly, resulting in the

conversion of d-HDLs into mature s-HDLs [15]. Thus, removal

of enzymatic substrates such as phospholipid or cholesterol to

restrain the remodeling will be a promising outlet. However,

for multivariant phospholipid of d-rHDLs, it is hardly possible

to characterize the modified produce, consequently, modi-

fying the only one hydroxyl group of cholesterol to avoid the

destruction of d-rHDLs by LCAT is more reasonable.

In the current study, monocholesterylsuccinate (CHS) was

synthesized and covalently conjugated to ApoA-I, success-

fully forming CHS modified ApoA-I (cA). Meanwhile, the de-

gree of substitution, molecular weight and surface tension of

cAwere identified. Subsequently, the newlymodified d-rHDLs

composed of CHS, cA and phospholipid were prepared by

thin-film dispersion and cholate dialysis methods. Two good

reasons were responsible for this strategy: first, cholesterol

was substituted by CHS to restrain the remodeling behaviors,

second, ApoA-I, the important component recognized by SR-

BI, was anchored to rHDLs through covalent bindingwith CHS,
which was expected to increase binding efficiency of ApoA-I,

and further achieve high tumor-targeting. Paclitaxel (PTX), a

lipophilic antineoplastic agent was selected as the model

drug. And in vitro characterizations of CHS-modified pacli-

taxel-loaded-discoidal rHDLs (cP-d-rHDLs) were systemati-

cally determined, which included particle size, zeta potential,

drug entrapment efficiency, morphology and in vitro drug

release of cP-d-rHDLs with and without LCAT. In addition, to

further evaluate the effectiveness of structural modification,

the pharmacokinetic behaviors of different PTX preparation,

such as Taxol, PTX-loaded liposome (P-L), P-d-rHDL and cP-d-

rHDLs were investigated in SpragueeDawley rats, respec-

tively. The ultimate purpose of our study was to improve the

performance of d-rHDLs from a new perspective, and provide

theoretical basis for enhancing the functionality of bio-

mimetic drug delivery carriers in cancer chemotherapy.
2. Materials and methods

2.1. Materials

Paclitaxel was purchased from Yew Pharmaceutical Company

Ltd. (Jiangsu, China). Taxol was prepared in our laboratory

according to a commercial formulation. Lipoid S 100 was from

Lipoid GmbH (Frigenstrasse 4, 67065 Ludwigshafen, Germany).

Cholesterol was from SigmaeAldrich (St. Louis, MO). All other

chemicals of analytical or high-performance liquid chroma-

tography (HPLC) grade were purchased from Chemical Re-

agent Company, Ltd. (Nanjing, China). Sephadex G50 was

from Pharmacia (Sweden). ApoA-I was isolated from precipi-

tate IV. Human plasma was supplied by Nanjing Red Cross

(Nanjing, China). LCAT was isolated from human plasma in

our laboratory.

2.2. Synthesis and characterization of cA

2.2.1. Synthesis
CHS was synthesized according to a previously reported pro-

tocol [16], which using cholesterol and succinic anhydride as

raw materials in heptane and trace pyridine as a catalyst.

After that, prepared CHS was covalently bound to the amino

residues of ApoA-I to obtain the modified ApoA-I (cA) with

some modifications [17] and the reaction procedure is shown

in Scheme 1. Generally, the carboxyl groups of CHS were

reactivated by twice equimolar amounts of 1-ethyl-3-(3-

dimethylamino) propylcarbodiimide hydrochloride (EDC$HCl)

and N-hydroxysuccinimide (NHS) in dichloromethane at 25 �C
overnight, and the organic solvent was removed by evapora-

tion. Then 0.5 mL of DMF containing various amounts of

CHSeNHS active esters (CHEeNHSE) was added into ApoA-I

solution by drop and allowed to agitate gently overnight at

4 �C. The reacted mixture was dialyzed against distilled water

at room temperature for 2 days, followed by centrifugation at

12,000 rpm for 10 min to remove the extra active esters. Upon

lyophilization, white product of CHSmodified ApoA-I(cA) was

obtained. A series of modified apolipoproteins designated as

cxA (where x was the input molar ratio of [CHSeNHS]/[ ApoA-

I]) were produced by changing the input molar ratio of

CHSeNHSE to apolipoprotein from 50 to 200).

http://dx.doi.org/10.1016/j.ajps.2013.07.002
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Scheme 1 e Synthetic scheme for monocholesterylsuccinate modified ApoA-I (cA).
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2.2.2. Evaluation of the degree of substitution of cA
The trinitro benzene sulfonic acid (TNBS) method [18] was

employed to define the degree of substitution of modified

ApoA-I. In brief, ApoA-I and modified ApoA-I(cA) solution

were diluted with PBS separately to obtain the samples with a

series of concentrations (0.2e1.0 mg/mL). 0.2 mL NaHCO3 (4%

w/v, pH 8.5) and 0.2 mL TNBS (0.1%,w/v) were added to 0.2 mL

of each sample, and mixed completely. The solution was then

incubated in the dark for 2 h at 40 �C, and 0.2mL SLS (10%,w/v)

and 0.1 mL HCl (1 M)were subsequently added. After mixing

completely, 0.2mL of each samplewas transferred to a 96-well

plate, and the absorbance was recorded at 415 nm using a

microplate reader (Multiskan MK3, Thermo Electron Corpo-

ration). The standard curves of ApoA-I and cxA with different

initial molar ratio (x ranges from 50 to 200)were obtained, and

the degree of substitution was calculated according to the

equation:

DS ¼
�
1� Kmodified apoA�I

KapoA�I

�
� 100% (1)

where DS is the degree of substitution; KapoA-I and Kmodified

apoA-I are the slope rates of ApoA-I and cA, respectively.

2.2.3. Determination of average molecular weight (MW) of cA
Averagemolecular weight (MW) of cAwas evaluated by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

gels. ApoA-I and c120A samples were diluted with treatment

buffer, respectively. Then themixtureswere heated and loaded

into the end of the gel wells, respectively. Electrophoresis of

samples was performed on 12% resolving gel with 4% acryl-

amide stacking gel. After electrophoresis, the gel was stained

with Coomassie blue R-250. Molecular weight of c120A was

determined by comparing the relative mobility (distance trav-

eled by the cA/distance traveled by the marker). The degree of

substitution was expressed by the following equation:

DScA ¼
�
MWcA �MWApo�I

MWCHS � 120

�
� 100% (2)

where DScA is the degree of substitution; MWcA is molecular

weight of cA estimated by comparing with the marker.

MWApoA-I and MWCHS are 28,000 and 487, respectively.
2.2.4. Measurement of surface tension of cA
The surface tensions of ApoA-I and cxA (x ¼ 50, 100, 120) were

measured by DCAT 2.1 tensionmeter (Dataphysics, Germany).

Each sample was diluted appropriately with PBS prior to the

measurements, and assayed in triplicate.
2.3. Preparation of cP-d-rHDLs

Generally, the preparation processes consisted of the con-

struction of the lipid cores and subsequent formation of cP-d-

rHDLs complexes by incubation of the lipid cores with cA

induced by sodium cholate.

Thin-film dispersionmethodwas taken to prepare the lipid

cores of modified PTX-loaded d-rHDLs (cP-d-rHDLs) as

described in our earlier study except that cholesterol was

substituted by CHS [12]. Briefly, soy phosphatidylcholine (PC),

CHS, and PTXwith an optimizedmolar ratio of 50:1:2 based on

drug entrapment efficiency were dissolved in dehydrated

alcohol and dried in a rotary evaporator under vacuum to

remove the solvent. The thin-film formed was hydrated in

0.01 M phosphate-buffered saline (PBS, pH 7.4) at room tem-

perature by vortexing, followed by ultrasonication for 300 s

using an Ultra-Homogenizer (JY 92II; Ningbo, China). The

dispersions were subsequently extruded through 0.22 mm fil-

ters to obtain the fine suspensions containing modified PTX-

loaded liposome (cP-liposome).

Thereafter, the cholate dialysis procedure [7] was employed

to prepare cP-d-rHDLs. Briefly, c120A in PBS was added to the

liposome suspensions under 600 rpmmagnetic stirring at 4 �C,
resulting in a final PC to c120A ratio around 1:10 (mol/mol). This

selected degree of substitution of cxA was based on the highest

level of apolipoprotein-binding. Sodium cholate stock in PBS

was added to mediate the later coupling of c120A to cP-lipo-

some, resulting in a final PC to sodium cholate ratio around

1:1.6 (mol/mol). After incubation under constant magnetic

agitation at 4 �C for 12 h, the mixtures were dialyzed against

PBS for 48 h to remove free sodium cholate using dialysis bags

(MW cutoff of 14,000 Da). At last, the resultant suspension was

subjected to a pre-equilibrated Sepharose 4B column, and

elutedwith PBS (pH 7.4) to remove the unbound apolipoprotein.

http://dx.doi.org/10.1016/j.ajps.2013.07.002
http://dx.doi.org/10.1016/j.ajps.2013.07.002
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The amounts of the modified apolipoprotein bound on the

liposome were quantified by using Coomassie (Bradford) Pro-

tein Assay.

2.4. Characterization of cP-d-rHDLs

2.4.1. Particle size, zeta potential and drug entrapment
efficiency
Particle size, zeta potential of cP-d-rHDLs and cP-liposomes

were measured by dynamic light scattering (DLS) after the

samples were diluted appropriately with aqueous phase.

Drug entrapment efficiency (EE) was determined using the

microcolumn centrifugation method [12,19,20]. Briefly, cP-d-

rHDLs suspension was added dropwise to the centre of a

sephadex G50 microcolumn equilibrated with distilled water.

Then centrifugation (500� g, 5 min) was applied to separate

the loaded PTX in cP-d-rHDLs and free drug. cP-d-rHDLs par-

ticles were recovered through centrifugation while the free

drug was retained in the Sephadex matrix. Ultimately, the

concentrations of PTX incorporated into cP-d-rHDLs particles

(C) and the initial total drug (C0) were assayed by HPLC,

respectively, after dilution with absolute ethanol. EE is

calculated with the following formula:

EEð%Þ ¼ C=C0 � 100% (3)

2.4.2. Morphology observation of cP-d-rHDLs with and
without LCAT
In order to investigate whether structural stability of cP-d-

rHDLs was maintained 37 �C under the action of LCAT,

morphological examination was performed by transmission

electron microscopy (TEM, H-7650, Hitachi HighTechnologies

Corporation). cP-d-rHDLs incubating with or without LCAT

were diluted appropriately with aqueous phase before prep-

aration for TEM. Each sample was dropped onto a copper grid

coated with carbon film to form a thin film specimen, which

was negatively stained with a drop of 2% (w/v) phospho-

tungstic acid and dried, then, visualized using TEM.

2.4.3. In vitro release of cP-d-rHDLs with and without LCAT
In order to investigate whether the drug leakage induced by

LACT would be avoided, and further evaluate the effectiveness

of structural modification, the release behaviors of PTX from

the modified discoidal rHDLs with and without LCAT were

characterized. Briefly, 0.5 mL of cP-d-rHDLs with or without

LCAT were sealed in preswollen dialysis bags (molecular

weight cutoff 12,000 Da). Then, dialysis bags were separately

immersed in 200 mL of PBS (pH ¼ 7.4) containing 0.1% (w/v)

Tween 80 and incubated for 24 h at 37 �C on an orbital shaker.

At specific time intervals, 0.5mL of sample waswithdrawn and

replaced with the same amount of fresh release medium. After

appropriate dilution with acetonitrile, the amount of PTX

released from the preparations was determined by RP-HPLC.

2.5. In vivo evaluation: plasma pharmacokinetics in
rats

2.5.1. Animals and drug administration
Twenty healthy adult male SpragueeDawley rats (purchased

from the Animal Breeding Center of Qinlong Mountain,
Nanjing) weighing 200 � 20 g (mean � SD) were housed under

standardized conditionswith free access to food andwater for

1 week. Prior to drug administration, all rats were kept for

overnight fasting but allowed water ad libitum. All studies on

animals were approved by the University Ethics Committee

for Animal Experiments and conducted strictly in compliance

with the National Guideline on the Care and Use of Laboratory

Animals.

Rats were randomly divided into the following four groups

(n ¼ 5), respectively: (1) Taxol; (2) P-Ls; (3) P-d-rHDLs; (4) cP-d-

rHDLs. The same dose of different preparations (7.5 mg/kg)

was intravenously administrated through the tail vein of rats,

respectively.

2.5.2. Collection and treatment of blood samples
The blood samples (0.4 mL) were collected from the plexus

venous in eye ground at 5min, 10min, 15min, 30min, 1 h, 2 h,

4 h, 6 h, 8 h and 12 h post-dosing. 200 mL plasma sample was

obtained by centrifugation at 3000 rpm for 10min, and 10 mL of

1 mg/mL diazepam (internal standard) was added before

vortex for 3 min. Each sample was mixed with 200 mL PBS

(pH7.0) and acetidine, vortex-mixed for 3 min, centrifuged at

3000 rpm for 10 min. 0.9 mL of supernatant was collected, and

dried under a nitrogen gas. The residue was then recon-

stituted in 100 mL methanol. After centrifugation for 10 min at

12,000 rpm, 20 mL of supernatant was recovered and injected

into the HPLC system.

2.5.3. Chromatographic system
The plasma concentrations of PTX in rats were determined

using a reversed-phase HPLC (Shimadzu LC-10A, Kyoto, Japan)

system with a mobile phase composed of methanol:water

(67:33, v/v) at a flow rate of 1.0 mL/min. A Kromasil ODS C18

column (5 mm, 150mm� 4.6mm)was utilized at 30 �C, and the

detection wavelength was set at 227 nm.

2.6. Statistical analysis and in vivoein vitro correlation
(IVIVC)

All values are expressed as the mean � standard deviation.

Pharmacokinetic parameters were assessed with non-

compartmental analysis using the DAS 2.0 software. The

statistical significance of differences was analyzed by Stu-

dent’s t-test. Furthermore, IVIVC for P-d-rHDLs and cP-d-

rHDLs was evaluated respectively.
3. Results and discussion

3.1. Degree of substitution, average molecular weight
(MW) and surface tension of cA

As seen in Fig. 1, the degree of substitution significantly

increased as the initial molar ratio of [CHSeNHSE]/[ApoA-I]

increased ranging from 50 to 120; however, when the molar

ratio was higher than 120, the degree of substitution increased

at a diminished rate. Therefore, to maintain the biological

activity of ApoA-I, c120A with an acceptable degree of substi-

tution (58.97%) was selected as a functional protein attached

onto d-rHDLs.

http://dx.doi.org/10.1016/j.ajps.2013.07.002
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Fig. 2 e SDS-PAGE diagram of marker (lane 1), unmodified

ApoA-I (lane 2).
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As depicted in Fig. 2, SDS-PAGE revealed a markedly

decreased migration distance for c120A compared with un-

modified ApoA-I, indicating that CHS was conjugated to

ApoA-I, resulting in an increase of molecular weight (MW).

MWof c120A was estimated to be about 6300, and the degree of

substitution was calculated to be 60%, which was in agree-

ment with the data measured by TNBS methods.

Values of surface tension of modified ApoA-I (cxA) shown

in Fig. 3 were lower than that of unmodified ApoA-I. As the

value of x increased, the corresponding surface tension

decreased, which meant that the more amounts of CHS

covalently binding to the protein, the stronger amphiphilicity

and lower surface tension of protein were exhibited. Natural

ApoA-I is soluble, the amphiphilicity of protein increased after

modified with insoluble CHS, thus, the surface tension

decreased [21]. The stronger amphiphilicity in addition to the
Fig. 3 e The surface tension of ApoA-I and cxA (x [ 50, 100,

120) with concentration of 0.2 mg/mL. (*P < 0.01 vs. ApoA-

I) (n [ 3).
cholesterol-derived structure in modified protein would

facilitate cA to be anchored into liposomes.

3.2. Characterization of CHS modified drug-loaded-
discoidal rHDLs (cP-d-rHDLs)

3.2.1. Particle size, zeta potential and drug entrapment
efficiency
The particle size, zeta potential and drug entrapment effi-

ciency of cP-d-rHDLs and cP-liposomes were given in Table 1,

respectively. After incubation with cA, particle sizes of cP-li-

posomes were significantly decreased from 85.7 � 3.71 nm to

22.3 � 2.23 nm ( P < 0.01), possibly because of the disappear-

ance of internal hydrophilic cavities in liposomes under the

action of cA and cholate [22]. And the smaller particle size of

cP-d-rHDLs may enhance the residence time of drugs by pre-

venting the glomerular filtration [23]. cP-d-rHDLs exhibited a

48% increment over cP-liposomes in negative surface charge,

probably due to the presence of modified ApoA-I on the sur-

face of liposomes. However, a non-significant reduction (�9%;

P < 0.05) in EE was observed in cP-d-rHDLs, which was mainly

associated with rapid formation of discoidal structures ac-

cording to previous reports [12,24].

3.2.2. Morphology observation of cP-d-rHDLs with and
without LCAT
To investigate whether structural stability of cP-d-rHDLs was

maintained under the action of LCAT, TEM measurements

were executed. Seen from the Fig. 4, a distinct multilayer

discoidal structure of cP-d-rHDLs was displayed, even within

LCAT solution, which was different from the conversion of P-

d-rHDLs incubated with LCAT from discoidal to spherical

structure reported by our earlier study [12]. This indicated that

cP-d-rHDLs were successfully prepared, and the remodeling

reaction induced by LCAT was restrained as we expected.

3.2.3. In vitro release of cP-d-rHDLs with and without LCAT
To investigate whether the drug leakage induced by LACT

would be avoided, in vitro release study was performed. Fig. 5

illustrated in vitro PTX release profiles of P-d-rHDLs and cP-d-

rHDLs with or without LCAT at different time points,

respectively. cP-d-rHDLs suspension both with LCAT and

without LCAT showed the slower release rate than that of P-

d-rHDLs, which suggested that cP-d-rHDLs provided more

effective sustained release of drugs than unmodified P-d-

rHDLs. Furthermore, only 46.38 � 1.48% and 46.61 � 3.37% of

PTX entrapped in cP-d-rHDLs with LCAT and without LCAT
Table 1 e Average diameter, zeta potential value and
entrapment efficiency of cP-d-rHDL and cP-liposomes
(n [ 3).

Formulation
size (nm)

Zeta potential
(mV)

EE (%)

cP-liposomes 85.7 � 3.71 �18.46 � 0.49 91.36 � 2.08

cP-d-rHDL 22.3 � 2.23** �27.36 � 2.31* 82.35 � 4.16

Data are expressed as mean � SD. *P < 0.05, **P < 0.01 vs. cP-

liposomes.

http://dx.doi.org/10.1016/j.ajps.2013.07.002
http://dx.doi.org/10.1016/j.ajps.2013.07.002


Fig. 4 e Microphotographs of different preparations using transmission electron microscope. (A) cP-d-rHDL without LCAT;

(B) cP-d-rHDL incubation with LCAT.

a s i a n j o u rn a l o f p h a rma c e u t i c a l s c i e n c e s 8 ( 2 0 1 3 ) 1 1e1 816
were released in 24 h, respectively. Compared with the

striking difference in the release behaviors between P-d-

rHDLs with LCAT and without LCAT, the similar release

behavior of drugs in cP-d-rHDLs with LCAT and without LCAT

indicated that the drug leakage induced by LCAT was suc-

cessfully prevented.
3.3. Invivo evaluation: plasma pharmacokinetics in rats

The plasma concentrationetime profiles of four PTX different

preparations in SpragueeDawley rats after tail vein adminis-

tration were shown in Fig. 6, and the obtained pharmacoki-

netic parameters were listed in Table 2. As shown in Fig. 6,

there was a significant difference between the pharmacoki-

netic profiles of Taxol solution and other three suspensions,

and no PTX was detectable only since 6 h after intravenous

injection of Taxol. The pharmacokinetic behaviors of PTX

were markedly altered after encapsulation in liposomal
Fig. 5 e In vitro release profiles of PTX from different

preparations using the dialysis-membrane methods. (-)

P-d-rHDLs; (C) P-d-rHDLs D LCAT; (:) cP-d-rHDLs; (;) cP-

d-rHDLs D LCAT. (n [ 3).
preparation, especially in cP-d-rHDLs. PTX in cP-d-rHDLs

suspensions showed the slowest rate of elimination, fol-

lowed by P-d-rHDLs, P-Ls and Taxol. It indicated that cP-d-

rHDLs improved the stability of entrapped drugs in the blood

circulation, and further prolonged the retention time. More-

over, a good IVIVC was also obtained for P-d-rHDLs and cP-d-

rHDLs, respectively (r ¼ 0.892 and 0.834).

As learned from Table 2, in comparison with Taxol, the

other three preparations, showed prolonged mean residence

time (MRT) (P < 0.05), which reflected the prolonged-release

property of the three liposomes, especially cP-d-rHDLs.

The values of area under the plasma concentration curve

(AUC(0et)) for P-L, P-d-rHDLs and cP-d-rHDLs were 3, 4 and 5

times greater than that of PTX solution, respectively. Besides,

for P-L, P-d-rHDLs and cP-d-rHDLs, distribution volume (Vd)

was 1.41, 1.83, 2.30-fold lower than that of Taxol, and the cor-

responding total body clearance (CL) was 1.88, 4.73 and 8.01-

fold lower than that of Taxol, respectively ( P < 0.001), which

indicated again that PTX incorporated in these particles,

especially in cP-d-rHDLs, removed slowly from circulation

compared to Taxol. Clearly, the conspicuous reduction ofV and
Fig. 6 e Mean plasma concentration vs. time curves of PTX

in normal rats after i.v. administration of Taxol, P-

liposomes, P-d-rHDLs and cP-d-rHDLs. (mean ± SD, n [ 5).
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Table 2 e Non-compartmental analysis of plasma data of PTX in normal rats after i.v. administration of Taxol, PTX-
liposomes, P-d-rHDL and cP-d-rHDL (mean value ± SD, n [ 5).

Preparations AUC0/t (mg/mL h) MRT (h) V (L) CL (h/L)

Taxol 0.925 � 0.076 0.916 � 0.441 30.801 � 6.933 10.825 � 0.320

P-L 2.742 � 1.562 4.081 � 0.634* 21.822 � 13.442 5.763 � 1.490*

P-d-rHDLs 3.164 � 0.062 7.280 � 0.256*,6 16.859 � 3.626*,6 2.290 � 0.263*

cP-d-rHDLs 4.232 � 1.075 10.266 � 0.855*,6 13.394 � 3.086*,6 1.351 � 0.758*

*P < 0.05 Taxol vs. other formulations; 6P < 0.05 P-L vs. other formulations.
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CL suggested that cP-d-rHDLs effectively promote the uptake of

PTX by specified tissue or cells, and it would be concluded that

cP-d-rHDLs possessed a favorable targeting property.
4. Conclusion

The present work mainly concerns the exploitation of newly

modified d-rHDLs to alleviate the drug leakage resulting from

the remodeling behaviors of d-rHDLs in their metabolic pro-

cess. The in vitro incubation test confirmed that the remodel-

ing of d-rHDLs within LCAT was restrained by structural

modification successfully. Moreover, pharmacokinetic studies

in rats revealed that the potential of cP-d-rHDLs as novel

targeting carriers. Further studies are planned to investigate

whether cP-d-rHDLs can enhance the drug accumulation and

diffusion in tumor cells, meanwhile their antitumor efficiency

is specially worthy of note.
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