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Abstract-Among the many contributions of Professor Luke to the theory of special functions, the 
most useful in computational statistics is probably that on the incomplete f function. This short 
paper points out that an incomplete f function routine is so important that it should be a standard 
part of any library of statistical subroutines. The paper goes on to give another example of use 
of the incomplete f function: as a means for computer generation of Poisson random variables, 
and, having urged wide use of the incomplete r function, proceeds with development of a Poisson 
generator whose principal aim is to avoid use of the very function is has previously lauded. 
Occasional use of an accurate incomplete f routine is essential however, in order that the composite 
method be exact. 

INTRODUCTION 

The incomplete f function is one of the most important of the special functions used in 
statistical computing. With suitable choice of arguments and division by the appropriate 
f value, it provides x2, f and Erlang distributions, as well as cumulative Poisson 
probabilities. Every library of scientific subroutines should have an accurate incomplete 
routine; unfortunately, many do not, as it is a difficult function over the full range of its 
two arguments. This paper provides yet another use for the incomplete r function in 
statistical computing: as a means to generate Poisson random variables in a computer. It 
is based on this version of the incomplete r function: 

G(y, j.) = 
s 

32 
z’-‘e-‘dt/r (y). 

i 

For fixed A, G is a distribution function, increasing with y, with G(O,il) = 0 and 
G(co, A) = 1. It will be called a continuous Poisson distribution because, as integration by 
parts shows, 

G(y + 1,;) - G(y, A) = 1Ye-“/T (y + 1). 

Thus if Y is a continuous random variable with distribution G(y, A) then L Y J, the integer 
part of Y, has the discrete Poisson distribution, 

Prob[ L YJ = k] = G(k + 1, i.) - G(k, i.) = i.‘e-“/k!. 

GENERATION OF POISSON RANDOM VARIABLES 

Is it feasible to generate a Poisson variate as the integer part of a continuous variate 
Y? A variety of methods for generating continuous variates have been developed, but the 
distribution function G(y, 2.) is formidable and its density function even more so. Thus, 
for example, squeeze methods based on the density function do not look promising. 

Suppose we take an approach similar to that of the exact approximation method [I], 
in which a suitable approximation to the inverse distribution is used most of the time. Let 
G-’ (u) be the solution to G[G-l(u), j.1 = u, i.e. G-’ is the inverse of the distribution 
function G(y, j.), where, for economy, we suppress explicit mention of E., assumed fixed. 
If U is a uniform random variable on (0,l) then Y = G -l(U) has distribution G(y, i.), since 
G’ing both sides of G-‘(U) <y gives 

P[G-‘(U) <y] = P{G(G-l(U), j.] < G(y, i.)> = P[U < G(y, ;.)I = G(y, i.). 
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Thus to generate Ywith distribution G(y, 2) we need only put Y = G-~(U) for a uniform 
variate U. Unfortunately, G -t is even more difficult than the notoriously difficult 
incomplete F function G(y, 2). We will describe a method that avoids use of G-L  using 
G instead and avoiding even the evaluation of G by using an easy-to-compute approxi- 
mation to G-t  some 99% of the time. 

Suppose we choose an easy-to-compute function g(u) that is close to G- ' (u) .  In fact, 
suppose we choose such a g so that 

G-t (u)<g(u)<G-I (u)+e  for 0 < u < l ,  

with e small. Since we only want the integer part of G-t(U),  we may use the following 
algorithm, which avoids computing G-I:  

1. Generate a uniform variate U on (0, 1). 
2. Put Y=g(U)  and J = L Y J .  
3. If Y - J > e r e t u r n J .  
4. If U > G(J, 2) return J, else return J -  1. 

If e is small, say e = 0.01, then about 99% of the time the required discrete Poisson 
variate will be returned at Step 3, with only t% of the cases calling for evaluation of 
G(J, 2) in Step 4. Correctness of the algorithm follows from the assumption that 
G-I(u) <g(u) < G-t(u) +e and the general result that a < b  < a + e and b - mbJ > e 
implies ma_l = tbJ .  

For fixed 2, it is not difficult to develop easy-to-compute functions g for which 
G- I(u) < g(u) < G -I(u) + ¢ with e small. But many simulations calling for Poisson variates 
have the parameter ;t changing from call to call, so that the approximating function g must 
change with each new 2. To handle this more difficult case we exploit the near normality 
of Y for large 2, say ~. >I 32. 

USING N O R M A L  RANDOM VARIABLES 

We now change the problem. We want mY J, the integer part of a variate Y with the 
continuous Poisson distribution G(y, 2). If X is a standard normal variate, distribution 
• (x), then ~(X) is uniform on (0, 1). If  we can choose an easy-to-compute function g(x) 
such that 

G-'[¢(x)]  < g(x)  < G- ' [~  (x)] + ~, 

then this algorithm will produce a discrete Poisson variate with parameter 2: 

1. Generate a standard normal variate X. 
2. Put Y = g ( X )  and J = Y = L YJ. 
3. If Y - J > e  re tu rnJ .  
4. If  ~(X) > G(J, 2) return J, else return J - 1. 

The choice of g depends on 2, but g should be close to a linear or quadratic function, 
since Y is nearly normal for 2 >I 32. This g works fairly well: 

g(x)=,~. +0.4076+,L~Zx +X2/6 for txl <2.75. 

Then G- ' [~(x)]  < g(x) < G- tie(x)] + 0.132 for Ixl < 2.75. Since a normal variate fails to 
satisfy Ixl < 2.75 only six times a thousand, Step 3 in the above algorithm will provide the 
required Poisson variate some 8 7 0  of the time, requiring only a normal variate, a square 
root, two multiplications and three additions. The other 13% of the time either a more 
complex g (to handle IXI > 2.75) or computation of ¢ and G(J, 2) is required. 

Reducing the need to compute 4~ and G(J, 2) to 13% may still make the average time 
for generating Poisson variates too long. Below are the results of numerical experi- 
mentation that provided a g for all 2 1> 32 with need to compute ¢ and G(J, 2) are reduced 
to less than 1%: 
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An Algorithm for Generating a Poisson Variate, Parameter 2 >. 32 

Input:  2 Output :  the required Poisson variate 

1. Genera te  a s tandard  normal  variate 2". 
2. I f  IXI > 2.75 go to Step 6. 
3. Put Y = c o + A t : ' X + c 2 X  2 and J =LY1, where, for  X~>0.  

Co = 2 + 0.33615, c 2 = 1/6 - 0.04819/(2 .:2 + 0.7359), and for  X < 0, 
co = 2 + 0.33354, c2 = 1/6 + 0.04819/(2 L': - 0.7857). 

4. I f  Y - J > 0.008 return J. 
5. I f  ~ ( X )  > G(J, 2) return J, else return J - I. 
6. With co, c~, c2, c3 given below, 

put Y = Co + C,X + c2X: + c3X 3, J = L Y.J and go to Step 4. 

For  2.75 < x and 32 ~< 2 ~< 100, 

Co = 2 + 0.336755 - 0.17/(2':2 + 5.066), 
ct = 21.2 + 0.02875/(2 ':2 - 2.665), 
c2 = I/6 - 0.0199/(2 t:2 _ 2.365), 
c3 = - 0.014/(2 ,/2 + 5.066). 

For  2.75 < x  and 100 < 2 < oo, 
co = 2 + 0.334 - (7.99 + 4.8362 t -" + 0.8792) -t ,  
cl = 2 ./2 + (425.1 - 75.72 .'2 + 5.752) -1, 
c., = 1/6 - (13.4 + 13.52 a/2 + 2.4552) -~, 
c3 = - ( 3 7 8  + 692'": + 0.072) -I. 

For  x < - 2 . 7 5  and 32 ~< 2 ~< 100, with s = 2 - ' '2, 
co = 2 + 0 . 7 - s [ 9 . 5 6 8  - s(83.43 - 269s)], 
ct = 2 t/2 + 0.3027 - s[7.953 - s(69.13 - 225.2s)], 
c2 = 0.24866 - s[2.15112 - s (18.73284 - 62.05328s)], 
c3 = 0.00736 - s[0.20752 - s(1.6664 - 5.7292s)]. 

For  x < - 2 . 7 5  and 100 < 2 < oo, 
Co = 2 + 0.337 - (2.7 - 4.32 I/2 + .812) -j ,  
cl = 2 ./: + (34.2 - 3.562 t/2 - 0.362) - t ,  
c2 = 1/6 - (9.54 - 12.432 ./2 + 2.412) - j ,  
c3 = (286 - 68.252 ,,2 _ 0 .092)- i .  

f: ~(X) = e -'2 dt/(2~z) U2. 

G(y,2)= t-"-~e-'dt/F(y). 

C O N C L U D I N G  N O T E  

The method  for generat ing Poisson variates via a cont inuous  Poisson distribution was 
developed some 20 years ago, but has not  been previously published in a research journal .  
The first edition (1969) o f  Dona ld  Knu t h ' s  The Art of Computer Programming, Vol. 2 [2], 
includes a problem, No.  22, p. 135, with a difficulty rating o f  41: " C a n  the exact Poisson 
distribution for large 2 be obtained by generat ing an appropr ia te  normal  variate, 
convert ing it to an integer, and applying a (possibly complicated)  correct ion a small 
percentage o f  the time?" (All problems in Professor  Knu th ' s  remarkable  books  are given 
a difficulty rating, ranging f rom I0 to 30, with occasional  difficult research problems given 
higher ratings. Fermat ' s  conjecture on x" + y ' = - "  is rated 50.) 

Professor Knu th  was not  aware that I had considered that very problem; a brief 
description o f  the method developed above is in the second (1981) edition o f  Vol. 2, pp. 
135 and 552. Several o f  my students have developed versions o f  the approximat ing  
function g(x), notably  Melvin Cohen at McGill  and G a r y  Ngai at W S U  [3]. 
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