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a b s t r a c t

The ring signature scheme is an important cryptographic primitive that enables a user to
sign a message on behalf of a group in authentic and anonymous way, i.e. the recipient of
the message is convinced that the message is valid and it comes from one of the group
members, but does not know who the actual signer is. Currently, all the existing ring
signatures are based on traditional cryptosystems. However, the rapid advances in the field
of quantum computing indicate a growing threat to traditional cryptosystems.Multivariate
public key cryptosystems (MPKCs) is one of the promising alternatives which may resist
future quantum computing attacks. In this work, we propose a novel ring signature scheme
based on multivariate polynomials with the security model for the first time. Our ring
signature scheme has a great advantage in efficiency compared to many existing ring
signature schemes, and currently it seems to be immune to quantum computing attacks.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Rivest et al. [1] first formally introduced the concept of the ring signature scheme, and proposed the first ring signature
scheme based on RSA. A ring signature scheme can be viewed as a group signature scheme with no anonymity revocation
and simple group setup. A ring signature scheme allows a signer to realize unconditional anonymous signature to amessage,
that is, there is no way to trace the identity of the signer. Ring signature can be used in e-voting, electronic cash, leaking
secrets anonymously and anonymous authentication in communication, etc. Up till now a variety of ring signature schemes
have been proposed. In 2002, Abe et al. proposed the first ring signature scheme based on the discrete logarithm over
finite fields [2]. Bilinear pairings were used to design ring signature schemes [3,4], however computing pairings lead to
low efficiency. Emmanuel Bresson et al. put forward the concept of a threshold ring signature scheme. In view of the needs
of privacy protection, Naor proposed a deniable ring authentication scheme [5].

In 2003, Susilo et al. presented a non-interactive deniable ring authentication scheme [6]. Lv and Wang proposed an
anonymity-revocable ring signature scheme—the Verifiable Ring Signature Scheme [7]. Herranz and Saez put forward
Forking Lemmas so as to simplify the security proof of ring signature scheme [8].

In 2004, Dodis et al. introduced an ad hoc anonymous identification scheme [9], which was a new multi-user
cryptographic primitive that allowed participants from a user population to form ad-hoc groups, and then proved
membership anonymously in such groups. The scheme was based on the notion of an accumulator with a one-way domain.

In 2005, a further study of the threshold ring signature was made in the literature [10,11]. Lee et al. proposed another
anonymity-revocable ring signature scheme [12] and applied it in both e-voting and electronic cash systems. For the problem
of key exposure, Liu and Wong proposed the first forward secure ring signature scheme and the first key-insulated ring
signature scheme [13].
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With the development of ring signature, in 2006, Benderet al. analyzed previous definitions of security for ring signature
schemes and suggested that most of these prior definitions were too weak [14]. The paper showed the first constructions of
ring signature schemes in the standard model.

In 2007, Fujisaki and Suzuki proposed a traceable ring signature scheme that can restrict ‘‘excessive’’ anonymity in [15].
The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social
affair or an election. The traceable ring signature can be used in many applications, such as an anonymous voting on a BBS,
a dishonest whistle-blower problem. The literature [15] formalized the security definitions for this primitive and showed
an efficient and simple construction.

With the existence of quantum computers, the problems such as integer factoring or discrete logarithms can be solved
in polynomial time, which will be a serious threat to the security of existing ring signatures. Building a new public key
cryptosystem which can replace the cryptosystems based on the number theory and survive from future attacks utilizing
quantum computers is imminent. Multivariate public key cryptosystems (MPKCs) potentially could resist future quantum
computing attacks, and it is much more computationally efficient than number theoretic-based systems. Therefore, the
research of multivariate public key cryptography becomes a very active topic.

Multivariate public key cryptography has already experienced 20 years of development. There have been an MIA family,
OV family, HFE family, TTM family, MFE family and an l IC family and other systems. Multivariate public key cryptosystems
over a finite field of odd characteristics is a new idea to get fast signature schemes. Odd-characteristic systems can be
much simpler than their even-characteristic counterparts while still evading algebraic attacks. As multivariate public key
cryptosystem over a finite field of odd characteristic is a safer and more efficient cryptosystem, it has recently been
widespread. Then the square cryptosystems appeared [16]. The square cryptosystems are based on design ideas taken from
both the HFE cryptosystem and the UOV cryptosystem. However, the important properties of the square cryptosystems
are that they are defined over fields of odd characteristics and their internal transformations are quadratic. The existing
multivariate public key cryptosystem over a finite field of odd characteristics are mainly theMIO scheme [17], the projected
HFE cryptosystem (PHFE) [18], Odd-Char Multivariate Hidden Field Equations [19], the Square encryption scheme [20]
and Square-Vinegar Signature Scheme [21] and so on. The Square encryption scheme [20] and Square-Vinegar Signature
Scheme [21] are the representatives of the square cryptosystem [16]. However, in Asiacrypt2009, Olivier andGilles proposed
a method [16] which can break the Square encryption scheme [20]. For this reason, Crystal Clough and others proposed a
modified square: square+ in May 2009 [22,23]. The square+ system [22,23] is a modified square encryption scheme [20].
The square+ system [22,23] has a simple core map, allowing for high signature efficiency and enhanced security. So far, the
square+ system can resist all known attacks [22,23] in Multivariate public key cryptosystems.
Our contributions. The existing ring signatures based on traditional cryptosystems such as RSA will face a serious security
threat under quantum computing. To address this problem, in this work, we propose a novel multivariate ring signature
scheme based on multivariate polynomials, and present a security model for a multivariate ring signature scheme. The
security of themultivariate ring signature scheme is analyzed. The conclusion is that ourmultivariate ring signature satisfies
the property of completeness, anonymity against full key exposure and it can resist known attacks onMPKCs, if we suppose
that the underlying MPKCs, which is used in our ring signature scheme, is secure against known attacks on MPKCs such
as Algebraic Attacks, Linearization Equation Attacks, Rank Attacks, and Differential Attacks. Our ring signature scheme has
great advantages in efficiency over many existing ring signature schemes, and currently it seems to be immune to quantum
computing attacks.

The paper is organized as follows. In Section 2, we introduce the concept of ring signature schemes and multivariate
public key cryptosystems. In Section 3, we give a generic multivariate ring signature scheme with its security model. And
then we present a ring signature scheme based on odd-characteristic multivariate polynomials. We conclude the paper in
Section 4.

2. Preliminaries

2.1. Ring signature scheme

In a ring signature scheme, the signer chooses a group of users including himself, using his private key and public keys of
other users to sign on a message; and the name of the ring signature comes from the fact that the signature usually forms a
circle in the verifying procedure, the group sometimes is called a ring. The verifier can be convinced that the signature was
indeed generated by one of the ring members; however, the verifier is unable to tell which member actually produced the
signature, thus the ring signature scheme is signer anonymous.

A ring signature scheme [1] constitutes of four protocol procedures:
Parameter-generator: generate the system parameters.
Key-generator: generates each user’s public key and private key pairs PKi/SKi, i = 1, . . . , t .
Ring-sign: a probabilistic algorithmwhich takes as input a key pair (pk; sk) and a set of public keys R that constitutes the ring,
along with a message M in some message space to be signed. It is required that pk ∈ R holds true. The algorithm returns a
ring signature σ onM for the ring R.
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Ring-verify: a deterministic algorithm takes as input a set of public keys R that constitutes the ring and a purported ring
signature σ on a message M . It returns either valid or invalid.

2.2. Multivariate signature scheme

The generic multivariate signature scheme is as follows:
Key-generating. Let k is a finite field, F be a map kn → km, L1 be an injective affine map over km and L2 be an invertible affine
map over kn. The cipher F is constructed as a composition of three maps:

F = L1 ◦ F ◦ L2 =

f 1 (x1, . . . , xn) , f 2 (x1, . . . , xn) , . . . , f m (x1, . . . , xn)


, (2.1)

where f j (j = 1, 2, . . . ,m) ∈ k [x1, x2, . . . , xn].
The private key. The private key includes the two affine transformations L1 and L2. The map F may or may not be part of the
secret key depending on its precise nature.
The public key. The public key includes the following:
(1) The field k including its additive and multiplicative structure;
(2) Them polynomials f 1(x1, . . . , xn), . . . , f m(x1, . . . , xn) ∈ k [x1, x2, . . . , xn].

Signing-algorithm. Let

y′1, . . . , y′m


∈ km be a message (or message digests) to be signed. The signer computes the ring

signature by (2.2).
x′1, . . . , x

′

n


= F

−1 
y′1, . . . , y

′

m


= L−12 ◦ F

−1
◦ L−11


y′1, . . . , y

′

m


. (2.2)

Then the signature on the message

y′1, . . . , y

′
m


is


x′1, . . . , x

′
n


.

Verifying-algorithm. To verify that

x′1, . . . , x

′
n


is indeed a valid signature for the message


y′1, . . . , y

′
m


, the recipient

determines whether or not (2.3) is hold.

y′j = f j

x′1, . . . , x

′

n


, j = 1, 2, . . . ,m. (2.3)

If it is true, then accept the signature

x′1, . . . , x

′
n


as valid; otherwise reject.

This process can be completed by anyone, because the public key is available for anyone.
As we can see from the above signature scheme, the core of multivariate signature scheme over a finite field should

be the selection of the center invertible mapping F . Therefore, according to the different F , we get different multivariate
signature schemes over a finite field. The security of these cryptosystems depends on the problem of multivariate quadratic
polynomial equations, that is, solving a set of multivariate quadratic polynomial equations over a finite field, in general, is
proven to be an NP-hard problem [24,25].

3. A generic multivariate ring signature scheme and its security analysis

3.1. Definitions of multivariate ring signature schemes

Currently, most of the ring signature schemes are based on traditional cryptosystems. However, the rapid advances in the
field of quantum computing indicate a growing threat to traditional cryptosystems. Multivariate public key cryptosystems
is one of the promising alternatives which may resist quantum computing attacks. So in this section we present a generic
multivariate ring signature scheme based on multivariate polynomials, which is expected be secure under the quantum
computing attacks, and we also present a security model for the multivariate ring signature scheme.

A generic definitions of a multivariate ring signature schemer based on MPKCs

Definition 1 (Multivariate Ring Signature Based on MPKCs). A ring signature scheme based on MPKCs consists of a triple of
PPT algorithms (Key-Gen; Ring-Sign; Ring-Vrfy) that, respectively, generate keys for a user, sign a message, and verify the
signature:

Key-Gen, a probabilistic algorithm outputs the system parameters, the public key PK and secret key SK for each user in
the system. The system parameters should include a finite field k, the number of multivariable equationsm, and the number
of the variables n. Besides, usually it should include a cryptographic secure hash function with H : {0, 1}∗ → kn and other
needed parameters. The public key PKi satisfies PKi=̂F i = L1i ◦ Fi ◦ L2i , i = 1, . . . , t where Fi : kn → km is an invertible
map, L1i : k

m
→ km and L2i : k

n
→ kn are two invertible affine linear maps, the private key corresponding to PKi is

SKi =

L1i , Fi, L2i


.

Ring-SignSKπ (M, R), a probabilistic algorithm which takes as inputs private key SKπ of the signer, and an ordered set of
public keys R = (PK1, . . . , PKt) with PKπ ∈ R, and a messageM to be signed, produces a ring signature σ on the messageM
with respect to the ring R = (PK1, . . . , PKt).

Ring-VrfyR (M, σ ), a deterministic algorithm that takes as inputs amessageM and a claimed ring signatureσ with respect
to the ring R, it returns either valid or invalid.
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A Security model of a multivariate ring signature scheme based on MPKCs

Completeness: The completeness requirement of a ring signature scheme is that for any integer t , any {(PKi, SKi)}
t
i=1

outputted by Key-Gen, any π ∈ [t], and any messageM , it holds that

Ring-VrfyR

M, Ring-SignSKπ (M, R)


= 1, where R = (PK1, . . . , PKt) .

Anonymity: informally anonymity means that any adversary should not be able to determine which ring member in the
ring R = (PK1, . . . , PKt) generated a ring signature σ . Rivest et al. [1] gave a formalization which has been used in much
subsequent work. Recently, Bender et al. [14] described several possible stronger formulations of each notion. Anonymous
against full key exposure is the strongest definition considered by Bender et al. [14]. We now adapt their definition of
anonymity for our multivariate ring signature base on MPKCs, see [14] for additional details and motivation.

Definition 2 (Anonymity Against Full Key Exposure). Let (Key-Gen; Ring-Sign; Ring-Vrfy) be a multivariate ring signature
scheme, for any PPT adversary A, any positive integer number t ≥ 2, and, consider the following game:

For i = 1 to t , generate (PKi; SKi)← Key-Gen (ωi) for randomly-chosenωi. Give to A the set of public keys S
def
= {(PKi)}

t
i=1.

The adversary A is also given access to a Ring-signing oracle O-Ring-sign (·, ·, ·) such that O-Ring-sign (π;M; R) returns
Ring-SignSKπ (M, R), where we require R ⊆ S and PKπ ∈ R.

A outputs a message M , and two distinct indices i0, i1, and a ring R for which PKi0,PKi1 ∈ R; furthermore, a random bit
b is chosen and A is given the ring signature σ ← Ring-SignSKib

(M, R), where the real signer’s private key is SKib . Then the
adversary A is given the entire secret key {(SKi)}

t
i=1.

The adversary A outputs a bit b̃, and succeeds if b̃ = b.
The Ring-signature scheme (Key-Gen; Ring-Sign; Ring-Vrfy) achieves anonymity against full key exposure if, for any PPT

A and any positive integer number t ≥ 2, the success probability of A in the above game is negligibly close to 1/2.
Anonymity. The anonymity requirement is that for any message M and any integer t ∈ N, setting (pki, ski)← key-gen(ωi)
for all i ∈ [t], R = {pki}i∈[t], and signatures σ1 ← SignSKi1

(M, R),σ2 ← SignSKi2
(M, R), it holds that the distributions

({ski}, R,M, σ1) and ({ski}, R,M, σ2) are computationally indistinguishable (where all of our constructions in fact achieve
statistical indistinguishability).
Unforgeabilityw.r.t. known attacks againstMPKCs. One of the biggest concerns ofMPKCs is the lack of provable security results.
Today the security of MPKCs is still very much ad hoc. Proposed schemes are evaluated against known attacks. Thus for the
unforgeability of our multivariate ring signature scheme based on MPKCs, we will also use this model to define its security,
that is, we will say that our multivariate ring signature scheme based on MPKCs is unforgeability if the selected system
parameters satisfy some requisite security level under all the known attacks against MPKCs.

Definition 3 (Unforgeability w.r.t. Known Attacks Against MPKCs). A multivariate ring signature scheme (Key-Gen;
Ring-Sign; Ring-Vrfy) is unforgeable w.r.t. known attacks for some given security level, saying 2l multiplications on the finite
field k, if for any PPT adversary A and for any positive integer number t ≥ 2, the computational complexity that A succeeds
in the following game is at least 2l multiplications :

Suppose that Key pairs {(PKi, SKi)}
t
i=1 are generated by Key-Gen, and the set of public keys S

def
= {(PKi)}

t
i=1 is given to A.

The adversary A is also given access to a signing oracle O-Ring-sign (·, ·, ·) such that O-Ring-sign (π;M; R) returns
Ring-SignSKπ (M, R), where we require that the condition R ⊆ S and PKπ ∈ R are satisfied.

A is also given the ability of using the known attacks against MPKCs such as Direct Algebraic attacks, Linearization and
Higher-Order Linearization Equation (HOLE) attack, Rank and High Rank attack, Differential attack, and so on.

Finally A outputs a ring signature σ̃ on themessage M̃ with respect to a ring R̃, and succeeds if Ring-VrfyR̃ (M, σ̃ ) = 1,and

A never queries

∗, M̃, σ̃


, where R̃ ⊆ S.

3.2. A generic multivariate ring signature scheme based on MPKCs

In this section we propose a generic multivariate ring signature scheme based on MPKCs, whose aim is to
replace the traditional ring signature and to resist future quantum computing attacks. Our ring signature scheme
(Key-Gen; Ring-Sign; Ring-Vrfy) is as follows:

Key-Gen: a probabilistic algorithm outputs the system parameters (k, q, ξ , n,m,H), where k = GF (q) is a finite field
with q = pξ , and p is a prime,m is the number of multivariate equations, n is the number of variables. Message digest space
is the vector space kn. Let H : {0, 1}∗ → kn be a cryptographic secure hash function.

The system parameter generation algorithm also outputs the public key PK and secret key SK for each user in the
system. Suppose that PKi/SKi are the public key and private key pairs of user ui i = 0, 1, 2, . . . , t − 1. The public key
is PKi = F i = L1i ◦ Fi ◦ L2i, and the corresponding private key is SKi = {L1i, Fi, L2i}, where Fi : kn → km is an
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invertible map, L1i : km → km and L2i : kn → kn are two invertible affine linear maps, i = 0, 1, 2, . . . , t − 1. The ring
R = (PK0, . . . , PKt−1) =


F 0, F 1, . . . , F t−1


is the ordered set of public keys.

Ring-SignSKπ (M, R): To get a ring signature on a message M with respect to the ring R =

F 0, F 1, . . . , F t−1


, the signer

Uπ (0 ≤ π ≤ t − 1) acts as follows:
Chooses at random an element u ∈ kn, and computes

cπ+1(mod t) = H

R,M, Fπ (u)


;

(2) For i = π + 1, π + 2, . . . , t − 1, 0, 1, . . . , π − 1, uniformly picks si ∈ kn, and computes

ci+1(mod t) = H

R,M, F i (ci)+ F i (si)


; sπ = L−12π ◦ F

−1
π ◦ L

−1
1π


Fπ (u)− Fπ (cπ )


.

Thus the ring signature on messageM with respect to the ring R =

F 0, F 1, . . . , F t−1


is σ = (c0, s0, s1, . . . , st−1).

Ring-VrfyR (M, σ ): To verify a claimed ring signature σ = (c0, s0, s1, . . . , st−1) on message M with respect to the ring
R =


F 0, F 1, · · · , F t−1


, the recipient computes ci+1 = H


R,M, F i (ci)+ F i (si)


for i = 0, 1, 2, . . . , t−1, and finally checks

whether ct = c0. If yes, returns 1 or valid. Otherwise 0 or invalid.

3.3. The security analysis of our multivariate ring signature scheme

In this section we will analyze the security properties of our ring signature scheme, the security properties include
completeness, anonymity against full key exposure and Unforgeability w.r.t. known attacks against MPKCs.

3.3.1. Completeness

Conclusion 1. The proposed ring signature scheme satisfies the property of Completeness.

In fact, suppose that any receiver gets a ring signature σ = (c0, s0, s1, . . . , st−1) onmessageM with respective to the ring
R =


F 0, F 1, . . . , F t−1


, and if the ring signature is generated according to the signing process Ring-SignSKπ (M, R) above, and

it is not changed in the process of transmission, then from the ring signature algorithmwe have Fπ (u) = Fπ (cπ )+ Fπ (sπ ),
thus

cπ+1(mod t) = H

R,M, Fπ (u)


= H


R,M, Fπ (cπ )+ Fπ (sπ )


so that ci+1(mod t) = H


R,M, F i (ci)+ F i (si)


holds for i = 0, 1, 2, . . . , t − 1, especially for i = t − 1, we have

c0 = H

R,M, F t−1 (ct−1)+ F t−1 (st−1)


, and we note that ct = H


R,M, F t−1 (ct−1)+ F t−1 (st−1)


, so it holds that ct = c0,

this completes our proof.

3.3.2. Anonymity against full key exposure

Conclusion 2 (Anonymity Against Full Key Exposure). The proposed ring signature scheme satisfies the property of anonymity
against full key exposure in Definition 1.

Here we use the Definition 1 of anonymity against full key exposure in Section 3.1, and we consider the game described in
Definition 1. Suppose an attacker is given access (throughout the entire game) to a Ring-signing oracle O-Ring-sign (·, ·, ·)
such thatO-Ring-sign (π;M; R) returns SignSKπ (M, R), wherewe require R ⊆ S and PKπ ∈ R. The attacker outputs amessage
M , distinct indices i0, i1. Then a random bit b (b = 0 or b = 1) is chosen, and the attacker is given the ring signature
σ ← Ring-SignSKib

(M, R), where the real signer’s private key is SKib . Then the adversary A is given the entire secret key
{(SKi)}

t−1
i=0 .

Now we analyze the distribution of the ring signature σ = (c0, s0, s2, . . . , st−1). Because si ∈ kn (i ≠ ib) is randomly
selected, and u is randomly selected, as sib = L−12ib

◦ F−1ib
◦ L−11ib


F ib (u)− F ib


cib


, so we can conclude that sib should

be regarded as randomly distributed, that is, (s0, s1, . . . , st−1) is uniformly distributed. In addition, from the equation
c0 = H


R,M, F t−1 (ct−1)+ F t−1 (st−1)


we know that c0 is randomly distributed in km, this is because that st−1 is randomly

selected. Thus the ring signature σ = (c0, s0, s2, . . . , st−1) is fully randomly distributed, even if the attacker has access to
all private keys of the ring members, his probability to guess the identity of the real signer from SKi0 and SKi1 should not be
greater than 1/2. As a result, the ring signature scheme should satisfy the property of anonymity against full key exposure.

3.3.3. Unforgeability

Conclusion 3 (Unforgeability w.r.t. Known Attack Against MPKCs). The proposed multivariate ring signature scheme based
on MPKCs is unforgeable w.r.t. known attacks for some given security level, saying 2l multiplications on the finite field, if
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for any PPT adversary A the computational complexity to attack the underlying multivariate signature scheme used in the
multivariate ring signature scheme is at least 2l for known attacks against MPKC, such attacks including Direct Algebraic
attacks, Linearization and Higher-Order Linearization Equation (HOLE) attacks, Rank and High Rank attacks, Differential
attacks, and so on.

Nowwe consider the game in the Definition 2.
Suppose that Key pairs {(PKi, SKi)}

t
i=1 are generated by Key-Gen, and the set of public keys S

def
= {(PKi)}

t
i=1 is given to A.

The adversary A is also given access to a signing oracle O-Ring-sign (·, ·, ·) such that O-Ring-sign (π,M, R) returns
Ring-SignSKπ (M, R), where we require that the conditions R ⊆ S and PKπ ∈ R are satisfied.

A is also given the ability of using the known attacks against MPKCs such as Direct Algebraic attacks, Linearization and
Higher-Order Linearization Equation (HOLE) attacks, Rank and High Rank attacks, Differential attacks, and so on.

Finally A outputs a ring signature σ̃ on the message M̃ with respect to a ring R̃, and succeeds if Ring-VrfyR̃ (M, σ̃ ) = 1

and A never queries

∗, M̃, σ̃


, where R̃ ⊆ S.

We now analyze the computational complexity for A to output the forged ring signature

R̃, M̃, σ̃


, assuming that

attacker A as the signer uπ forges the ring signature

R̃, M̃, σ̃


in the name of the ringR̃. Without loss of generality we

assume that R̃ =

F 0, F 1, . . . , F t−1


, according to the ring signature Ring-SignSKπ


M̃, R̃


, the attacker A calculates in

accordance with the signature generation process in steps (1) and (2) of Section 3.2. But in order to forge a signature
σ̃ = (c0, s1, s2, . . . , st−1) of messageM , the attacker needs to compute sπ such that

Fπ (sπ ) =

Fπ (u)− Fπ (cπ )


,

where u is randomly selected by the attacker. This is a fundamental problem in the MPKC. To solve this kind of problem
there are several known attacks:
Direct Algebraic attacks: it means that to find sπ ∈ kn from the equation Fπ (sπ ) =


Fπ (u)− Fπ (cπ )


for the attacker

A on condition that he does not know the private key SKπ = {L1π , Fπ , L2π }. The Gröbner base and XL method are the
most powerful attacks for this problem. If we suppose that computational complexity is at least 2l to attack the underlying
multivariate signature scheme used in the ring signature scheme by using the Gröbner base or XL method attacks, then the
computational complexity to find sπ ∈ kn is at least 2l.
Linearization attacks: A Linearization Equation is a relation between the vπ =̂Fπ (sπ ) =


Fπ (u)− Fπ (cπ )


∈ km and sπ ∈ kn

that always holds for a given public keys Fπ , it has the following form:−
i,j

aijsπ,ivπ,j +
−

i

bisπ,i +
−

j

cjvπ,j + d = 0.

A Higher-Order Linearization Equation (HOLE) is an equation that uses high order terms of the cipher text variables
vπ = Fπ (sπ ) =


Fπ (u)− Fπ (cπ )


∈ km


while using only linear terms of plain text variables (sπ ). In particular, a SOLE

(second order linearization equation) would look like−
i<j

aijkvπ,ivπ,jsπ,k +
−
i≤j

bijvπ,ivπ,j +
−
ij

cijvπ,isπ,j +
−

i

divπ,i +
−

j

ejsπ,j + f = 0.

In which we get an affine (linear) relation between sπ and vπ when substituted with the actual values of vπ ∈ kn. If we
suppose that the computational complexity is at least 2l to attack the underlying multivariate signature scheme used in the
ring signature scheme by using of such Linearization attacks or HOLE attacks, then the computational complexity to find
sπ ∈ kn is at least 2l.
Rank attacks: Goubin and Courtois show the MinRank attack for Triangular-Plus-Minus systems. Yang and Chen generalize

the idea of Rank attack for multivariate systems in [26]. The complexity of the Rank attack is about qr (m
2( n

2−
m
6 )+mn2)
k

multiplications, where k is the number of linear combinations of the components of Fπ which reach the minimal rank r .
A Dual Rank (or High Rank) attack means to find a variable appearing the fewest number of times in a central equation

cross-term. If this least number is s, the complexity of the High Rank attack [26] is about qs


n3
6


multiplications. If we

suppose that the parameters were well selected so that the computational complexity to attack the underlying multivariate
signature scheme used in the ring signature scheme is at least 2l for both Rank attacks and High Rank attacks, then the
computational complexity to find sπ ∈ kn is at least 2l.
Differential attacks. Given the public key of MPKCs, which we denote as Fπ , a set of quadratic polynomials, its differential
DFπ (x, c), a set of linear functions in x, is defined asDFπ (x, c) = Fπ (x+ c)−Fπ (x)−Fπ (c)+Fπ (0). The key of this attack
against the cryptosystem is by use of the hidden structures in the differential. If we suppose that the parameters were well
selected such that the computational complexity to attack the underlying multivariate signature scheme used in the ring
signature scheme is at least 2l with differential attacks, then the computational complexity to find sπ ∈ kn is at least 2l.
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From the above analysis we can see that if for any PPT adversary A the computational complexity to attack the underlying
multivariate signature scheme used in the ring signature scheme is at least 2l against known attacks against MPKC, such
attacks including Algebraic Attacks, Linearization Attacks, Rank Attacks, Differential attacks, and so on, then the proposed
multivariate ring signature scheme based on MPKCs is unforgeable w.r.t. known attacks for some given security level, say
2l multiplications on the finite field.

4. Conclusions

In this paper we present a generic multivariate ring signature scheme based on MPKCs, and its security model. Through
the security analysis, the scheme satisfies the completeness, anonymity against full key exposure and unforgeability w.r.t.
known attack againstMPKCs if we suppose that the underlyingmultivariate signature scheme is unforgeability w.r.t. known
attack againstMPKCs. Ourmultivariate ring signature scheme could survive future attacks utilizing quantumcomputers. Our
research results in this work give a new way to build ring signature schemes.
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