
Discrete Applied Mathematics 159 (2011) 746–759

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On a labeling problem in graphs
R. Chandrasekaran a, M. Dawande b,∗, M. Baysan c

a Department of Computer Science, University of Texas at Dallas, United States
b School of Management, University of Texas at Dallas, United States
c Department of Computer Science, University of Toronto, Canada

a r t i c l e i n f o

Article history:
Received 3 November 2009
Received in revised form 13 October 2010
Accepted 29 December 2010
Available online 31 January 2011

Keywords:
Graph algorithms
Software programming
Complexity

a b s t r a c t

Motivated by applications in software programming, we consider the problem of covering
a graph by a feasible labeling. Given an undirected graph G = (V , E), two positive integers
k and t , and an alphabet Σ , a feasible labeling is defined as an assignment of a set Lv ⊆ Σ

to each vertex v ∈ V , such that (i) |Lv | ≤ k for all v ∈ V and (ii) each label α ∈ Σ is used no
more than t times. An edge e = {i, j} is said to be covered by a feasible labeling if Li∩Lj ≠ ∅.
G is said to be covered if there exists a feasible labeling that covers each edge e ∈ E.

In general, we show that the problemof decidingwhether or not a tree can be covered is
strongly NP-complete. For k = 2, t = 3, we characterize the trees that can be covered and
provide a linear time algorithm for solving the decision problem. For fixed t , we present a
strongly polynomial algorithm that solves the decision problem; if a tree can be covered,
then a corresponding feasible labeling can be obtained in time polynomial in k and the
size of the tree. For general graphs, we give a strongly polynomial algorithm to resolve the
covering problem for k = 2, t = 3.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected graph G = (V , E), two positive integers k and t , and an alphabet Σ , a feasible labeling is defined
as an assignment of a set Lv ⊆ Σ to each vertex v ∈ V , such that (i) |Lv| ≤ k for all v ∈ V and (ii) each label α ∈ Σ is
used no more than t times. In a feasible labeling, the commonality index c(e) of an edge e = {i, j} equals |Li ∩ Lj|. Note that
c(e) ∈ {0, 1, 2, . . . , k}. An edge e = {i, j} is said to be covered by a feasible labeling if c(e) ≥ 1 (i.e., if Li ∩ Lj ≠ ∅). G is said to
be covered if there exists a feasible labeling that covers each edge e ∈ E. In words, we need an assignment of at most k labels
to each node of G such that each label is assigned to at most t nodes and there is at least one common label among the labels
assigned at the two endpoints of each edge. For k = 2, t = 3, Fig. 1 shows a possible labeling that covers the graph; edge
commonality indices are also shown in the diagram. There are several interesting questions concerning feasible labelings
and the extent to which a graph can be covered:

1. Find a labeling thatmaximizes
∑

e∈E c(e). For the special case of k = 2, this problemhas been studied in [4]. They consider
two cases. In the first case, the labels are such that for any edge e = {i, j}, either Li = Lj or Li ∩ Lj = ∅. Such a labeling
is known as a non-split labeling [4,5]. In the second case, this condition need not hold and the corresponding labeling is
referred to as a split labeling. It is shown that if G is a tree, then as far as this objective is concerned, no advantage is gained
by splitting. A consequence of this result is a polynomial-time algorithm to solve the problem using the work in [10,11].
Further results in [4] include (i) polynomial algorithms for obtaining optimum split and non-split labelings in a general
graph for k = 2, t = 2 and (ii) proofs of NP-hardness of these problems for k = 2, t ≥ 3.

∗ Corresponding author. Fax: +1 9728835095.
E-mail addresses: chandra@utdallas.edu (R. Chandrasekaran), milind@utdallas.edu (M. Dawande), m.baysan@utoronto.ca (M. Baysan).

0166-218X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2010.12.022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82748632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dam.2010.12.022
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:chandra@utdallas.edu
mailto:milind@utdallas.edu
mailto:m.baysan@utoronto.ca
http://dx.doi.org/10.1016/j.dam.2010.12.022

R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759 747

Fig. 1. k = 2, t = 3. A feasible labeling that covers the graph.

2. Can a graph be covered? If so, give a labeling of the vertices to achieve this. To our knowledge, there is no existing work
on this problem in the literature.

3. If the answer in (2) is no, then what is the maximum number of edges of a given graph that can be covered and how do
we label the vertices to achieve this?

4. In (3) above, if edges have weights, what is the maximum total weight of covered edges and how can this be achieved?

In answering these questions, there may be further assumptions about G, whether |Σ | < ∞ or not, etc. In this paper, we
focus on Question (2) above. Note that, in general, maximizing

∑
e∈E c(e) does not resolve the question of whether or not

the graph can be covered.

1.1. Application in pair programming

An interesting application of labeling occurs in the context of assigning pairs of programmers to software development
tasks. Pair Programming [1,3,12] is an agile software development approach in which two programmers sit side-by-side at
a workstation and collaborate on the same piece of code. Onemember of the pair types the code while the other continually
reviews the work. By working with different partners and on different parts of the software system, programmers develop
mutual trust and learn more (as compared to traditional programming) about the software system as a whole. The benefits
of pair programming include higher software quality, improved productivity, and team cohesion [3,8].

1.1.1. The underlying graph
A software module refers to some functionality that must be developed by a pair of programmers. A software system

consists of several modules. The development activities of certain pairs of modules may be related, e.g., two modules may
share code, onemodule may use the other as a subroutine, or onemodule may inherit methods or attributes from the other.
Subsequent to their development, such pairs of modules are often integrated and tested together. Thus, a software system
can be conceptualized as a graph G(V , E): the vertices denote the modules and a pair of vertices is connected by an edge if
the development activities of the corresponding modules are related.

1.1.2. Assigning pairs of developers to nodes
When two modules are connected by an edge, using (one or more) common developers can reduce the integration and

testing effort for these modules [5]. If having common developers for the modules that are connected by an edge is the only
requirement for an assignment, then a solution is trivial: we can assign the same pair of developers to each node. However,
it should be noted that most projects need to be completed by a deadline. Assigning the same pair of developers to each
node is typically infeasible since the time required to complete the project typically violates the deadline. On the other
hand, mandating that each developer works on a pre-specified number of modules sacrifices much-needed flexibility in a
real environment. A reasonable trade-off is to allow a developer to work on at most a pre-specified number t of modules [4].

Thus, we have two defining characteristics of a feasible assignment: (i) each node must be assigned two distinct
developers and (ii) each developer can be assigned to at most t nodes. While there are several objectives of interest for
such an assignment (e.g., Questions 1–4 above), the one considered in this paper is that of obtaining an assignment with the
following property: for each edge (i, j) ofG, there should be at least one common developer amongst those assigned at nodes
i and j. It is easy to motivate generalizations of our covering problem to project management. In this context, each node in
V corresponds to a project and the set of edges E between certain pairs of nodes denote an overlap in the development
activities of the corresponding projects. The number of personnel to be assigned to project vi ∈ V is ki. As before, each
person can be assigned to at most t projects.

As mentioned earlier, there has been no prior work on the covering problem studied in this paper. However, some
fundamentally different covering problems have been addressed in the literature. For example, [7] addresses a problem
of covering the nodes of a tree by subtrees such that the number of nodes in each subtree is restricted and any pair of
subtrees have at most one node in common. The objective is to minimize the number of subtrees used in the node cover.
The problem where the subtrees used for the cover need to be chosen from an explicitly provided collection is considered
in [2].

748 R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759

Fig. 2. k = 2, t = 3. For some edge e, c(e) = 2 in any feasible covering.

2. Labeling trees

We assume an infinite alphabet Σ . In Question (2) above, since we are only interested in making sure that c(e) ≥ 1 for
all edges, we do not need more than one common label at the two ends of an edge. However, in some cases, we may be
forced to have more common labels. A simple example is when G = K4, k = 2, t = 3: For the labeling in Fig. 2, each bold
edge is covered and has a commonality index of 1. However, edge e∗ remains to be covered; regardless of the label assigned
to node v so as to cover e∗, one edge will have a commonality index of 2. It can easily be verified that every feasible labeling
for K4 with k = 2 and t = 3 will have this property. This, however, is never the case with trees as the result below shows.

Lemma 1. Let G be a tree and let |Σ | = ∞. If G can be covered by a feasible labeling, then it can be covered by a feasible labeling
such that for each edge e, c(e) = 1.

Proof. Let L be a labeling that covers the graph and for which
∑

e∈E c(e) is the minimum. Suppose that an edge e = {i, j}
has c(e) = |Li ∩ Lj| ≥ 2 in L. Since G is a tree, removing edge e results in two subtrees, say T1 and T2. Let L′ be the labeling
obtained as follows: let α ∈ Li ∩ Lj and let β ∈ Li ∩ Lj − {α}. In tree T1, replace all occurrences of the label β by a new label
γ ∈ Σ − ∪i∈V Li. This is possible since |Σ | = ∞. L′ also covers G and

∑
e∈E c

′(e) <
∑

e∈E c(e), contradicting the choice of
L. �

From now on, we will try to find such a labeling when it exists. For simplicity, we will refer to Question (2) above as the
covering problem. Let degG(i) denote the degree of vertex i in G. First, we note some simple observations.

• k = 1, t ≥ 1:G can be covered iff each of its connected components has no more than t vertices.
• k ≥ 1, t = 1:G can be covered iff it has no edges.
• k ≥ 1, t = 2:G can be covered iff degG(i) ≤ k for all i ∈ V . If degG(i) ≤ k for every node i ∈ V , then we cover each edge

by assigning a common label to the end points of that edge. Thus, node i ∈ V uses degG(i) distinct labels. Conversely,
suppose there exists a covering for G. Since t = 2, each label can be used to cover at most one edge. Therefore, as at most
k labels are allowed at each node, degG(i) ≤ k for every node i ∈ V .

It is clear that G can be covered only if degG(i) ≤ k(t − 1) for all i ∈ V . However, this condition is not sufficient as seen
by the following examples for k = 2; t = 3.

The following result allows us to simplify the structure of the vertices with low degrees in graphs.

Lemma 2. Let G be a graph. If 1 < degG(i) ≤ k, and node i is an articulation point, covering G is equivalent to covering the
‘‘split’’ graph obtained as follows: we split node i into | degG(i)| copies such that each copy has incident on it one distinct neighbor
of node i in G. Fig. 4 shows an example of the splitting for k = 2.

Proof. Since node i of G is an articulation point, the splitting operation generates disconnected subgraphs of G. It is easy to
see that if one of the subgraphs cannot be covered, then the original graph cannot be covered either. On the other hand, if
all the subgraphs are covered (by possibly using entirely different alphabets in each copy of node i), merge the copies back
to get node i and assign all the labels used by the copies to the node i. Then, node i will get no more than k labels since its
original degree was no more than k. �

For a tree, since each non-leaf node is an articulation point [6], Lemma 2 can be used to split each node with degree at
least 2 and atmost k. In this case, the splitting operation results in a set of subtrees. By repeatedly applying Lemma 2, we can
reduce the question of covering a tree G to one for a tree G′ in which for each node iwe have degG′(i) = 1 or degG′(i) ≥ k+1.

2.1. Labeling trees for k = 2, t = 3

In this section, we settle the covering question for the case when G is a tree, k = 2, and t = 3. The main result follows.

Theorem 1. For k = 2, t = 3, the problem of whether or not a tree can be covered can be solved in linear time.

Proof. Clearly, if degG(i) ≥ 5 for any node i ∈ V , then G cannot be covered. Also, if degG(i) = 2 for some i ∈ V , then the
splitting technique of Lemma 2 can be applied. Thus, we assume that degG(i) ∈ {1, 3, 4} for all i ∈ V .

R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759 749

Fig. 3. Graphs with degG(i) ≤ k(t − 1)∀i that cannot be covered for k = 2, t = 3.

Fig. 4. Node splitting in a general graph (k = 2).

We first consider the case when G be a tree with degG(i) ∈ {1, 3} for all i ∈ V . Such a tree can always be covered. A
feasible covering can be obtained by the following linear-time algorithm:

Algorithm I.
1. Root the tree at any arbitrary leaf node r . //Now it is a binary tree.//
2. L← Σ; S ← ∅; T ← {r}
3. while T ≠ ∅ select a node x ∈ T , label x and its children with any label α ∈ L.
4. S ← S ∪ {x}; T ← T ∪ {j : j is a child of x} − {x}; L ← L − {α}. //S is the set of completely labeled nodes; T is the set of

partially labeled nodes from which we select the next node to scan; L is the set of unused labels.//

Since any node has at most two children, and t = 3, this labeling works without any problem. Next, let G be a tree with
degG(i) ∈ {1, 3, 4} for all i ∈ V . If we now apply a similar algorithm, it may not work since the rooted tree is no longer
binary. For example, the tree in Fig. 3 cannot be labeled even though degG(i) ∈ {1, 4} for all i ∈ V . If we root the tree at a
node with degree equal to 4 (if one such exists), then if we encounter no other node with three children, we can cover the
tree:We arbitrarily give the labels to children from among the two labels given to the root. Thereafter, there is no confusion
since each internal node has two children. If, starting with a root that has four children, we encounter an internal node with
three children, we stop and claim that the tree cannot be covered. Since there is no choice that matters to the outcome, the
result follows. We, therefore, have the following algorithm. Let ∆ = maxi degG(i).

Algorithm II.
1. Root the tree at any arbitrary node r with degG(r) = ∆.
2. L← Σ; S ← ∅; T ← {r}.
3. if degG(r) ≥ 5, stop. //G cannot be covered //
4. else if degG(r) < 4, then use Algorithm I.
5. else label r and its children with any two labels α, β ∈ L;α ≠ β,

so that no label is used more than 3 times.
6. T ← T ∪ {j : j child of r} − {r}; S ← S ∪ {r}; L← L− {α, β}.
7. while T ≠ ∅ select a node x ∈ T .
8. if x has three children, STOP. // G cannot be covered//
9. else label x and its children with any label α ∈ L.

S ← S ∪ {x}; T ← T ∪ {j : j child of x} − {x}; L← L− {α}.
//S is the set of completely labeled nodes; T is the set of partially labeled nodes from which we
select the next node to scan; L is the set of unused labels//

10. end �

If the condition in Step 8 is valid, then the tree has a structure of the type shown in Fig. 5, and Algorithm II concludes
that there is no feasible labeling. Otherwise, the algorithm produces a feasible labeling. Here, the middle path can be of any
length as long as each node on the path, not including the two ends, has a degree of 3. This type of graph allows only one
labeling (modulo permutations of the labels) till the last edge, and this edge cannot be covered.

Theorem 2. For k = 2, t = 3, a tree has a feasible labeling if and only if (i) ∆ ≤ 4 and (ii) it does not have a subtree in which
two nodes of degree 4 are connected by a path in which all intermediate nodes have degree 3 or higher (see Fig. 5 for an example).

This completes our discussion of the case when G is a tree, k = 2, t = 3. When we turn to larger values of t , some
additional features turn up that we have not seen so far. For example, let k = 2, t = 4, and consider the example in Fig. 6.
Theorem 2 implies that this graph cannot be covered for k = 2, t = 3. However, it is easy to see that we can cover it for
k = 2, t = 4. Thus, it is clear that in order to process higher values of k and t we must have an approach that is easily
generalizable.

750 R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759

Fig. 5. Forbidden subtrees for a tree for k = 2, t = 3.

Fig. 6. Tree that can be covered for k = 2; t = 4, but not for k = 2; t = 3.

2.2. Labeling trees for higher values of k and t

We show that the problem is strongly NP-complete for trees for general values of k and t . For this purpose, we use the
classical bin-packing problem.
Bin-Packing Problem:
Instance: A set of positive integers x1, x2, . . . , xn; a positive integer bin capacity B; a positive integer k (that may depend
on n).
Decision Question: Is it possible to partition the set {x1, x2, . . . , xn} into at most k subsets Si, i = 1, . . . , k, such that∑

j∈Si
xj ≤ B for i = 1, 2, . . . , k?

This decision problem is known to be strongly NP-complete (see, e.g., [9]). To see that an arbitrary instance of bin-packing
can be formulated as an instance of our tree labeling problem, consider the the following tree:

Let t = B+ 1. We have a root node r with n children. Let the ith child of r have ni = (k− 1)(t − 1)+ xi− 1 children and
let these be leaf nodes of the tree. If bin-packing has an affirmative answer, then consider a distinct label aj corresponding
to the subset Sj, j = 1, 2, . . . , k. A label, say ‘‘a1’’, at the root node r is used as follows: ‘‘a1’’ is assigned to those children
that correspond to the set S1 and also to xj − 1 children of each node j ∈ S1. The total usage of the label ‘‘a1’’ is, therefore,
1+ |S1| +

∑
j∈S1

(xj − 1) = 1+
∑

j∈S1
xj ≤ B+ 1 = t . Each distinct label aj corresponding to the set Sj is assigned similarly.

The remaining labeling for the tree is now easy. Each child of the root node has k − 1 labels remaining to be assigned and
(k − 1)(t − 1) children remaining to be covered. This can be achieved trivially: every child of the root node uses (k − 1)
distinct labels and uses each to cover (t−1) of its children. Conversely, consider any labeling that covers such a tree. Consider
the label, say ‘‘a’’, used to cover the edge (r, i). The k− 1 other labels at node i can cover a maximum of (k− 1)(t − 1) edges
of the type {i, j}, where j is a child of i. Thus, label ‘‘a’’ must be used also to cover yi = xi − 1 edges of the type {i, j} where j
is a child of i. Furthermore, label ‘‘a’’ can be used to cover edges {r, q}, q ∈ S ⊆ {1, 2, . . . , n}, if and only if−

q∈S

yq + |S| + 1 ≤ t = B+ 1.

Using yq = xq − 1, this condition is equivalent to−
q∈S

xq ≤ B.

Hence, for the entire tree to be covered, we need a partition of the children of r into at most k subsets S1, S2, . . . , Sk, such
that the above condition holds for each subset. Thus, an affirmative answer to the covering problem provides an affirmative
answer to the bin-packing problem. We, therefore, have the following result.

Theorem 3. The labeling problem is, in general, strongly NP-complete on trees.

R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759 751

Fig. 7. Illustration of Step 6 of Algorithm III.

Note: The reduction above from an arbitrary instance of the bin-packing problem to the specific instance of the covering
problem is pseudo-polynomial (in the input size of the bin-packing instance). Nevertheless, the conclusion in Theorem 3 is
valid since the decision question corresponding to the bin-packing problem is NP-complete in the strong sense.

2.2.1. A polynomial algorithm for fixed t ≥ 1
We now turn our attention to the covering problem for some fixed t ≥ 1. For now, we assume that there is an oracle

that solves the following bin-packing type problem and use it as a subroutine to solve the tree labeling problem. Later, in
Section 2.2.2, we will analyze the issue of computational complexity.
Modified Bin-packing Problem:
Instance: A set of positive integers x1, x2, . . . , xn; a positive integer k.
Question: Is there a partition of the set {x1, x2, . . . , xn} into k disjoint sets Si; i = 1, 2, . . . , k, such that

∑
j∈Si

xj ≤ t − 1 for
all i? If the answer is yes, find such a packing with min

∑
j∈Sk

xj.

Output: A yes or no answer to the decision question and, if yes, the value 1+min
∑

j∈Sk
xj.

It is advantageous to use the smallest value of k possible as well for this problem in order to use as few labels as possible.
Using this subroutine, we solve our tree labeling problem by the following algorithm.

Algorithm III.
1. Initialize with given values of k and t
2. S ← {p : p is a leaf node of the tree}
3. if p ∈ S, do xp ← 1.
4. T ← {q ∉ S: all children of q are in S}
5. while T ≠ ∅, select j ∈ T and solve the Modified Bin-packing Problem with the set of values of xi for children of j and

given values of k and t . If the answer is NO, stop; the tree cannot be covered. If yes, go to Step 6. //Nodes in the same bin will
get one common label that they will share with the parent. The parent will share a common label with its parent and

∑
i∈Sk

xi
of its descendants.//

6. xj ← 1+
∑

i∈Sk
xi; S ← S ∪ {j} and go to step 4.

7. end

We illustrate the algorithm first by an example and then state and prove its properties.

Example. Consider the graph in Fig. 7 for k = 2, t = 4. The algorithm starts by assigning a value of 1 to each of the leaf
nodes of the tree. Thus, xi = 1 for i ∈ {E, F ,G,H, I, J, K , L,M,N}. Now consider the instance of the modified bin-packing
problem at node B. The input to this instance is xE = xF = xG = xH = 1; k = 2; t = 4. The output is an answer of ‘‘yes’’
and xB = 2. Suppose the actual assignment to bins is as follows: S1 = {E, F ,G}, and S2 = {H}; see Fig. 7. The output for
the instance at node C (resp., node D) is ‘‘yes’’ and xC = 1 (resp., xD = 1). Finally, the input to the instance of the modified
bin-packing problem at the root node A is xB = 2, xC = xD = 1; k = 2; t = 4. The corresponding output is xA = 2. Suppose
the actual assignment is as follows: S1 = {B, C} and S2 = {D}.

Obtaining a feasible labeling is now straightforward. The assignment obtained from solving each instance of the bin-
packing problem is used as follows: nodes in the same set (i.e., either S1 or S2) will get one common label that they share
with the parent. The parent will share a common label with its parent and

∑
i∈Sk

xi of its descendants. Let us use these two
rules to complete the labeling. For the instance at node B, we have S1 = {E, F ,G} and S2 = {H}. So, nodes E, F , and G share a
common label, say ‘‘a’’, with their parent (i.e., node B). Node B shares a common label, say ‘‘b’’, with its parent (i.e., node A)
and node H . Similarly, nodes I , J , and K share a common label, say ‘‘c ’’ with their parent C . Node C shares a common label
‘‘b’’ with its parent A. Finally, nodes L,M , and N share a common label, say ‘‘d’’, with their parent D. Node D shares a common
label ‘‘e’’ with its parent A. The complete assignment is shown in Fig. 8.

752 R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759

Fig. 8. A complete labeling for k = 2 and t = 4.

Table 1
‘‘Yes’’ instances for k = 2, t = 4, in Step 5 of Algorithm III.

n 2 2 2 2 2 2

input x [3, 3] [3, 2] [3, 1] [2, 2] [2, 1] [1, 1]
output xj 4∗ 3 2 3 1 1

n 3 3 3 3

input x [3,2,1] [2, 2, 1] [2, 1, 1] [1, 1, 1]
output xj 4∗ 3 2 1

n 4 4 4 4

input x [3, 1, 1, 1] [2, 2, 1, 1] [2, 1, 1, 1] [1, 1, 1, 1]
output xj 4∗ 4∗ 3 2

n 5 5 6

input x [2, 1, 1, 1, 1] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1]
output xj 4∗ 3 4∗

Recall that n is the number of positive integers in the input instance of the Modified Bin-Packing Problem. In the
instances that we will encounter for k = 2, t = 3, we have n ≤ k(t − 1) = 4, with equality possible only at the root
of the tree. Since k = 2, t = 3, the input values of xi, i = 1, 2, . . . , n, that we will encounter are at most 2 and

∑
i xi ≤ 4.

The answer is ‘‘no’’ for the following vectors (and vectors with each entry at least as large as the corresponding entry in these
vectors): [2, 1, 1, 1] and [2, 2, 1]. For the remaining vectors, the following table gives the resulting value for xj in Step 6 of
the above algorithm. Here, ∗ indicates that the process stops here since this must be the root; if not, then the graph cannot
be covered.

n 2 2 2 3 3

input x [2, 2] [2, 1] [1, 1] [2, 1, 1] [1, 1, 1]
output xj 3∗ 2 1 3∗ 2

For k = 2, t = 4, we have n ≤ 6, with equality possibly only at the root. The input values xi, i = 1, . . . , n, satisfy xi ≤ 3
and

∑
xi ≤ 6. Table 1 lists the output values for those instances that have a ‘‘yes’’ answer:

We are now ready to prove that Algorithm III finds a feasible labeling of G if one exists, and otherwise demonstrates a
subgraph of G for which no feasible labeling exists. To prove this, we formally state a simple observation about themodified
bin-packing problem.

Lemma 3. For given values of k, t, and n, consider two instances of the modified bin-packing problem: one with input vector
x = (x1, x2, . . . , xn), and the other with input vector x′ = (x′1, x

′

2, . . . , x
′
n). If (a) x′i ≥ xi, i = 1, 2, . . . , n, and (b) the answer to

the instance with input vector x is ‘‘no’’, then the answer to the instance with input vector x′ is ‘‘no’’ as well.

Proof. If xi, i = 1, 2, . . . , n, cannot be packed into k bins each of size at most t − 1, then x′i, i = 1, 2, . . . , n, cannot be be
packed as well since x′i ≥ xi, i = 1, 2, . . . , n. �

Theorem 4. Algorithm III finds a feasible labeling if one exists. Otherwise, it provides a subgraph of G forwhich no feasible labeling
exists.

Proof. First, consider the case when the algorithm terminates with T = ∅. Thus, in this case, the answer to all the instances
themodified bin-packing problem encountered in Step 5 is in the affirmative. The solution to the instance of the bin-packing
problem that is encountered at, say, j ∈ T , precisely specifies a labeling to the children of j: the children in the same bin
will get one common label that they will share with node j. Furthermore, node j shares a common label with its parent and∑

i∈Sk
xi of its children in the kth bin. At this point, the output of the bin-packing problem is xj = 1 +

∑
i∈Sk

xi; this means

R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759 753

that the total number of nodes, including node j, in the subtree rooted at node j at which the label corresponding to the kth
bin has been used is xj. Since

∑
i∈Sk

xi ≤ t − 1 (with equality possible only for the root), we have xj ≤ t . Assigning labels
in this manner, a complete and feasible assignment can be obtained. This is guaranteed by the affirmative answer to each
instance of the bin-packing problem.

Now consider the case when the bin-packing problem has a negative answer for some node l ∈ T , and let this be the first
instance of a negative answer. Suppose the bin-packing instance that the algorithmencountered at node l has an input vector
(y1, . . . , yn). We claim that no feasible labeling exists for G. Let Gl denote the subtree rooted at node l. To obtain a proof by
contradiction, suppose a feasible labeling exists forG. In particular, consider a feasible labeling for the subtreeGl. This feasible
labeling defines instances of the bin-packing problem at exactly those nodes of Gl for which the algorithm formulated such
a problem. Furthermore, the feasible labeling also provides a solution to these bin-packing problems. Consider a node j ∈ Gl
such that all the children of j are leaf nodes. Thus, each child i of node j has xi = 1. The algorithm formulated an instance
of the bin-packing problem at node j. If the answer to this instance was ‘‘yes’’, then xj = 1 +

∑
i∈Sk

xi. Recall that xj is the
number of times the label corresponding to the kth bin is used in the subtree rooted at node j. The assumed feasible labeling
also provides a solution to this bin-packing instance and also provides a value, say x′j , of the number of times the kth label
is used in the subtree rooted at node j. However, since our modified bin-packing problemminimizes the contents of the kth
bin, we have x′j ≥ xj.

Arguing in this manner for each non-leaf node of the subtree Gl, we finally arrive at node l. Recall that the bin-packing
instance at node l has no feasible solution for the input vector (y1, . . . , yn). However, the assumed feasible labeling for G
implies a solution for another instance at node lwith input vector, say, (y′1, . . . , y

′
n). Moreover, we have y′i ≥ yi, i = 1, . . . , n.

Now, Lemma 3 implies that if the instance with input vector (y1, . . . , yn) had a negative answer, then the instance with
(y′1, . . . , y

′
n) must also have a negative answer. We, therefore, arrive at a contradiction. The result follows. �

2.2.2. Complexity
Wenow show that for a fixed value of t , Algorithm III is a strongly polynomial algorithm for solving the decision question

of whether or not a tree can be covered.

Definition. Letu = (u1, u2, . . . , un) andw = (w1, w2, . . . , wn)be vectors inℜn. Then, vectorsu andw are lexicographically
ordered u<lex w if and only if there exists k ∈ {1, 2, . . . , n− 1} such that ui = wi, i = 1, 2, . . . , k− 1, and uk < vk.

To illustrate, inℜ3, we have (1, 2, 1) <lex(2, 3, 7) and (2, 5, 3) <lex(2, 6, 2).
To resolve the decision question, we formulate the modified bin-packing problem as an integer linear program. Let t be

a given positive integer. In this case, the values of xj that we encounter in our problem will of the form 1 ≤ xj ≤ t − 1. The
set of possible configurations of bins can be described as the set of solutions to the system:

t−1−
l=1

lzl ≤ t − 1

zl ≥ 0, integer.

Let A = (aij) be a (t − 1) × m matrix containing all vectors z that are solutions to the above system. Each column of A
corresponds to a distinct configuration; the entry aij denotes the number of items of size i in configuration j. For a reason
that will become clear soon, the columns are arranged in ascending order of the total space consumed by the corresponding
configuration. For example, when t = 4, the corresponding A is shown below:

A =

1 2 0 3 1 0
0 0 1 0 1 0
0 0 0 0 0 1


.

The configuration corresponding to the first column consumes a total space of 1. The configurations corresponding to the
second and third column both consume a total space of 2; we order these two columns in lexicographic decreasing order.
The last three columns each consume a total space of 3; again, these are ordered in lexicographically decreasing order.

Now, consider the following Integer Program (IP):

min e · y
Ay = b
y ≥ 0; integer

where (i) b is the vector in which the component bl is the number of input variables xj whose value is l and (ii) e is an
m-dimensional vector in which each entry is 1. Note that this IP has a size determined only by the value of t . Several
observations immediately follow from the optimum solution value of IP:

1. If the optimum objective function value is greater than k, then the answer to the modified bin-packing problem is ‘‘no’’.
2. If the optimum value is less than or equal to k, then the answer is ‘‘yes’’. Furthermore, if the value is less or equal to k−1,

then the output value in Step 6 of Algorithm III is 1.

754 R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759

3. If the optimum value is equal to k, then we find the output value by finding the lexico-maximal optimal solution to the
IP (i.e., the solution vector that is lexicographically maximum among all optimum solutions). This minimizes the content
of the kth bin. Note that 1 plus the content of the kth bin is the output value in Step 6 of Algorithm III.

For example, if k = 2, t = 4, and the input vector is [2, 1, 1, 1] our IP has the above matrix A as the constraint matrix and
the vector b = [3, 1, 0] and the solution of the IP is [0, 1, 0, 0, 1, 0] and the answer to the modified bin-packing problem is
‘‘yes’’. This solution is also a lexico-maximal optimal solution. Thus, the output value (in Step 6) is 3 in this case.

The only issue that remains to be addressed is that of obtaining a lexico-maximal optimal solution required inObservation
3 above. There are several ways in which this can be done. We outline a straightforward iterative procedure below.

Suppose the optimum solution to the IP is k. The total content in the kth bin can be one of the following t − 1 quantities:
1, 2, . . . , t − 1. We would first like to find a solution in which the content of the kth bin is 1. We, therefore, impose an
additional constraint y1 ≥ 1. If there exists an optimum solution to the modified IP of value k, we are done. In this case,
the output value in Step 6 of Algorithm III is 2. If the modified IP has a solution strictly greater than k, then all solutions
with objective value k have y1 = 0. So, variable y1 can be deleted. In general, if γr is the index set of configurations with
total content r, r = 1, . . . , t − 1, then we impose an additional constraint

∑
j∈γr yj ≥ 1. If the modified IP has an optimum

solution of value k, we stop and output r+1 in Step 6. Otherwise, we delete all the columns corresponding to γr and proceed
with the next largest content value.

The iterative procedure above requires us to solve a modified IP at most t − 1 times. To summarize, for fixed t , obtaining
a lexico-maximal optimal solution for the modified bin-packing problem requires constant time (i.e., time O(1)).

Observe that a call to the modified bin-packing problem is made as many times as the number of non-leaf nodes in the
tree. Thus, Algorithm III is a strongly polynomial algorithm for the decision question of whether or not a tree can be covered.
However, it is important to note that if a feasible labeling exists, then the complexity of producing a feasible labeling is not
strongly polynomial. This is because producing a feasible labeling at each node in Algorithm III itself requires time linear in
k. Thus, if the answer to the decision question is in the affirmative, then producing a corresponding feasible labeling requires
time polynomial in k and the size of the tree.

3. Labeling general graphs for k = 2, t = 3

We now turn to the problem of covering general graphs for k = 2, t = 3. As we have already discussed (Section 2), a
necessary condition for a graph to be covered is that ∆ ≤ k(t − 1) = 4. However, as seen from the examples in Fig. 3, this
condition is not sufficient. Let us first consider graphs for which ∆ ≤ 3.

3.1. Graphs with ∆ ≤ 3

We start with the following observation.

Lemma 4. Let G = (V , E) be a graph with degG(i) ≤ 3 for all i ∈ V . Let k = 2, t = 3, and let K3 be a subgraph of G on
vertices {v, w, x} ⊆ V . Let H be the graph obtained from G by deleting edges {v, w}, {w, x}, {x, v}; note that degH(i) ≤ 1 for
i ∈ {v, w, x}. Then, G can be covered iff H can be covered.

Proof. Clearly if H cannot be covered then G cannot be covered either. The subgraph K3 on the vertex set {v, w, x} can be
covered with one label on these vertices. In any covering of H , these vertices will not get more than one label each since
degH(i) ≤ 1 for i ∈ {v, w, x}. The result follows. �

It follows from Lemma4 that covering the three edges of K3 by assigning the same label, say ‘‘a’’, at nodes v,w, and x, does not
affect the outcome of the covering problem. Thus, without loss of generality, we will assume further that G has no subgraph
isomorphic to K3. Therefore, a single label can cover at most two edges and (if this is the case) these two edges must be
incident at some vertex. Moreover, at each vertex i for which degG(i) = 3, two of the edges incident at i must be covered
by the same label if the graph G can be covered. Further, two such pairs cannot share an edge in common. Let p denote the
number of vertices of Gwhose degree is 3. So, in order to cover G, we must have p such pairs of edges no two of which have
a common edge. As discussed below, we can check this condition in polynomial time and find such a set of pairs of edges as
well.

Let the graph L be obtained from G as follows: The vertices of L correspond to the edges of G incident at vertices with
degree in G equal to 3. Two nodes in L are connected by an edge in L if the corresponding edges in G are both incident at the
same degree 3 node. Next, solve themaximumcardinalitymatching problemon L. Aswill be clear from the discussion below,
the cardinality of the maximum matching cannot be higher than p. Therefore, we check if the cardinality of the maximum
matching is p. If not, G cannot be covered. Otherwise, it is straightforward to obtain a feasible labeling for G. The two edges
in G corresponding to the endpoints of an edge in the matching (in L) are covered by the same label; see Figs. 9 and 10 for
two examples. For the example in Fig. 9 (resp., Fig. 10), the required matching exists (resp., does not exist). After having
done so, each node i in Gwith degG(i) = 3 has either (a) one label that remains to be assigned and one edge that remains to
be covered or (b) no labels that remain to be assigned and no edge that remains to be covered. To see this, we first observe
that for each node i in Gwith degG(i) = 2, we have one of the following three possibilities:

R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759 755

Fig. 9. G and its associated graph L: an example where the required matching exists.

Fig. 10. G and its associated graph L: an example where the required matching does not exist.

Fig. 11. A graph with ∆ = 4. Assigning labels arbitrarily to the neighbors of a node with degree 4 can lead to an erroneous conclusion.

(i) both labels remain to be assigned and two edges remain to the covered, or
(ii) one label remains to be assigned and one edge remains to be covered, or
(iii) no remaining label and no edge that remains to be covered. Note that the two nodes in L, corresponding to the two

edges incident at i, are not connected. Thus, this case occurs if and only if the nodes corresponding to the two edges
incident at node i are part of two different matching edges in L. An example is illustrated in Fig. 9 (node ‘‘A’’).

Now consider a node i in Gwith degG(i) = 3 and let ei1, e
i
2, and ei3 denote the three edges incident on i. Then, of the triplet

of edges {ei1, e
i
2}, {e

i
1, e

i
3}, and {e

i
2, e

i
3} in L, at most one can be in a matching. If none of these three edges is in a matching,

then the cardinality of the matching is strictly less than p (since every edge in L is part of such a triplet of edges). Thus, if a
matching of cardinality p exists in L, then exactly one of these three edges belongs to the matching. That is, exactly two of
the three nodes ei1, e

i
2, and ei3 in L are endpoints of a single matched edge; the third node may or may not be an endpoint of

a matched edge.
It is now trivial to assign the labels to cover all the remaining edges. This completes our discussion for graphswith∆ ≤ 3.

3.2. Graphs with ∆ = 4

For any node i with degG(i) = 4, we must use two labels and these two labels are fully used to cover the edges incident
at node i. The only question is on the pairing of the neighbors of node i that receive the same label. Arbitrarily labeling the
nodes incident on node i so that no label is used more than 3 times can land us into trouble even though a feasible covering
exists; for example, see Fig. 11.

756 R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759

A B

Fig. 12. Three distinct triangles sharing an edge.

As our analysis will soon reveal, the primary difficulty comes from nodes of degree 4 that are part of one or more
triangles.1 We start by considering the case when G has at least one triangle.

3.2.1. G has one or more triangles: covering a triangle by the same label
To resolve the covering problem, our basic idea is to identify a triangle, say {i, j, k}, such that the same label can be

assigned at i, j, and k, without affecting the outcome of the covering problem. We show that either there is no feasible
covering or such a triangle exists. We start by making the following observations.

Since G is simple, two distinct triangles cannot share more than one edge in common. If an edge is shared by three
distinct triangles, then exactly one of three triangles must by covered by the same label in any feasible labeling of G. This
claim follows since there is only one feasible labeling of the vertices of the three triangles (modulo permutations of the
labels). This is illustrated in Fig. 12. Furthermore, it is also trivial to identify the triangle that is covered by the same label. To
see this, we first note that only the apexes of the three triangles can have additional edges. If none of the three apexes have
an additional edge(s), then the three triangles form a disjoint component and can, hence, be labeled separately from the rest
of the graph. If any two or all three of the three apexes of the triangles have additional edges, then a feasible labeling does
not exist. Thus, only one apex can have either one or two additional edges incident on it (Fig. 12(A) and (B)). The triangle
corresponding to this apex must be the triangle covered by the same label in any feasible labeling. Thus, for the purpose of
proving Theorem 5 below, we assumewithout loss of generality that an edge is shared by at most two distinct triangles. The
next two lemmas identify two other cases in which a triangle can be covered by a common label.

Lemma 5. Suppose G has a feasible labeling. If there exists a triangle, say {i, j, k}, such that the degrees (in G) of nodes i, j, and k,
are each at most 3, then there exists a feasible labeling in which a common label is assigned at i, j, and k.

Proof. The result follows since (i) assigning a common label, say ‘‘a’’, at i, j, and k, covers the three edges {i, j}, {j, k} and
{k, i}, and (ii) each of the three nodes then has at most one edge incident on it that needs to be covered, for which the one
remaining label at that node suffices. �

Next, we introduce the following definition.

Definition. Two distinct triangles {i, j, k} and {u, v, w} are said to be adjacent if they share a common edge.

Lemma 6. Suppose G has a feasible labeling. Consider a triangle, say {i, j, k}. If this triangle is not adjacent to any other triangle,
then there exists a feasible labeling in which a common label is assigned at i, j, and k.

Proof. Suppose not. Consider any feasible labeling of G. The only other labeling (modulo permutations of the labels) that
covers the three edges of the triangle is as follows: node i (resp., node j; node k) is assigned labels ‘‘a’’ and ‘‘b’’ (resp., ‘‘b’’ and
‘‘c ’’; ‘‘c ’’ and ‘‘a’’). Note that at least one of nodes i, j, or k, has a degree of 4, for otherwise, the result follows from Lemma 5.
Furthermore, since each of the three labels ‘‘a’’, ‘‘b’’, and ‘‘c ’’ is used twice for labeling the triangle, there is no feasible labeling
if any two or all three of i, j, and k, have a degree of 4 in G. Thus, exactly one of nodes i, j, and k, say k, has a degree of 4.
Furthermore, if both the remaining nodes i and j have a degree of 3 in G, then a feasible labeling does not exist. Thus, at most
one of nodes i and j, say i, has a degree of 3 in G. We, therefore, have the following two possibilities:

In either case, there is an alternate feasible labeling (see Fig. 13) in which (i) the vertices of the triangle {i, j, k} have a
common label, and (ii) the total usage of the labels ‘‘a’’, ‘‘b’’, and ‘‘c ’’ is the same as that in the assumed feasible labeling. �

Using Lemmas 5 and 6, we now prove a general result.

Theorem 5. If G has one or more triangles and there exists a feasible labeling of G, then there exists a feasible labeling in which a
triangle is covered by the same label.

1 By a triangle, we mean a subgraph isomorphic to K3 .

R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759 757

Fig. 13. The two possibilities in the proof of Lemma 6.

A B

Fig. 14. The structure in the proof of Theorem 5.

Proof. If there exists a triangle such that the degree of each of its three vertices is at most 3, then the result follows from
Lemma 5. Otherwise, if there exists a triangle that is not adjacent to any other triangle, then the result follows from Lemma 6.
Consider a triangle, say {i, j, k}, and consider any feasible labeling of G. Without loss of generality, assume that edge {j, k} is
part of another triangle, say {j, k, l}. Thus, triangles {i, j, k} and {j, k, l} are adjacent; see Fig. 14. We consider the following
two cases:

Case 1: If either triangle {i, j, k} or triangle {j, k, l} is covered by the same label, then the statement of the theorem holds.
Case 2: If neither of the two triangles is covered by the same label, then the only labeling (modulo permutations of the

labels) that covers the edges of the two triangles is as follows: node i (resp., node j; node k; node l) is assigned labels
‘‘a’’ and ‘‘b’’ (resp., ‘‘b’’ and ‘‘c ’’; ‘‘c ’’ and ‘‘a’’; ‘‘a’’ and ‘‘b’’). Then, node i cannot have a degree of 4, for otherwise this
labeling is not feasible. Similarly, node l cannot have a degree of 4. Also, nodes j and k cannot both have a degree
of 4, for otherwise this labeling is not feasible. Thus, exactly one of j and k, say k, has a degree of 4. As shown in
Fig. 14, let node w be the node, different from i, j, and l, that is adjacent to node k. Since labels ‘‘a’’ and ‘‘b’’ have both
been used 3 times, the only label that can be assigned to node w (to cover the edge {k, w}) is ‘‘c ’’ (Fig. 14(A)). Note
that each of the three labels ‘‘a’’, ‘‘b’’, and ‘‘c ’’, has now been used t = 3 times and are, therefore, not available for
further assignments. Therefore, any alternate feasible assignment of the labels ‘‘a’’, ‘‘b’’ and ‘‘c ’’ that covers all the
edges covered by these three labels can be used without impacting the covering of the other edges of G. Fig. 14(B)
shows such an alternate feasible labeling that covers triangle {j, k, l}with the same label.

The result follows. �

Remark 1. The proof of Theorem 5, in fact, implies that if two triangles are adjacent and if the graph admits a feasible
labeling, then there exists a feasible labeling in which one of the two triangles is covered by the same label.

Although Theorem 5 guarantees the existence of a triangle that is covered by the same label in a feasible labeling (if one
exists), finding a trianglewith this property is an issue that remains to be addressed.We nowdescribe an iterative procedure
that propagates the impact of covering a specified triangle by the same label. The output of the procedure is a binary signal:
an output of 1 implies that the vertices of the specified triangle can be assigned a common label without impacting the
outcome of the covering problem. An output of 0 indicates otherwise. During the propagation, nodes are classified into
three types:marked nodes, double-marked nodes, and unmarked nodes. We now define these terms.

Definition. A marked node is a node for which only one label remains to be assigned. The other label has been previously
assigned during the propagation and has been completely used (i.e., has been assigned at t nodes).

Definition. A double-marked node is a node for which both its labels have been previously assigned during the propagation.
Furthermore, both the labels have been completely used (i.e., each label has been assigned at t nodes).

758 R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759

An unmarked node is a node for which both its labels remain to be assigned. During the propagation, several nodes and
edges may be removed. Therefore, at any point of time in the procedure, we refer to the graph as the residual graph. In the
procedure below (i.e., Propagate-Labels-I), we assume for simplicity that G does not have an edge that is shared by three
triangles. For otherwise, as discussed prior to stating Lemma 5, we can easily identify a triangle that is covered by the same
label without affecting the outcome of the labeling question. Then, with this identified triangle as input, the propagation of
the labeling in G is the same as in the procedure below.
Procedure Propagate-Labels-I
Input: A triangle {i, j, k} in G.
Output: 1 (SUCCESS) or 0 (FAILURE). An output of 1 denotes that nodes i, j, and k, can be assigned a common label without
affecting the outcome of the covering problem. An output of 0 indicates otherwise.
Step 1: Denote nodes i, j, and k, as marked nodes and delete edges {i, j}, {j, k}, and {k, i}. This corresponds to the situation
where nodes i, j, and k share a common label. Thus, only one label remains to be assigned at these three nodes. Since the
common label is used at three nodes, it cannot be used further.
Step 2: Consider a marked node ℓ:

(a) If the degree of node ℓ in the residual graph is 2, then (i) denote node ℓ as a double-marked node, (ii) denote eachmarked
neighbor of node ℓ as double-marked, (iii) denote each unmarked neighbor of node ℓ as marked, and (iv) delete the two
edges incident on node ℓ.

(b) If the degree of node ℓ in the residual graph is 3 or more, then return 0 (FAILURE).

Step 3: Consider a double-marked node ℓ:

(a) If the degree of node ℓ is 1 or more, then return 0 (FAILURE).
(b) If the degree of node ℓ is 0, delete node ℓ.

Step 4: If there exists a marked node with degree at least 2, go to Step 2. Otherwise, return 1 (SUCCESS); this corresponds
to the situation when each node in the residual graph is either an unmarked node or a marked node with degree 1.

Remark 2. If two triangles are adjacent, say {i, j, k} and {j, k, l}, then we can invoke Procedure Propagate-Labels-I, first for
triangle {i, j, k} and then immediately for triangle {j, k, l}. It follows from Remark 1 that the procedure must return a 1
(i.e., SUCCESS) on at least one of these two invocations, for otherwise no feasible labeling exists.

3.2.2. G has no triangles
If G has no triangles and ∆ = 4, then obtaining a feasible labeling, if one exists, is straightforward. The primary reason

for the simplification is that a node with degree 4 can be labeled without any look-ahead since G has no triangles. We now
discuss the procedure in detail. Consider a node i ∈ V with degG(i) = 4. To cover the four edges incident on i, we need two
labels at node i, say ‘‘a’’ and ‘‘b’’. Then, two neighbors of node i can be assigned the label ‘‘a’’ and the remaining two neighbors
can be assigned the label ‘‘b’’. Thus, both labels ‘‘a’’ and ‘‘b’’ have each been used t = 3 times and are not available for any
further assignments. Note that the choice of the two neighbors of node i that are assigned the label ‘‘a’’ (resp. ‘‘b’’) can be
done arbitrarily, without any future implications, since any choice completely utilizes the two labels ‘‘a’’ and ‘‘b’’ for labeling
the four neighbors of node i.

We now describe a procedure that starts by labeling a node i with degG(i) = 4 and propagates this labeling in G. The
procedure either establishes thatG cannot be covered, or reduces the covering problem to one that has already been resolved
in our earlier discussion.
Procedure Propagate-Labels-II
Input: A graph Gwith no triangles and ∆ = 4.
Output: Either (i) 0 (FAILURE): A subgraph of G containing the forbidden structure of Fig. 5, thereby establishing that G
cannot be covered, or (ii) 1 (POTENTIAL SUCCESS): A subgraph S of G in which (a) maxi degG(i) ≤ 3 and (b) each node is
either an unmarked node or a marked node with degree 1. The labeling for such a structure has already been resolved in
Section 3.1.
Step 1: To begin with, all nodes of G are unmarked. Consider the nodes i ∈ V with degG(i) = 4 in any arbitrary sequence and
do the following for each such node: If any of the four neighbors of node i is already double-marked, then return 0 (FAILURE).
Otherwise, (i) denote each marked neighbor of node i as double-marked, (ii) denote each unmarked neighbor of node i as
marked, and (iii) delete node i and all its incident edges.
Step 2: Consider a marked node ℓ:

(a) If the degree of node ℓ in the residual graph is 2: Return 0 (FAILURE) if either of the two neighbors of node ℓ is already
double-marked. Otherwise, (i) denote each marked neighbor of node ℓ as double-marked, (ii) denote each unmarked
neighbor of node ℓ as marked, and (iii) delete node ℓ and all its incident edges.

(b) If the degree of node ℓ in the residual graph is 3 or more, then return 0 (FAILURE).

R. Chandrasekaran et al. / Discrete Applied Mathematics 159 (2011) 746–759 759

Step 3: Consider a double-marked node ℓ:

(a) If the degree of node ℓ is 1 or more, then return 0 (FAILURE).
(b) If the degree of node ℓ is 0, delete node ℓ.

Step 4: If there exists a marked node with degree at least 2, go to Step 2. Otherwise, return 1 (SUCCESS); this corresponds
to the situation when each node in the residual graph is either an unmarked node or a marked node with degree 1.

If Procedure Propagate-Labels-II returns 1, then (i) the degree of each node in the residual graph is at most 3, and (ii) each
node in the residual graph is either an unmarked node or a marked node with degree 1. Since the degree of each marked
node in the residual graph is 1, any feasible labeling of the residual graph requires one label for such a node. Therefore,
without loss of generality, these nodes can be considered as unmarked nodes. Thus, the residual graph is a graph (with no
marked nodes) withmaximumdegree atmost 3 and no triangles. Then, we can follow our discussion immediately following
Lemma 4 (Section 3.1) to resolve the covering problem for the residual graph.

4. Future research directions

A direct extension of our work is to consider the covering problem on a general graph G for k = 2, t = 4. For this
problem, the complexity of testing the existence of a cover is not known. Clearly, for a cover to exist for these parameters,
the maximum degree of G should be at most 6. However, the analysis for this case is fundamentally different from that for
k = 2, t = 3. For instance, our characterization for trees in Theorem 2 does not hold for k = 2, t = 4; to illustrate, the graph
in Fig. 6 can be covered for k = 2, t = 4 but not for k = 2, t = 3. In the case of general graphs, the complete graph K5 is an
example of a graph that can be covered for k = 2, t = 4 but not for k = 2, t = 3. Our analysis for k = 2, t = 3 revealed
the central role of subgraphs isomorphic to K3 in G. Similarly, the analysis for higher values of k and t is likely to depend
on carefully chosen labelings for specific subgraphs. More generally, if a cover does not exist, then it might be of interest to
obtain a feasible assignment that maximizes the number of edges covered. This problem has not been addressed thus far.
The weighted versions of these problems are also open.

Acknowledgements

We thank Abhishek Arora and Dhruv Sethi of the Indian Institute of Technology, Roorkee, for useful discussions and for
the preliminary investigation of covering problems during their summer internship. Section 2.1 includes the results of our
discussions with them.

References

[1] D. Astels, G. Miller, M. Novak, A Practical Guide to Extreme Programming, Prentice Hall, 2002.
[2] I. Bárány, J. Edmonds, L.A. Wolsey, Packing and covering a tree by subtrees, Combinatorica 6 (1984) 221–233.
[3] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 2000.
[4] M. Dawande, S. Kumar, V. Mookerjee, C. Sriskandarajah, Maximum commonality problems: applications and analysis, Management Science 54 (2008)

194–207.
[5] M. Dawande, M. Johar, S. Kumar, V. Mookerjee, A comparison of pair versus solo programming under different objectives, Information Systems

Research 19 (2008) 71–92.
[6] R. Diestel, Graph Theory, 3rd ed., Springer, 2005.
[7] S. Dye, Heuristics for a tree covering problem, in: Proceedings of the 40th Annual Conference of Operational Research Society of New Zealand, 2005,

206–215.
[8] H. Erdogmus, L. Williams, The economics of software development by pair programmers, The Engineering Economist 48 (2003) 283–319.
[9] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.

[10] F. Hadlock, Minimum spanning forests of bounded trees, in: Southeastern Conf. on Combinatorics, Graph Theory and Computing, 1974.
[11] S. Kundu, J. Misra, A tree partitioning algorithm, SIAM Journal on Computing 6 (1977) 151–154.
[12] A. Wood, W. Kleb, Extreme programming in a research environment, Technical Report, NASA Langley Research Center, Hampton, VA, 2002.

	On a labeling problem in graphs
	Introduction
	Application in pair programming
	The underlying graph
	Assigning pairs of developers to nodes

	Labeling trees
	Labeling trees for k = 2, t = 3
	Labeling trees for higher values of k and t
	A polynomial algorithm for fixed t geq 1
	Complexity

	Labeling general graphs for k = 2, t = 3
	Graphs with Δ leq 3
	Graphs with Δ = 4
	 G has one or more triangles: covering a triangle by the same label
	 G has no triangles

	Future research directions
	Acknowledgements
	References

