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Abstract

Let G = (V , E) be a graph. A set S ⊆ V is a dominating set of G if every vertex not in S is adjacent with some vertex in S. The
domination number of G, denoted by �(G), is the minimum cardinality of a dominating set of G. A set S ⊆ V is a paired-dominating
set of G if S dominates V and 〈S〉 contains at least one perfect matching. The paired-domination number of G, denoted by �p(G),
is the minimum cardinality of a paired-dominating set of G. In this paper, we provide a constructive characterization of those trees
for which the paired-domination number is twice the domination number.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G=(V , E) be a graph with vertex set V and edge set E. The open neighborhood of a vertex v ∈ V is N(v)={u ∈
V |uv ∈ E}, the set of vertices adjacent to v. The closed neighborhood of v is N [v] = N(v) ∪ {v}. For S ⊆ V , the
open neighborhood of S is defined by N(S) = ∪v∈S N(v), and the closed neighborhood of S by N [S] = N(S) ∪ S.
The private neighborhood PN(v, S) of v ∈ S is defined by PN(v, S) = N(v) − N [S − {v}]. The private neighborhood
PN(S′, S) of S′ ⊂ S is defined by PN(S′, S) = N(S′) − N [S − S′]. The subgraph of G induced by the vertices in S is
denoted by 〈S〉. For X, Y ⊆ V, if X dominates Y, we write X 	 Y , or X 	 G if Y = V , or X 	 y if Y = {y}.

A set S ⊆ V is a dominating set of G if every vertex not in S is adjacent to some vertex in S. (That is, N [S] = V .)
The domination number of G, denoted by �(G), is the minimum cardinality of a dominating set of G. A dominating
set of G of cardinality �(G) is called a �-set of G (similar notation is used for the other domination parameters).

Let G = (V , E) be a graph without isolated vertices. A set S ⊆ V is a paired-dominating set of G if S dominates
V and 〈S〉 contains at least one perfect matching M. If an edge uv ∈ M , we say that u and v are paired in S. The
paired-domination number of G, denoted by �p(G), is the minimum cardinality of a paired-dominating set of G. Paired-
domination in graphs was introduced by Haynes and Slater [7]. Recall that a dominating set S ⊆ V of G is a total
dominating set if 〈S〉 contains no isolated vertices. The total domination number of G, denoted by �t(G), is the minimum
cardinality of a total dominating set of G. Clearly, �t(G)��p(G) for every connected graph with order at least two.
Total domination in graphs was introduced by Cockayne et al. [1]. The concept of domination in graphs, with its many
variations, is well studied in graph theory (see [4,5]).
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An area of research in domination of graphs that has received considerable attention is the study of classes of
graphs with equal domination parameters. For any two graph theoretic parameters � and �, G is called a (�, �)-graph
if �(G) = �(G). The class of (�, i)-trees, that is, trees with equal domination and independent domination numbers
was characterized in [2]. In [3], the authors provided a constructive characterization of trees with equal independent
domination and restrained domination numbers, and a constructive characterization of trees with equal independent
domination and weak domination numbers is also given. In [9], the authors characterized those trees with equal
domination and paired-domination numbers. In [8], those trees with equal domination and total domination numbers
were characterized. In [6], the authors provided a constructive characterization of the trees T for which (1) �(T ) ≡ i(T );
(2) �(T ) ≡ �t(T ); and (3) �(T ) ≡ �p(T ).

Clearly, if G has a paired-dominating set, then �p(G) is even. For the domination and paired-domination numbers,
we have

Fact 1 (Haynes and Slater [7]). Let G be a graph without isolated vertices. Then, G has a paired-dominating set, and
�p(G)�2�(G).

In this paper, we give a constructive characterization of trees for which the paired-domination number is twice the
domination number.

2. Main result

Let T = (V , E) be a tree with vertex set V and edge set E. A vertex of T is said to be remote if it is adjacent to a
leaf. The set of leaves of T is denoted by L(T ). In this paper, we use Tv to denote the subtree of T − uv containing v

for uv ∈ E(T ). P� represents a path with l vertices. |T | denotes the order of a tree T.
We begin with a proposition about the paired-dominating set of a tree T.

Proposition 2. If S is a �p-set of a tree T, then 〈S〉 contains a unique perfect matching.

Proof. Let H be a component of 〈S〉, then H has a perfect matching. So |H | is even. To prove that 〈S〉 contains a
unique perfect matching, it is enough to show that H has a unique perfect matching. We prove H has a unique perfect
matching by induction on 2n, the order of H. If n = 1, then H�K2, the result is clearly true. Let n > 1 and assume
that the result is true for every tree H ′ of order < 2n, where H ′ is a tree containing a perfect matching. Let H be a tree
of order 2n containing a perfect matching M. Let u be a leaf of H and v be the remote vertex such that uv ∈ E(H).
Then uv ∈ M and u is the unique leaf adjacent to v in H. Let H1, H2, . . . , Hk be the components of H − {u, v}. Then
every Hi has a perfect matching and |Hi | < 2n. By inductive hypothesis, Hi has a unique perfect matching Mi . So,
M = (∪k

i=1 Mk) ∪ {u, v} is the unique perfect matching of H. The result follows. �

Let S be a paired-dominating set of a tree T. By Proposition 2, S has a unique perfect matching M. So, for any vertex
v ∈ S, the paired vertex of v is unique. We denote the unique paired vertex of v ∈ S by v̄.

To state the characterization of (2�, �p)-trees, we introduce three types of operations.
Type-1 operation: Attach a path P1 to a vertex v of a tree T, where v is in a �-set of T and v /∈ L(T ). (As shown in

Fig. 1(a).)
Type-2 operation: Attach a path P2 to a vertex v of a tree T, where v is a vertex such that for every �p-set S of T

containing v, PN(v, S) = ∅ and PN({v, v̄}, S) �= ∅. (As shown in Fig. 1(b).)
Type-3 operation: Attach a path P3 to a vertex v of a tree T, where either v is a vertex of a �-set of T such that

v /∈ L(T ) and, for every �p-set S of T, PN({v, v̄}, S) �= ∅ if v̄ /∈ L(T ), or v is a vertex such that for every �p-set S of T
containing v, v̄ /∈ N(S − {v, v̄}) if PN({v, v̄}, S) = ∅. (As shown in Fig. 1(c).)

Let Jp be the family of trees for which the paired-domination number is twice the domination number, that is

Jp = {T : �p(T ) = 2�(T )}.
We define the family Fp as:
Fp = {T : T is obtained from P3 by a finite sequence of operations of Type-1, Type-2 or Type-3}.
We shall prove that
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Fig. 1. The k-�t -critical graphs.

Theorem 3.

Jp = Fp ∪ {P2}.

3. The proof of Theorem 3

We begin with some lemmas.

Lemma 4 (Haynes and Slater [7]). If G is a graph with �p(G) = 2�(G), then every �-set of G is an i-set of G, where
an i-set of G is an independent set of G with minimum order over all of maximal independent sets of G.

Lemma 5 (Haynes and Slater [7], Qiao et al. [9]). If v is a remote vertex of a tree T, then for every paired-dominating
set S of T, v ∈ S.

Lemma 6. Let T be a tree with �p(T ) = 2�(T ) and X be a �-set of T. Then, for every v ∈ X, PN(v, X) �= ∅.

Proof. By contradiction. Suppose that there is a vertex v ∈ X such that PN(v, S) = ∅. Let u ∈ N(v). By Lemma 4, X
is an i-set of T. So u /∈ X. Then u must be dominated by another vertex in X, say w. Let X′ = (X − {v}) ∪ {u}, then X′
is a �-set of T. But u and w are adjacent in X′, contradicts the fact that X′ is an i-set of T. Therefore, for every v ∈ X,
PN(v, X) �= ∅. �

Lemma 7. If T is a tree with |T |�3, then T has a �-set containing no leaves of T.

Proof. Let X be any �-set of T. If X ∩ L(T ) = ∅, then the result follows. If X ∩ L(T ) �= ∅, let L′(T ) = X ∩ L(T ) and
R′(T ) be the set of the remote vertices corresponding to L′(T ), then R′(T ) ∩ X = ∅. Let X′ = (X − L′(T )) ∪ R′(T ).
Since |R′(T )|� |L′(T )| and X is a �-set of T, X′ is a �-set of T containing no leaves of T. The result follows. �

In the following, a �-set X of a tree T with |T |�3 always means that X contains no leaves of T unless otherwise
stated.

Lemma 8. If T is a tree with �p(T ) = 2�(T ) and |T |�3, then T has a unique �-set containing no leaves of T.

Proof. By induction on n, the order of the tree T. If n = 3, then T = P3 and the result is clearly true. Let n > 3 and
assume that for all trees T ′ ∈ Jp of order 3�n′ < n, T ′ has a unique �-set. Let T ∈ Jp be a tree of order n and let
v0v1v2 · · · vl be a longest path in T.

Case 1: d(v1)�3. Then there exists a leaf u �= v0 adjacent to v1. Let T ′ = T − {u}. Clearly, every �-set of T is a
dominating set of T ′. By Lemma 7, every �-set X′ of T ′ contains v1 and so X′ is a dominating set of T, too. By Lemma
5, every �p-set S′ of T ′ contains v1 and so S′ is a �p-set of T. Thus, �p(T

′) = �p(T ) = 2�(T ) = 2�(T ′). By inductive
hypothesis, T ′ has a unique �-set. It follows that T has a unique �-set.

Case 2: d(v1) = 2.
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Case 2.1: d(v2)�3. We claim that v2 is not a remote vertex of T. Otherwise, suppose that u is a leaf adjacent to
v2. By Lemma 7, T has a �-set X such that {v1, v2} ⊂ X. Contradicts X is an i-set of T. Thus, there exists a remote
vertex u2 /∈ {v1, v3} such that v2u2 ∈ E(T ), let u1 be the leaf adjacent to u2. Let T ′ = Tv2 be the subtree of T − v2u2
containing v2. Let X be any �-set of T. Then v1, u2 ∈ X. So, v2 /∈ PN(u2, X), hence X−{u2} 	 T ′. Thus �(T ′)��(T )−1.
Clearly, �(T )��(T ′) + 1. It follows that �(T ) = �(T ′) + 1. Since �p(T )��p(T

′) + 2 and �p(T ) = 2�(T ), we have
2�(T ′)��p(T

′)��p(T ) − 2 = 2(�(T ) − 1) = 2�(T ′). Consequently, �p(T
′) = 2�(T ′) and T ′ ∈ Jp. By inductive

hypothesis, T ′ has a unique �-set X′. It follows that X = X′ ∪ {u2} is the unique �-set of T.
Case 2.2: d(v2)= 2. We claim that d(v3)�2. Suppose to the contrary that d(v3)= 1, then T �P4. It is easy to check

that �p(P4) = �(P4) = 2, a contradiction with �p(T ) = 2�(T ). Let T ′ = Tv3 be the subtree of T − v2v3 containing v3.
Let X be any �-set of T. Then, by Lemma 7, v1 ∈ X. By Lemma 4, v2 /∈ X. So X − {v1} 	 T ′ and �(T ′)��(T ) − 1.
Clearly, �(T )��(T ′) + 1. It follows that �(T ) = �(T ′) + 1. Since �p(T )��p(T

′) + 2 and �p(T ) = 2�(T ), we have
2�(T ′)��p(T

′)��p(T ) − 2 = 2(�(T ) − 1) = 2�(T ′). Consequently, �p(T
′) = 2�(T ′) and T ′ ∈ Jp. If |T ′| = 2, then

T = P5. The result is clearly true. Henceforth, assume that |T ′|�3. By inductive hypothesis, T ′ has a unique �-set X′.
If v3 /∈ L(T ′), then, clearly, X′ ∪ {v1} is a unique �-set of T.
If v3 ∈ L(T ′), then we claim that T ′ has no minimum dominating set X′′ such that X′′ ∩ L(T ′) = {v3}. Suppose to

the contrary that X′′ is a minimum dominating set of T ′ such that X′′ ∩ L(T ′) = {v3}. By Lemma 4, X′′ is an i-set of
G. Let M ′′ be a maximum matching in the bipartite subgraph of T ′ with partite sets X′′ and NT ′(X′′) and with edge set
all edges of T ′ incident with vertices in X′′ (note that this subgraph is not necessarily induced in T ′ since there may
be edges in T ′ joining vertices of NT ′(X′′)). Let S′′ be the set of all vertices saturated by M ′′. (Note that S′′ paired
dominates T ′, and |S′′|�2|X′′| = 2�(T ′).) Since �p(T

′) = 2�(T ′) and |X′′| = �(T ′), |S′′| = �p(T
′) and X′′ ⊆ S′′. Since

v3 ∈ L(T ′), v3v4 ∈ M ′′. If v5 /∈ S′′, assume that v5 is dominated by v′ ∈ X′′ and v′v′′ ∈ M ′′, then (S′′ − {v′′}) ∪ {v5}
is a �p-set of T ′, too. Hence we can always extend X′′ to a �p-set S′ of T ′ such that v3, v4 are paired in S′ and v5 ∈ S′.
Let S = (S′ − {v3, v4}) ∪ {v1, v2}. Then S is a PDS of T with cardinality 2� − 2, contradicts �p(T ) = 2�(T ). It follows
that X = X′ ∪ {v1} is the unique �-set of T. �

Lemma 9. Let T ∈ Jp with |T |�3 and X be the unique �-set of T containing no leaves. Then X is contained in every
�p-set of T.

Proof. By induction on n, the order of tree T. If n = 3, then T = P3 ∈ Jp, the result is clearly true. Let n > 3 and
assume that the result is true for all trees T ′ of order 3�n′ < n. Let T ∈ Jp be a tree of order n and let v0v1 · · · vl be a
longest path in T.

Case 1: d(v1)�3. Then there exists a leaf u �= v0 such that uv1 ∈ E(T ). Let T ′ = T − {u}. As shown in Lemma 8,
T ′ ∈ Jp, and T and T ′ have the same unique �-set, say X. By inductive hypothesis, every �p-set S′ of T ′ contains X.
Let S be a �p-set of T. If u /∈ S, then S is a �p-set of T ′, too, hence X ⊂ S. If u ∈ S, then v0 /∈ S. So (S − {u}) ∪ {v0} is
a �p-set of T ′, hence X ⊂ (S − {u}) ∪ {v0}. Since v0, u /∈ X, X ⊂ S. It follows that every �p-set of T contains X.

Case 2: d(v1) = 2.
Case 2.1: d(v2)�3. As proved in Lemma 8, v2 is not a remote vertex. Let u2 �= v1 be a remote vertex adjacent to

v2 and u1 be the leaf adjacent to u2. Let T ′ = Tv2 be the subtree of T − u2v2 containing v2. As discussed in Lemma 8,
�p(T

′) = 2�(T ′) = 2(�(T ) − 1) = �p(T ) − 2, and T ′ ∈ Jp. Let X′ be the unique �-set of T ′. Then X = X′ ∪ {u2} is
the unique �-set of T. By inductive hypothesis, for every �p-set S′ of T ′, X′ ⊂ S′. Let S be any �p-set of T. By Lemma
5, v1 ∈ S and u2 ∈ S. If ū2 = u1, then S − {u1, u2} is a �p-set of T ′. So X′ ⊂ S − {u1, u2}, and X = X′ ∪ {u2} ⊂ S. If
ū2 = v2, then v̄1 = v0 and S − {u2, v0} is a �p-set of T ′. So X′ ⊂ S − {u2, v0}, and X = X′ ∪ {u2} ⊂ S.

Case 2.2: d(v2)=2. As discussed in Lemma 8, we have d(v3)�2. Let T ′ =Tv3 be the subtree of T −v2v3 containing
v3. As shown in Lemma 8, �p(T

′) = 2�(T ′) = 2(�(T ) − 1) = �p(T ) − 2, and T ′ ∈ Jp. Let X′ be the unique �-set of
T ′. Then X = X′ ∪ {v1} is the unique �-set of T. By inductive hypothesis, for every �p-set S′ of T ′, X′ ⊂ S′. Let S be
any �p-set of T, by Lemma 5, v1 ∈ S. In the following, we prove that X ⊂ S.

If v̄1 = v0, then S − {v0, v1} is a �p-set of T ′. So X′ ⊂ S − {v0, v1} and X = X′ ∪ {v1} ⊂ S.
If v̄1 = v2 and v3 /∈ PN(v2, S), then S − {v1, v2} is a �p-set of T ′. So X′ ⊂ S − {v1, v2} and X = X′ ∪ {v1} ⊂ S.
If v̄1 = v2 and v3 ∈ PN(v2, S), then none of N [v3] − {v2} are contained in S. By Lemma 5 and v3 ∈ PN(v2, S),

neither v3 is adjacent to a leaf nor v3 is adjacent to a remote vertex.

Claim A. d(v3)�3.
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Proof of Claim A. If not, then d(v3) = 2. Then v4 /∈ S since v3 ∈ PN(v2, S). Let T ′′ = T ′ − {v3}, then S − {v1, v2}
is a paired-dominating set of T ′′. So �p(T

′′)��p(T ) − 2. However, any �p-set of T ′′ can be extended to a paired-
dominating set of T by adding the vertices v1 and v2. So �p(T )��p(T

′′) + 2. Consequently, �p(T ) = �p(T
′′) + 2.

Clearly, �(T ) − 2��(T ′′)��(T ). If �(T ′′) = �(T ) − 1 = �(T ′), then �p(T ) = 2�(T ) = 2(�(T ′′) + 1) = 2�(T ′′) +
2��p(T

′′) + 2 = �p(T ). So, �p(T
′′) = 2�(T ′′). By Lemma 8, T ′′ has a unique �-set. Let X′ be the unique �-set of

T ′. Then v4 ∈ X′, and X′ is a �-set of T ′′. If v4 is not a leaf of T ′′, then X′ is the unique �-set of T ′′. Applying the
inductive hypothesis to T ′′, for any �p-set S′′ of T ′′, we have X′ ⊂ S′′.So X′ ⊂ S − {v1, v2} and v4 ∈ X′ ⊂ S,

contradicts v4 /∈ S. If v4 is a leaf of T ′′, let T ′′′ = T ′′ − {v4}, then �(T )��(T ′′′) + 2. However, for any �-set X of T,
|X ∩ {v0, v1, v2, v3, v4}|�2, so �(T ′′′)��(T )− 2. Consequently, �(T ′′′)= �(T )− 2. Clearly, �p(T )��p(T

′′′)+ 4. So,
2�(T ′′′)��p(T

′′′)��p(T )−4=2�(T )−4=2(�(T ′′′)+2)−4=2�(T ′′′). Thus, �p(T
′′′)=2�(T ′′′)=�p(T )−4. By Lemma

8, T ′′′ has a unique �-set X′′′. Applying inductive hypothesis to T ′′′, for any �p-set S′′′ of T ′′′, we have X′′′ ⊂ S′′′. We
claim that for any �p-set S′′′ of T ′′′, v5 /∈ S′′′. If not, S′′′ ∪{v1, v2} is a paired-dominating set of T, so �p(T )��p(T

′′′)+2,
contradicts �p(T ) = �p(T

′′′) + 4. Consequently, v5 /∈ X′′′. Since v3 is not adjacent to a remote vertex, v5 is not a leaf of
T. Then d(v5)�2. Let u be a vertex such that u ∈ X′′′ and u 	 v5, then u ∈ S′′′. So (S′′′ − {ū})∪ {v5} is a �p-set of T ′′′
containing v5, a contradiction. If�(T ′′) = �(T ) − 2, then �p(T ) = 2�(T ) = 2(�(T ′′) + 2) = 2�(T ′′) + 4 = �p(T

′′) + 4,
contradicts �p(T ) = �p(T

′′) + 2. The Claim follows. �

By Claim A and since neither v3 is adjacent to a leaf nor v3 is adjacent to a remote vertex, there exists a P3 with
vertex set {u1, u2, u3} such that u3v3 ∈ E(T ). By Lemma 5, u2 ∈ S. Since u3 ∈ N [v3] − {v2}, u3 /∈ S. So ū2 = u1. Let
T ′′ = Tv3 be the subtree of T −u3v3 containing v3. Clearly, T ′′�T ′. So, �p(T

′′)= 2�(T ′′)= 2(�(T )− 1)= �p(T )− 2,
and T ′′ ∈ Jp. Let X′′ be the unique �-set of T ′′. Then X = X′′ ∪ {u2} is the unique �-set of T. By inductive hypothesis,
for every �p-set S′′ of T ′′, X′′ ⊂ S′′. Since S − {u1, u2} is a �p-set of T ′′, X′′ ⊂ S − {u1, u2}. So, X = X′′ ∪ {u2} ⊂ S.

�

Let T ∈ Jp, X be the unique �-set of T and S be a �p-set of T. Then, by Lemma 9, for any u ∈ S − X, PN(u, S) = ∅.

Lemma 10. If T ′ ∈ Jp with |T ′|�3 and T is obtained from T ′ by a Type-i operation, i = 1, 2, 3, then T ∈ Jp.

Proof. Let Pi = u1u2 · · · ui be a path with vertex set {u1, u2, . . . , ui}, T ′ ∈ Jp with |T ′|�3. T is obtained from T ′ by
attaching ui to a vertex v of T ′, where v satisfies the conditions required by Type-i operation, i = 1, 2, 3. By Lemma
8, T ′ has a unique �-set X′. By Lemma 9, for every �p-set S′ of T ′, X′ ⊂ S′.

Case 1: i = 1. Then T is obtained from T ′ by attaching vertex u1 to v of T ′, where v ∈ X′. Clearly, X′ is a �-set of
T, too. So, �(T ) = �(T ′). Since v ∈ X′ ⊂ S′, S′ is a �p-set of T, too. Thus, �p(T ) = �p(T

′) = 2�(T ′) = 2�(T ). Hence,
T ∈ Jp.

Case 2: i =2. Let S′ be a �p-set of T ′ such that v ∈ S′. We claim that v /∈ X′. If not, then v̄ /∈ X′. So PN(v̄, S′)=∅. But
the Type-2 operation requires that PN(v, S′) = ∅ and PN({v, v̄}, S′) �= ∅, so we have PN(v̄, S′) �= ∅, a contradiction.
Thus, v /∈ X′ and v̄ ∈ X′. So X′ ∪ {u2} 	 T , hence �(T )��(T ′) + 1.

Claim B. �(T ) = �(T ′) + 1.

Proof of Claim B. If not, then �(T )=�(T ′). Let X be a �-set of T. Then u2 ∈ X since L(T )∩X=∅. If v /∈ PN(u2, X),
then X − {u2} is a �-set of T ′, contradicts �(T ′) = �(T ). So, v ∈ PN(u2, X). Then (X − {u2}) ∪ {v} is a �-set of T ′. If
v /∈ L(T ′), then (X − {u2}) ∪ {v} is the unique �-set of T ′. Hence X′ = (X − {u2}) ∪ {v} and v ∈ X′, a contradiction.
If v ∈ L(T ′), let X∗ = (X − {u2}) ∪ {v}, then PN(v, X∗) = ∅ in T ′ since X − {u2} 	 T ′ − {v}. By Lemma 6,
PN(v, X∗) �= ∅, a contradiction. Claim B follows. �

Claim C. �p(T ) = �p(T
′) + 2.

Proof of Claim C. Clearly, �p(T )��p(T
′) + 2. If �p(T ) �= �p(T

′) + 2, then �p(T ) = �p(T
′). Let S be a �p-set of T

with u2 ∈ S.
If v /∈ S, then ū2 =u1. If v /∈ PN(u2, S), then S−{u1, u2} is a paired-dominating set of T ′, contradicts �p(T )=�p(T

′).
If v ∈ PN(u2, S), then there exists a vertex w �= u2 such that w is adjacent to v and w /∈ S. So, S′=(S−{u1, u2})∪{v, w}



X. Hou / Discrete Mathematics 308 (2008) 3420–3426 3425

is a �p-set of T ′. Since S − {u1, u2} 	 T ′ − {v}, PN({v, w}, S′) = ∅, contradicts the conditions required by Type-2
operation.

If v ∈ S and v̄ = u2, then there exists a vertex w �= u2 such that w is adjacent to v and w /∈ S (otherwise, S − {u2, v}
is a paired-dominating set of T ′, contradicts �p(T ) = �p(T

′)). So, S′ = (S − {u2}) ∪ {w} is a �p-set of T ′. By Lemma
9, X′ ⊂ S′. Since v /∈ X′, PN(v, S′) = ∅. Since S − {u2} 	 T ′, PN(w, S′) = ∅. Hence PN({v, w}, S′) = ∅, contradicts
the conditions required by Type-2 operation.

If v ∈ S and v̄ �= u2, then ū2 = u1. So S − {u1, u2} is a paired-dominating set of T ′, contradicts �p(T ) = �p(T
′).

Claim C is true. �

Therefore, �p(T ) = �p(T
′) + 2 = 2�(T ′) + 2 = 2(�(T ′) + 1) = 2�(T ). Hence T ∈ Jp.

Case 3: i = 3. Clearly, �(T )��(T ′) + 1. Let X be any �-set of T. Then u2 ∈ X. If u3 /∈ X, then X − {u2} 	 T ′. So
�(T ′)��(T ) − 1. If u3 ∈ X, then (X − {u2, u3}) ∪ {v} 	 T ′. So, �(T ′)��(T ) − 2 + 1 = �(T ) − 1. Consequently,
�(T ) = �(T ′) + 1.

Clearly, �p(T )��p(T
′) + 2. Let S be any �p-set of T. By Lemma 5, u2 ∈ S. If u3 /∈ S, then ū2 = u1. Hence

S − {u1, u2} is a paired-dominating set of T ′. So �p(T
′)��p(T ) − 2. Now assume that u3 ∈ S. If ū2 = u1, then

ū3 = v. Hence, PN(v, S) �= ∅ (otherwise, S −{u1, v} is a paired-dominating set of T, contradicts S is a �p-set of T). Let
w ∈ PN(v, S), then (S −{u1, u2, u3})∪ {w} is a paired-dominating set of T ′. So, �p(T

′)��p(T )− 3 + 1 = �p(T )− 2.

If ū2 = u3 and v /∈ PN(u3, S),then S − {u2, u3} is a paired-dominating set of T ′. So �p(T
′)��p(T ) − 2. Consequently,

�p(T ) = �p(T
′) + 2.

If ū2 =u3 and v ∈ PN(u3, S), we claim that �p(T )=�p(T
′)+2. If not, then �p(T )=�p(T

′). Then there exists a vertex
w ∈ N(v) such that w �= u3 and w /∈ S (otherwise, v /∈ PN(u3, S), a contradiction). Thus, S′ = (S − {u2, u3}) ∪ {v, w}
is a �p-set of T ′. By Lemma 9, X′ ⊂ S′. Since S′ − {v, w} = S − {u2, u3} 	 T ′ − {v}, PN({v, w}, S′) = ∅ and
w ∈ N(S′ − {v, w}). So we must be in the first case of the Type-3 operation, that is v ∈ X′ and w /∈ X′. Since v ∈ X′
and v /∈ S, neither v is a leaf nor v is a remote vertex in T ′. So w /∈ L(T ′). Then the Type-3 operation requires that
PN({v, w}, S′) �= ∅, a contradiction.

Therefore, �p(T ) = �p(T
′) + 2 = 2�(T ′) + 2 = 2�(T ). Hence T ∈ Jp. �

Lemma 11.

Fp ⊆ Jp.

Proof. Note that P3 ∈ Jp. Let T ∈ Fp be a tree obtained from P3 by a number of operations of Type-1, Type-2, or
Type-3. By Lemma 10, we can easily prove that T ∈ Jp by induction on the number of operations required to construct
the tree T. �

Lemma 12.

Jp − {P2} ⊆ Fp.

Proof. Let T ∈ Jp. If |T | < 3, then T = P2. If |T |�3, we prove that T ∈ Fp by induction on n, the order of the tree
T. If n = 3, then T = P3 ∈ Fp. Assume that the result is true for all trees T ′ ∈ Jp of order 3�n′ < n. Let T ∈ Jp be
a tree of order n and let v0v1v2 · · · vl be a longest path in T. By Lemma 8, T has a unique �-set X containing no leaves
of T. By Lemma 7, v1 ∈ X.

Case 1: d(v1)�3. Then there exists a leaf u such that u �= v0 and uv1 ∈ E(T ). Let T ′ = T − {u}. As shown in
Lemma 8, �p(T

′) = �p(T ) = 2�(T ) = 2�(T ′). Hence, T ′ ∈ Jp. By the inductive hypothesis, T ′ ∈ Fp. Hence T is
obtained from T ′ by a Type-1 operation. By Lemma 10, T ∈ Fp.

Case 2: d(v1) = 2.
Case 2.1: d(v2)�3. As shown in Lemma 8, v2 is not a remote vertex of T, and v2 is adjacent to a remote vertex

u2 �= v1, v3. Let T ′ = Tv2 be the subtree of T − v2u2 containing v2. As discussed in Lemma 8, �p(T
′) = �p(T ) − 2 =

2�(T ) − 2 = 2�(T ′), and T ′ ∈ Jp. By inductive hypothesis, T ′ ∈ Fp. We claim that v2 is a vertex of T ′ satisfying the
conditions required by Type-2 operation. Let S′ be a �p-set of T ′ with v2 ∈ S′. By Lemma 8, T ′ has a unique �-set X′.
By Lemma 9, X′ ⊂ S′. By Lemma 7, v1 ∈ X′ ⊂ S′. By Lemma 4, v2 /∈ X′. If v̄2 = v1, then v0 ∈ PN({v1, v2}, S′). So
PN({v1, v2}, S′) �= ∅. If v̄2 =v3, then v̄1 =v0. So, PN({v2, v3}, S′) �= ∅ (otherwise, S′ −{v0, v3} is a paired-dominating
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set of T ′, contradicts S′ is a �p-set of T ′). Since X′ ⊂ S′ and v2 /∈ X′, PN(v2, S
′) = ∅. The claim is true. Hence T is

obtained from T ′ by a Type-2 operation. By Lemma 10, T ∈ Fp.
Case 2.2: d(v2) = 2. Let T ′ = Tv3 be the subtree of T − v2v3 containing v3. As discussed in Lemma 8, �p(T

′) =
�p(T ) − 2, �(T ′) = �(T ) − 1, and T ′ ∈ Jp. By inductive hypothesis, T ′ ∈ Fp. We claim that v3 is a vertex of T ′
satisfying the conditions required by Type-3 operation. Let S′ be a �p-set of T ′ with v3 ∈ S′. By Lemma 8, T ′ has a
unique �-set X′. By Lemma 9, X′ ⊂ S′.

If v3 ∈ X′, then v3 is not a leaf of T ′. So d(v3)�3. Since T ′ ∈ Jp, by Lemma 4, every neighbor of v3 in T ′ is not
contained in X′. Let u be the paired vertex of v3 in S′. Then u is not a remote vertex of T ′. If u �= v4, then either u is
a leaf or u is adjacent to a remote vertex. If u is not a leaf, we prove that PN({v3, u}, S′) �= ∅. Let u1 be the remote
vertex which is adjacent to u and u2 be the leaf which is adjacent to u1 in T ′. By Lemma 5, u1 ∈ S′ and ū1 = u2
since u = v̄3. If PN({v3, u}, S′) = ∅, then S′ − {v3, u2} is a paired-dominating set of T ′, contradicts S′ is a �p-set of
T ′. If u = v4 and v4 is not a leaf of T, we claim that PN({v3, v4}, S′) �= ∅. If there is a leaf w ∈ N(v3) − {v2, v4},
then w ∈ PN({v3, v4}, S′). So PN({v3, v4}, S′) �= ∅. If there are no such leaves, let w ∈ N(v3) − {v2, v4} and Tw

be the subtree of T − wv3 containing w, then Tw = P3 since w /∈ X′. Let Tw = ww2w1, then w2 ∈ X′ ⊂ S′. Hence
w /∈ PN({v3, v4}, S′). If PN({v3, v4}, S′)=∅ and there is a vertex x ∈ N(v4)−{v3} such that x ∈ S′, then S′ − {v3, v4}
is a paired-dominating set of T ′ if w̄2 = w, or S′ − {v3, v4, w1} ∪ {w} is a paired-dominating set of T ′ if w̄2 = w1.
Contradicts S′ is a �p-set of T ′. If PN({v3, v4}, S′)=∅ and there is no vertex x ∈ N(v4)−{v3} such that x ∈ S′, then, for
every x ∈ N(v4)−{v3}, x /∈ X′. Let y ∈ X′ ⊂ S′ such that y 	 x. Then (S′ − {v3, v4, ȳ})∪ {x} is a paired-dominating
set of T ′ if w̄2 = w, or (S′ − {v3, v4, ȳ, w1}) ∪ {x, w} is a paired-dominating set of T ′ if w̄2 = w1. Contradicts S′ is a
�p-set of T ′. Therefore, PN({v3, v4}, S′) �= ∅.

If v3 /∈ X′, then v̄3 ∈ X′. If v̄3 ∈ N(S′ − {v3, v̄3}) and PN({v3, v̄3}, S′) = ∅, then (S′ − {v3, v̄3}) ∪ {v1, v2} is
a paired-dominating set of T. So, �p(T )��p(T

′), contradicts �p(T ) = �p(T
′) + 2. Hence, v̄3 /∈ N(S′ − {v3, v̄3}) or

PN({v3, v̄3, S
′}) �= ∅.

The claim is true. Thus, T is obtained from T ′ by a Type-3 operation. By Lemma 10, T ∈ Fp. The proof is
completed. �

Theorem 3 follows as an immediate consequence of Lemmas 11 and 12.
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