Note

# A characterization of $\left(2 \gamma, \gamma_{\mathrm{p}}\right)$-trees ${ }^{2 \gamma}$ 

Xinmin Hou<br>Department of Mathematics, University of Science and Technology of China Hefei, Anhui 230026, PR China

Received 28 December 2005; received in revised form 29 April 2007; accepted 21 June 2007
Available online 2 August 2007


#### Abstract

Let $G=(V, E)$ be a graph. A set $S \subseteq V$ is a dominating set of $G$ if every vertex not in $S$ is adjacent with some vertex in $S$. The domination number of $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. A set $S \subseteq V$ is a paired-dominating set of $G$ if $S$ dominates $V$ and $\langle S\rangle$ contains at least one perfect matching. The paired-domination number of $G$, denoted by $\gamma_{\mathrm{p}}(G)$, is the minimum cardinality of a paired-dominating set of $G$. In this paper, we provide a constructive characterization of those trees for which the paired-domination number is twice the domination number.


© 2007 Elsevier B.V. All rights reserved.

Keywords: Domination; Paired-domination; Tree

## 1. Introduction

Let $G=(V, E)$ be a graph with vertex set $V$ and edge set $E$. The open neighborhood of a vertex $v \in V$ is $N(v)=\{u \in$ $V \mid u v \in E\}$, the set of vertices adjacent to $v$. The closed neighborhood of $v$ is $N[v]=N(v) \cup\{v\}$. For $S \subseteq V$, the open neighborhood of $S$ is defined by $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of $S$ by $N[S]=N(S) \cup S$. The private neighborhood $\mathrm{PN}(v, S)$ of $v \in S$ is defined by $\mathrm{PN}(v, S)=N(v)-N[S-\{v\}]$. The private neighborhood $\mathrm{PN}\left(S^{\prime}, S\right)$ of $S^{\prime} \subset S$ is defined by $\operatorname{PN}\left(S^{\prime}, S\right)=N\left(S^{\prime}\right)-N\left[S-S^{\prime}\right]$. The subgraph of $G$ induced by the vertices in $S$ is denoted by $\langle S\rangle$. For $X, Y \subseteq V$, if $X$ dominates $Y$, we write $X \succ Y$, or $X \succ G$ if $Y=V$, or $X \succ y$ if $Y=\{y\}$.

A set $S \subseteq V$ is a dominating set of $G$ if every vertex not in $S$ is adjacent to some vertex in $S$. (That is, $N[S]=V$.) The domination number of $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. A dominating set of $G$ of cardinality $\gamma(G)$ is called a $\gamma$-set of $G$ (similar notation is used for the other domination parameters).
Let $G=(V, E)$ be a graph without isolated vertices. A set $S \subseteq V$ is a paired-dominating set of $G$ if $S$ dominates $V$ and $\langle S\rangle$ contains at least one perfect matching $M$. If an edge $u v \in M$, we say that $u$ and $v$ are paired in $S$. The paired-domination number of $G$, denoted by $\gamma_{\mathrm{p}}(G)$, is the minimum cardinality of a paired-dominating set of $G$. Paireddomination in graphs was introduced by Haynes and Slater [7]. Recall that a dominating set $S \subseteq V$ of $G$ is a total dominating set if $\langle S\rangle$ contains no isolated vertices. The total domination number of $G$, denoted by $\gamma_{\mathrm{t}}(G)$, is the minimum cardinality of a total dominating set of $G$. Clearly, $\gamma_{t}(G) \leqslant \gamma_{p}(G)$ for every connected graph with order at least two. Total domination in graphs was introduced by Cockayne et al. [1]. The concept of domination in graphs, with its many variations, is well studied in graph theory (see [4,5]).

[^0]An area of research in domination of graphs that has received considerable attention is the study of classes of graphs with equal domination parameters. For any two graph theoretic parameters $\lambda$ and $\mu, G$ is called a $(\lambda, \mu)$-graph if $\lambda(G)=\mu(G)$. The class of $(\gamma, i)$-trees, that is, trees with equal domination and independent domination numbers was characterized in [2]. In [3], the authors provided a constructive characterization of trees with equal independent domination and restrained domination numbers, and a constructive characterization of trees with equal independent domination and weak domination numbers is also given. In [9], the authors characterized those trees with equal domination and paired-domination numbers. In [8], those trees with equal domination and total domination numbers were characterized. In [6], the authors provided a constructive characterization of the trees $T$ for which (1) $\gamma(T) \equiv i(T)$; (2) $\gamma(T) \equiv \gamma_{\mathrm{t}}(T)$; and (3) $\gamma(T) \equiv \gamma_{\mathrm{p}}(T)$.

Clearly, if $G$ has a paired-dominating set, then $\gamma_{p}(G)$ is even. For the domination and paired-domination numbers, we have

Fact 1 (Haynes and Slater [7]). Let G be a graph without isolated vertices. Then, $G$ has a paired-dominating set, and $\gamma_{\mathrm{p}}(G) \leqslant 2 \gamma(G)$.

In this paper, we give a constructive characterization of trees for which the paired-domination number is twice the domination number.

## 2. Main result

Let $T=(V, E)$ be a tree with vertex set $V$ and edge set $E$. A vertex of $T$ is said to be remote if it is adjacent to a leaf. The set of leaves of $T$ is denoted by $L(T)$. In this paper, we use $T_{v}$ to denote the subtree of $T-u v$ containing $v$ for $u v \in E(T) . P_{\ell}$ represents a path with $l$ vertices. $|T|$ denotes the order of a tree $T$.
We begin with a proposition about the paired-dominating set of a tree $T$.

## Proposition 2. If $S$ is a $\gamma_{p}$-set of a tree $T$, then $\langle S\rangle$ contains a unique perfect matching.

Proof. Let $H$ be a component of $\langle S\rangle$, then $H$ has a perfect matching. So $|H|$ is even. To prove that $\langle S\rangle$ contains a unique perfect matching, it is enough to show that $H$ has a unique perfect matching. We prove $H$ has a unique perfect matching by induction on $2 n$, the order of $H$. If $n=1$, then $H \cong K_{2}$, the result is clearly true. Let $n>1$ and assume that the result is true for every tree $H^{\prime}$ of order $<2 n$, where $H^{\prime}$ is a tree containing a perfect matching. Let $H$ be a tree of order $2 n$ containing a perfect matching $M$. Let $u$ be a leaf of $H$ and $v$ be the remote vertex such that $u v \in E(H)$. Then $u v \in M$ and $u$ is the unique leaf adjacent to $v$ in $H$. Let $H_{1}, H_{2}, \ldots, H_{k}$ be the components of $H-\{u, v\}$. Then every $H_{i}$ has a perfect matching and $\left|H_{i}\right|<2 n$. By inductive hypothesis, $H_{i}$ has a unique perfect matching $M_{i}$. So, $M=\left(\cup_{i=1}^{k} M_{k}\right) \cup\{u, v\}$ is the unique perfect matching of $H$. The result follows.

Let $S$ be a paired-dominating set of a tree $T$. By Proposition $2, S$ has a unique perfect matching $M$. So, for any vertex $v \in S$, the paired vertex of $v$ is unique. We denote the unique paired vertex of $v \in S$ by $\bar{v}$.

To state the characterization of $\left(2 \gamma, \gamma_{\mathrm{p}}\right)$-trees, we introduce three types of operations.
Type-1 operation: Attach a path $P_{1}$ to a vertex $v$ of a tree $T$, where $v$ is in a $\gamma$-set of $T$ and $v \notin L(T)$. (As shown in Fig. 1(a).)

Type-2 operation: Attach a path $P_{2}$ to a vertex $v$ of a tree $T$, where $v$ is a vertex such that for every $\gamma_{\mathrm{p}}$-set $S$ of $T$ containing $v, \operatorname{PN}(v, S)=\emptyset$ and $\operatorname{PN}(\{v, \bar{v}\}, S) \neq \emptyset$. (As shown in Fig. 1(b).)
Type-3 operation: Attach a path $P_{3}$ to a vertex $v$ of a tree $T$, where either $v$ is a vertex of a $\gamma$-set of $T$ such that $v \notin L(T)$ and, for every $\gamma_{\mathrm{p}}$-set $S$ of $T, \operatorname{PN}(\{v, \bar{v}\}, S) \neq \emptyset$ if $\bar{v} \notin L(T)$, or $v$ is a vertex such that for every $\gamma_{\mathrm{p}}$-set $S$ of $T$ containing $v, \bar{v} \notin N(S-\{v, \bar{v}\})$ if $\operatorname{PN}(\{v, \bar{v}\}, S)=\emptyset$. (As shown in Fig. 1(c).)

Let $\mathscr{J}_{\mathrm{p}}$ be the family of trees for which the paired-domination number is twice the domination number, that is

$$
\mathscr{J}_{\mathrm{p}}=\left\{T: \gamma_{\mathrm{p}}(T)=2 \gamma(T)\right\} .
$$

We define the family $\mathscr{F}_{\mathrm{p}}$ as:
$\mathscr{F}_{\mathrm{p}}=\left\{T: T\right.$ is obtained from $P_{3}$ by a finite sequence of operations of Type-1, Type-2 or Type-3 $\}$.
We shall prove that


Fig. 1. The $k-\gamma_{t}$-critical graphs.

## Theorem 3.

$$
\mathscr{J}_{\mathrm{p}}=\mathscr{F}_{\mathrm{p}} \cup\left\{P_{2}\right\} .
$$

## 3. The proof of Theorem 3

We begin with some lemmas.
Lemma 4 (Haynes and Slater [7]). If $G$ is a graph with $\gamma_{p}(G)=2 \gamma(G)$, then every $\gamma$-set of $G$ is an $i$-set of $G$, where an $i$-set of $G$ is an independent set of $G$ with minimum order over all of maximal independent sets of $G$.

Lemma 5 (Haynes and Slater [7], Qiao et al. [9]). Ifv is a remote vertex of a tree T, then for every paired-dominating set $S$ of $T, v \in S$.

Lemma 6. Let $T$ be a tree with $\gamma_{\mathrm{p}}(T)=2 \gamma(T)$ and $X$ be a $\gamma$-set of $T$. Then, for every $v \in X, \operatorname{PN}(v, X) \neq \emptyset$.
Proof. By contradiction. Suppose that there is a vertex $v \in X$ such that $\mathrm{PN}(v, S)=\emptyset$. Let $u \in N(v)$. By Lemma 4, $X$ is an $i$-set of $T$. So $u \notin X$. Then $u$ must be dominated by another vertex in $X$, say $w$. Let $X^{\prime}=(X-\{v\}) \cup\{u\}$, then $X^{\prime}$ is a $\gamma$-set of $T$. But $u$ and $w$ are adjacent in $X^{\prime}$, contradicts the fact that $X^{\prime}$ is an $i$-set of $T$. Therefore, for every $v \in X$, $\operatorname{PN}(v, X) \neq \emptyset$.

Lemma 7. If $T$ is a tree with $|T| \geqslant 3$, then $T$ has a $\gamma$-set containing no leaves of $T$.
Proof. Let $X$ be any $\gamma$-set of $T$. If $X \cap L(T)=\emptyset$, then the result follows. If $X \cap L(T) \neq \emptyset$, let $L^{\prime}(T)=X \cap L(T)$ and $R^{\prime}(T)$ be the set of the remote vertices corresponding to $L^{\prime}(T)$, then $R^{\prime}(T) \cap X=\emptyset$. Let $X^{\prime}=\left(X-L^{\prime}(T)\right) \cup R^{\prime}(T)$. Since $\left|R^{\prime}(T)\right| \leqslant\left|L^{\prime}(T)\right|$ and $X$ is a $\gamma$-set of $T, X^{\prime}$ is a $\gamma$-set of $T$ containing no leaves of $T$. The result follows.

In the following, a $\gamma$-set $X$ of a tree $T$ with $|T| \geqslant 3$ always means that $X$ contains no leaves of $T$ unless otherwise stated.

Lemma 8. If $T$ is a tree with $\gamma_{p}(T)=2 \gamma(T)$ and $|T| \geqslant 3$, then $T$ has a unique $\gamma$-set containing no leaves of $T$.
Proof. By induction on $n$, the order of the tree $T$. If $n=3$, then $T=P_{3}$ and the result is clearly true. Let $n>3$ and assume that for all trees $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$ of order $3 \leqslant n^{\prime}<n, T^{\prime}$ has a unique $\gamma$-set. Let $T \in \mathscr{J}_{\mathrm{p}}$ be a tree of order $n$ and let $v_{0} v_{1} v_{2} \cdots v_{l}$ be a longest path in $T$.

Case 1: $d\left(v_{1}\right) \geqslant 3$. Then there exists a leaf $u \neq v_{0}$ adjacent to $v_{1}$. Let $T^{\prime}=T-\{u\}$. Clearly, every $\gamma$-set of $T$ is a dominating set of $T^{\prime}$. By Lemma 7, every $\gamma$-set $X^{\prime}$ of $T^{\prime}$ contains $v_{1}$ and so $X^{\prime}$ is a dominating set of $T$, too. By Lemma 5 , every $\gamma_{\mathrm{p}}$-set $S^{\prime}$ of $T^{\prime}$ contains $v_{1}$ and so $S^{\prime}$ is a $\gamma_{\mathrm{p}}$-set of $T$. Thus, $\gamma_{\mathrm{p}}\left(T^{\prime}\right)=\gamma_{\mathrm{p}}(T)=2 \gamma(T)=2 \gamma\left(T^{\prime}\right)$. By inductive hypothesis, $T^{\prime}$ has a unique $\gamma$-set. It follows that $T$ has a unique $\gamma$-set.

Case 2: $d\left(v_{1}\right)=2$.

Case 2.1: $d\left(v_{2}\right) \geqslant 3$. We claim that $v_{2}$ is not a remote vertex of $T$. Otherwise, suppose that $u$ is a leaf adjacent to $v_{2}$. By Lemma 7, $T$ has a $\gamma$-set $X$ such that $\left\{v_{1}, v_{2}\right\} \subset X$. Contradicts $X$ is an $i$-set of $T$. Thus, there exists a remote vertex $u_{2} \notin\left\{v_{1}, v_{3}\right\}$ such that $v_{2} u_{2} \in E(T)$, let $u_{1}$ be the leaf adjacent to $u_{2}$. Let $T^{\prime}=T_{v_{2}}$ be the subtree of $T-v_{2} u_{2}$ containing $v_{2}$. Let $X$ be any $\gamma$-set of $T$. Then $v_{1}, u_{2} \in X$. So, $v_{2} \notin \operatorname{PN}\left(u_{2}, X\right)$, hence $X-\left\{u_{2}\right\} \succ T^{\prime}$. Thus $\gamma\left(T^{\prime}\right) \leqslant \gamma(T)-1$. Clearly, $\gamma(T) \leqslant \gamma\left(T^{\prime}\right)+1$. It follows that $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Since $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$ and $\gamma_{\mathrm{p}}(T)=2 \gamma(T)$, we have $2 \gamma\left(T^{\prime}\right) \geqslant \gamma_{\mathrm{p}}\left(T^{\prime}\right) \geqslant \gamma_{\mathrm{p}}(T)-2=2(\gamma(T)-1)=2 \gamma\left(T^{\prime}\right)$. Consequently, $\gamma_{\mathrm{p}}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ and $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$. By inductive hypothesis, $T^{\prime}$ has a unique $\gamma$-set $X^{\prime}$. It follows that $X=X^{\prime} \cup\left\{u_{2}\right\}$ is the unique $\gamma$-set of $T$.

Case 2.2: $d\left(v_{2}\right)=2$. We claim that $d\left(v_{3}\right) \geqslant 2$. Suppose to the contrary that $d\left(v_{3}\right)=1$, then $T \cong P_{4}$. It is easy to check that $\gamma_{p}\left(P_{4}\right)=\gamma\left(P_{4}\right)=2$, a contradiction with $\gamma_{p}(T)=2 \gamma(T)$. Let $T^{\prime}=T_{v_{3}}$ be the subtree of $T-v_{2} v_{3}$ containing $v_{3}$. Let $X$ be any $\gamma$-set of $T$. Then, by Lemma 7, $v_{1} \in X$. By Lemma 4, $v_{2} \notin X$. So $X-\left\{v_{1}\right\} \succ T^{\prime}$ and $\gamma\left(T^{\prime}\right) \leqslant \gamma(T)-1$. Clearly, $\gamma(T) \leqslant \gamma\left(T^{\prime}\right)+1$. It follows that $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Since $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$ and $\gamma_{\mathrm{p}}(T)=2 \gamma(T)$, we have $2 \gamma\left(T^{\prime}\right) \geqslant \gamma_{\mathrm{p}}\left(T^{\prime}\right) \geqslant \gamma_{\mathrm{p}}(T)-2=2(\gamma(T)-1)=2 \gamma\left(T^{\prime}\right)$. Consequently, $\gamma_{\mathrm{p}}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ and $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$. If $\left|T^{\prime}\right|=2$, then $T=P_{5}$. The result is clearly true. Henceforth, assume that $\left|T^{\prime}\right| \geqslant 3$. By inductive hypothesis, $T^{\prime}$ has a unique $\gamma$-set $X^{\prime}$. If $v_{3} \notin L\left(T^{\prime}\right)$, then, clearly, $X^{\prime} \cup\left\{v_{1}\right\}$ is a unique $\gamma$-set of $T$.
If $v_{3} \in L\left(T^{\prime}\right)$, then we claim that $T^{\prime}$ has no minimum dominating set $X^{\prime \prime}$ such that $X^{\prime \prime} \cap L\left(T^{\prime}\right)=\left\{v_{3}\right\}$. Suppose to the contrary that $X^{\prime \prime}$ is a minimum dominating set of $T^{\prime}$ such that $X^{\prime \prime} \cap L\left(T^{\prime}\right)=\left\{v_{3}\right\}$. By Lemma 4, $X^{\prime \prime}$ is an $i$-set of $G$. Let $M^{\prime \prime}$ be a maximum matching in the bipartite subgraph of $T^{\prime}$ with partite sets $X^{\prime \prime}$ and $N_{T^{\prime}}\left(X^{\prime \prime}\right)$ and with edge set all edges of $T^{\prime}$ incident with vertices in $X^{\prime \prime}$ (note that this subgraph is not necessarily induced in $T^{\prime}$ since there may be edges in $T^{\prime}$ joining vertices of $N_{T^{\prime}}\left(X^{\prime \prime}\right)$ ). Let $S^{\prime \prime}$ be the set of all vertices saturated by $M^{\prime \prime}$. (Note that $S^{\prime \prime}$ paired dominates $T^{\prime}$, and $\left|S^{\prime \prime}\right| \leqslant 2\left|X^{\prime \prime}\right|=2 \gamma\left(T^{\prime}\right)$.) Since $\gamma_{\mathrm{p}}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ and $\left|X^{\prime \prime}\right|=\gamma\left(T^{\prime}\right),\left|S^{\prime \prime}\right|=\gamma_{p}\left(T^{\prime}\right)$ and $X^{\prime \prime} \subseteq S^{\prime \prime}$. Since $v_{3} \in L\left(T^{\prime}\right), v_{3} v_{4} \in M^{\prime \prime}$. If $v_{5} \notin S^{\prime \prime}$, assume that $v_{5}$ is dominated by $v^{\prime} \in X^{\prime \prime}$ and $v^{\prime} v^{\prime \prime} \in M^{\prime \prime}$, then $\left(S^{\prime \prime}-\left\{v^{\prime \prime}\right\}\right) \cup\left\{v_{5}\right\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$, too. Hence we can always extend $X^{\prime \prime}$ to a $\gamma_{\mathrm{p}}$-set $S^{\prime}$ of $T^{\prime}$ such that $v_{3}, v_{4}$ are paired in $S^{\prime}$ and $v_{5} \in S^{\prime}$. Let $S=\left(S^{\prime}-\left\{v_{3}, v_{4}\right\}\right) \cup\left\{v_{1}, v_{2}\right\}$. Then $S$ is a PDS of $T$ with cardinality $2 \gamma-2$, contradicts $\gamma_{\mathrm{p}}(T)=2 \gamma(T)$. It follows that $X=X^{\prime} \cup\left\{v_{1}\right\}$ is the unique $\gamma$-set of $T$.

Lemma 9. Let $T \in \mathscr{J}_{\mathrm{p}}$ with $|T| \geqslant 3$ and $X$ be the unique $\gamma$-set of $T$ containing no leaves. Then $X$ is contained in every $\gamma_{p}$-set of $T$.

Proof. By induction on $n$, the order of tree $T$. If $n=3$, then $T=P_{3} \in \mathscr{J}_{\mathrm{p}}$, the result is clearly true. Let $n>3$ and assume that the result is true for all trees $T^{\prime}$ of order $3 \leqslant n^{\prime}<n$. Let $T \in \mathscr{J}_{\mathrm{p}}$ be a tree of order $n$ and let $v_{0} v_{1} \cdots v_{l}$ be a longest path in $T$.

Case 1: $d\left(v_{1}\right) \geqslant 3$. Then there exists a leaf $u \neq v_{0}$ such that $u v_{1} \in E(T)$. Let $T^{\prime}=T-\{u\}$. As shown in Lemma 8, $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$, and $T$ and $T^{\prime}$ have the same unique $\gamma$-set, say $X$. By inductive hypothesis, every $\gamma_{\mathrm{p}}$-set $S^{\prime}$ of $T^{\prime}$ contains $X$. Let $S$ be a $\gamma_{p}$-set of $T$. If $u \notin S$, then $S$ is a $\gamma_{p}$-set of $T^{\prime}$, too, hence $X \subset S$. If $u \in S$, then $v_{0} \notin S$. So $(S-\{u\}) \cup\left\{v_{0}\right\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$, hence $X \subset(S-\{u\}) \cup\left\{v_{0}\right\}$. Since $v_{0}, u \notin X, X \subset S$. It follows that every $\gamma_{p}$-set of $T$ contains $X$.

Case 2: $d\left(v_{1}\right)=2$.
Case 2.1: $d\left(v_{2}\right) \geqslant 3$. As proved in Lemma 8, $v_{2}$ is not a remote vertex. Let $u_{2} \neq v_{1}$ be a remote vertex adjacent to $v_{2}$ and $u_{1}$ be the leaf adjacent to $u_{2}$. Let $T^{\prime}=T_{v_{2}}$ be the subtree of $T-u_{2} v_{2}$ containing $v_{2}$. As discussed in Lemma 8, $\gamma_{\mathrm{p}}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)=2(\gamma(T)-1)=\gamma_{\mathrm{p}}(T)-2$, and $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$. Let $X^{\prime}$ be the unique $\gamma$-set of $T^{\prime}$. Then $X=X^{\prime} \cup\left\{u_{2}\right\}$ is the unique $\gamma$-set of $T$. By inductive hypothesis, for every $\gamma_{p}$-set $S^{\prime}$ of $T^{\prime}, X^{\prime} \subset S^{\prime}$. Let $S$ be any $\gamma_{p}$-set of $T$. By Lemma $5, v_{1} \in S$ and $u_{2} \in S$. If $\bar{u}_{2}=u_{1}$, then $S-\left\{u_{1}, u_{2}\right\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. So $X^{\prime} \subset S-\left\{u_{1}, u_{2}\right\}$, and $X=X^{\prime} \cup\left\{u_{2}\right\} \subset S$. If $\bar{u}_{2}=v_{2}$, then $\bar{v}_{1}=v_{0}$ and $S-\left\{u_{2}, v_{0}\right\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. So $X^{\prime} \subset S-\left\{u_{2}, v_{0}\right\}$, and $X=X^{\prime} \cup\left\{u_{2}\right\} \subset S$.

Case 2.2: $d\left(v_{2}\right)=2$. As discussed in Lemma 8, we have $d\left(v_{3}\right) \geqslant 2$. Let $T^{\prime}=T_{v_{3}}$ be the subtree of $T-v_{2} v_{3}$ containing $v_{3}$. As shown in Lemma 8, $\gamma_{\mathrm{p}}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)=2(\gamma(T)-1)=\gamma_{\mathrm{p}}(T)-2$, and $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$. Let $X^{\prime}$ be the unique $\gamma$-set of $T^{\prime}$. Then $X=X^{\prime} \cup\left\{v_{1}\right\}$ is the unique $\gamma$-set of $T$. By inductive hypothesis, for every $\gamma_{p}$-set $S^{\prime}$ of $T^{\prime}, X^{\prime} \subset S^{\prime}$. Let $S$ be any $\gamma_{\mathrm{p}}$-set of $T$, by Lemma $5, v_{1} \in S$. In the following, we prove that $X \subset S$.

If $\bar{v}_{1}=v_{0}$, then $S-\left\{v_{0}, v_{1}\right\}$ is a $\gamma_{p}$-set of $T^{\prime}$. So $X^{\prime} \subset S-\left\{v_{0}, v_{1}\right\}$ and $X=X^{\prime} \cup\left\{v_{1}\right\} \subset S$.
If $\bar{v}_{1}=v_{2}$ and $v_{3} \notin \mathrm{PN}\left(v_{2}, S\right)$, then $S-\left\{v_{1}, v_{2}\right\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. So $X^{\prime} \subset S-\left\{v_{1}, v_{2}\right\}$ and $X=X^{\prime} \cup\left\{v_{1}\right\} \subset S$.
If $\bar{v}_{1}=v_{2}$ and $v_{3} \in \operatorname{PN}\left(v_{2}, S\right)$, then none of $N\left[v_{3}\right]-\left\{v_{2}\right\}$ are contained in $S$. By Lemma 5 and $v_{3} \in \operatorname{PN}\left(v_{2}, S\right)$, neither $v_{3}$ is adjacent to a leaf nor $v_{3}$ is adjacent to a remote vertex.

Claim A. $d\left(v_{3}\right) \geqslant 3$.

Proof of Claim A. If not, then $d\left(v_{3}\right)=2$. Then $v_{4} \notin S$ since $v_{3} \in \operatorname{PN}\left(v_{2}, S\right)$. Let $T^{\prime \prime}=T^{\prime}-\left\{v_{3}\right\}$, then $S-\left\{v_{1}, v_{2}\right\}$ is a paired-dominating set of $T^{\prime \prime}$. So $\gamma_{p}\left(T^{\prime \prime}\right) \leqslant \gamma_{p}(T)-2$. However, any $\gamma_{\mathrm{p}}$-set of $T^{\prime \prime}$ can be extended to a paireddominating set of $T$ by adding the vertices $v_{1}$ and $v_{2}$. So $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime \prime}\right)+2$. Consequently, $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime \prime}\right)+2$. Clearly, $\gamma(T)-2 \leqslant \gamma\left(T^{\prime \prime}\right) \leqslant \gamma(T)$. If $\gamma\left(T^{\prime \prime}\right)=\gamma(T)-1=\gamma\left(T^{\prime}\right)$, then $\gamma_{p}(T)=2 \gamma(T)=2\left(\gamma\left(T^{\prime \prime}\right)+1\right)=2 \gamma\left(T^{\prime \prime}\right)+$ $2 \geqslant \gamma_{\mathrm{p}}\left(T^{\prime \prime}\right)+2=\gamma_{\mathrm{p}}(T)$. So, $\gamma_{\mathrm{p}}\left(T^{\prime \prime}\right)=2 \gamma\left(T^{\prime \prime}\right)$. By Lemma $8, T^{\prime \prime}$ has a unique $\gamma$-set. Let $X^{\prime}$ be the unique $\gamma$-set of $T^{\prime}$. Then $v_{4} \in X^{\prime}$, and $X^{\prime}$ is a $\gamma$-set of $T^{\prime \prime}$. If $v_{4}$ is not a leaf of $T^{\prime \prime}$, then $X^{\prime}$ is the unique $\gamma$-set of $T^{\prime \prime}$. Applying the inductive hypothesis to $T^{\prime \prime}$, for any $\gamma_{p}$-set $S^{\prime \prime}$ of $T^{\prime \prime}$, we have $X^{\prime} \subset S^{\prime \prime}$.So $X^{\prime} \subset S-\left\{v_{1}, v_{2}\right\}$ and $v_{4} \in X^{\prime} \subset S$, contradicts $v_{4} \notin S$. If $v_{4}$ is a leaf of $T^{\prime \prime}$, let $T^{\prime \prime \prime}=T^{\prime \prime}-\left\{v_{4}\right\}$, then $\gamma(T) \leqslant \gamma\left(T^{\prime \prime \prime}\right)+2$. However, for any $\gamma$-set $X$ of $T$, $\left|X \cap\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right| \geqslant 2$, so $\gamma\left(T^{\prime \prime \prime}\right) \leqslant \gamma(T)-2$. Consequently, $\gamma\left(T^{\prime \prime \prime}\right)=\gamma(T)-2$. Clearly, $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime \prime \prime}\right)+4$. So, $2 \gamma\left(T^{\prime \prime \prime}\right) \geqslant \gamma_{\mathrm{p}}\left(T^{\prime \prime \prime}\right) \geqslant \gamma_{\mathrm{p}}(T)-4=2 \gamma(T)-4=2\left(\gamma\left(T^{\prime \prime \prime}\right)+2\right)-4=2 \gamma\left(T^{\prime \prime \prime}\right)$. Thus, $\gamma_{\mathrm{p}}\left(T^{\prime \prime \prime}\right)=2 \gamma\left(T^{\prime \prime \prime}\right)=\gamma_{\mathrm{p}}(T)-4$. By Lemma $8, T^{\prime \prime \prime}$ has a unique $\gamma$-set $X^{\prime \prime \prime}$. Applying inductive hypothesis to $T^{\prime \prime \prime}$, for any $\gamma_{\mathrm{p}}$-set $S^{\prime \prime \prime}$ of $T^{\prime \prime \prime}$, we have $X^{\prime \prime \prime} \subset S^{\prime \prime \prime}$. We claim that for any $\gamma_{\mathrm{p}}$-set $S^{\prime \prime \prime}$ of $T^{\prime \prime \prime}, v_{5} \notin S^{\prime \prime \prime}$. If not, $S^{\prime \prime \prime} \cup\left\{v_{1}, v_{2}\right\}$ is a paired-dominating set of $T$, so $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime \prime \prime}\right)+2$, contradicts $\gamma_{p}(T)=\gamma_{p}\left(T^{\prime \prime \prime}\right)+4$. Consequently, $v_{5} \notin X^{\prime \prime \prime}$. Since $v_{3}$ is not adjacent to a remote vertex, $v_{5}$ is not a leaf of $T$. Then $d\left(v_{5}\right) \geqslant 2$. Let $u$ be a vertex such that $u \in X^{\prime \prime \prime}$ and $u \succ v_{5}$, then $u \in S^{\prime \prime \prime}$. So $\left(S^{\prime \prime \prime}-\{\bar{u}\}\right) \cup\left\{v_{5}\right\}$ is a $\gamma_{p}$-set of $T^{\prime \prime \prime}$ containing $v_{5}$, a contradiction. If $\gamma\left(T^{\prime \prime}\right)=\gamma(T)-2$, then $\gamma_{\mathrm{p}}(T)=2 \gamma(T)=2\left(\gamma\left(T^{\prime \prime}\right)+2\right)=2 \gamma\left(T^{\prime \prime}\right)+4=\gamma_{\mathrm{p}}\left(T^{\prime \prime}\right)+4$, contradicts $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime \prime}\right)+2$. The Claim follows.

By Claim A and since neither $v_{3}$ is adjacent to a leaf nor $v_{3}$ is adjacent to a remote vertex, there exists a $P_{3}$ with vertex set $\left\{u_{1}, u_{2}, u_{3}\right\}$ such that $u_{3} v_{3} \in E(T)$. By Lemma $5, u_{2} \in S$. Since $u_{3} \in N\left[v_{3}\right]-\left\{v_{2}\right\}, u_{3} \notin S$. So $\bar{u}_{2}=u_{1}$. Let $T^{\prime \prime}=T_{v_{3}}$ be the subtree of $T-u_{3} v_{3}$ containing $v_{3}$. Clearly, $T^{\prime \prime} \cong T^{\prime}$. So, $\gamma_{p}\left(T^{\prime \prime}\right)=2 \gamma\left(T^{\prime \prime}\right)=2(\gamma(T)-1)=\gamma_{p}(T)-2$, and $T^{\prime \prime} \in \mathscr{J}_{\mathrm{p}}$. Let $X^{\prime \prime}$ be the unique $\gamma$-set of $T^{\prime \prime}$. Then $X=X^{\prime \prime} \cup\left\{u_{2}\right\}$ is the unique $\gamma$-set of $T$. By inductive hypothesis, for every $\gamma_{\mathrm{p}}$-set $S^{\prime \prime}$ of $T^{\prime \prime}, X^{\prime \prime} \subset S^{\prime \prime}$. Since $S-\left\{u_{1}, u_{2}\right\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime \prime}, X^{\prime \prime} \subset S-\left\{u_{1}, u_{2}\right\}$. So, $X=X^{\prime \prime} \cup\left\{u_{2}\right\} \subset S$.

Let $T \in \mathscr{J}_{\mathrm{p}}, X$ be the unique $\gamma$-set of $T$ and $S$ be a $\gamma_{\mathrm{p}}$-set of $T$. Then, by Lemma 9 , for any $u \in S-X, \operatorname{PN}(u, S)=\emptyset$.
Lemma 10. If $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$ with $\left|T^{\prime}\right| \geqslant 3$ and $T$ is obtained from $T^{\prime}$ by a Type-i operation, $i=1,2,3$, then $T \in \mathscr{J}_{\mathrm{p}}$.
Proof. Let $P_{i}=u_{1} u_{2} \cdots u_{i}$ be a path with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}, T^{\prime} \in \mathscr{J}_{\mathrm{p}}$ with $\left|T^{\prime}\right| \geqslant 3$. $T$ is obtained from $T^{\prime}$ by attaching $u_{i}$ to a vertex $v$ of $T^{\prime}$, where $v$ satisfies the conditions required by Type-i operation, $i=1,2,3$. By Lemma $8, T^{\prime}$ has a unique $\gamma$-set $X^{\prime}$. By Lemma 9 , for every $\gamma_{\mathrm{p}}$-set $S^{\prime}$ of $T^{\prime}, X^{\prime} \subset S^{\prime}$.

Case 1: $i=1$. Then $T$ is obtained from $T^{\prime}$ by attaching vertex $u_{1}$ to $v$ of $T^{\prime}$, where $v \in X^{\prime}$. Clearly, $X^{\prime}$ is a $\gamma$-set of $T$, too. So, $\gamma(T)=\gamma\left(T^{\prime}\right)$. Since $v \in X^{\prime} \subset S^{\prime}, S^{\prime}$ is a $\gamma_{\mathrm{p}}$-set of $T$, too. Thus, $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)=2 \gamma(T)$. Hence, $T \in \mathscr{J}_{\mathrm{p}}$.

Case 2: $i=2$. Let $S^{\prime}$ be a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$ such that $v \in S^{\prime}$. We claim that $v \notin X^{\prime}$. If not, then $\bar{v} \notin X^{\prime}$. So $\operatorname{PN}\left(\bar{v}, S^{\prime}\right)=\emptyset$. But the Type-2 operation requires that $\mathrm{PN}\left(v, S^{\prime}\right)=\emptyset$ and $\mathrm{PN}\left(\{v, \bar{v}\}, S^{\prime}\right) \neq \emptyset$, so we have $\mathrm{PN}\left(\bar{v}, S^{\prime}\right) \neq \emptyset$, a contradiction. Thus, $v \notin X^{\prime}$ and $\bar{v} \in X^{\prime}$. So $X^{\prime} \cup\left\{u_{2}\right\} \succ T$, hence $\gamma(T) \leqslant \gamma\left(T^{\prime}\right)+1$.

Claim B. $\gamma(T)=\gamma\left(T^{\prime}\right)+1$.
Proof of Claim B. If not, then $\gamma(T)=\gamma\left(T^{\prime}\right)$. Let $X$ be a $\gamma$-set of $T$. Then $u_{2} \in X$ since $L(T) \cap X=\emptyset$. If $v \notin \operatorname{PN}\left(u_{2}, X\right)$, then $X-\left\{u_{2}\right\}$ is a $\gamma$-set of $T^{\prime}$, contradicts $\gamma\left(T^{\prime}\right)=\gamma(T)$. $\operatorname{So}, v \in \operatorname{PN}\left(u_{2}, X\right)$. Then $\left(X-\left\{u_{2}\right\}\right) \cup\{v\}$ is a $\gamma$-set of $T^{\prime}$. If $v \notin L\left(T^{\prime}\right)$, then $\left(X-\left\{u_{2}\right\}\right) \cup\{v\}$ is the unique $\gamma$-set of $T^{\prime}$. Hence $X^{\prime}=\left(X-\left\{u_{2}\right\}\right) \cup\{v\}$ and $v \in X^{\prime}$, a contradiction. If $v \in L\left(T^{\prime}\right)$, let $X^{*}=\left(X-\left\{u_{2}\right\}\right) \cup\{v\}$, then $\mathrm{PN}\left(v, X^{*}\right)=\emptyset$ in $T^{\prime}$ since $X-\left\{u_{2}\right\} \succ T^{\prime}-\{v\}$. By Lemma 6 , $\operatorname{PN}\left(v, X^{*}\right) \neq \emptyset$, a contradiction. Claim B follows.

Claim C. $\gamma_{p}(T)=\gamma_{p}\left(T^{\prime}\right)+2$.
Proof of Claim C. Clearly, $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$. If $\gamma_{\mathrm{p}}(T) \neq \gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$, then $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)$. Let $S$ be a $\gamma_{\mathrm{p}}$-set of $T$ with $u_{2} \in S$.

If $v \notin S$, then $\bar{u}_{2}=u_{1}$. If $v \notin \mathrm{PN}\left(u_{2}, S\right)$, then $S-\left\{u_{1}, u_{2}\right\}$ is a paired-dominating set of $T^{\prime}$, contradicts $\gamma_{p}(T)=\gamma_{p}\left(T^{\prime}\right)$. If $v \in \operatorname{PN}\left(u_{2}, S\right)$, then there exists a vertex $w \neq u_{2}$ such that $w$ is adjacent to $v$ and $w \notin S$. So, $S^{\prime}=\left(S-\left\{u_{1}, u_{2}\right\}\right) \cup\{v, w\}$
is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. Since $S-\left\{u_{1}, u_{2}\right\} \succ T^{\prime}-\{v\}, \operatorname{PN}\left(\{v, w\}, S^{\prime}\right)=\emptyset$, contradicts the conditions required by Type-2 operation.

If $v \in S$ and $\bar{v}=u_{2}$, then there exists a vertex $w \neq u_{2}$ such that $w$ is adjacent to $v$ and $w \notin S$ (otherwise, $S-\left\{u_{2}, v\right\}$ is a paired-dominating set of $T^{\prime}$, contradicts $\left.\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)\right)$. So, $S^{\prime}=\left(S-\left\{u_{2}\right\}\right) \cup\{w\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. By Lemma $9, X^{\prime} \subset S^{\prime}$. Since $v \notin X^{\prime}, \operatorname{PN}\left(v, S^{\prime}\right)=\emptyset$. Since $S-\left\{u_{2}\right\} \succ T^{\prime}, \operatorname{PN}\left(w, S^{\prime}\right)=\emptyset$. Hence $\operatorname{PN}\left(\{v, w\}, S^{\prime}\right)=\emptyset$, contradicts the conditions required by Type-2 operation.

If $v \in S$ and $\bar{v} \neq u_{2}$, then $\bar{u}_{2}=u_{1}$. So $S-\left\{u_{1}, u_{2}\right\}$ is a paired-dominating set of $T^{\prime}$, contradicts $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)$. Claim C is true.

Therefore, $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)+2=2 \gamma\left(T^{\prime}\right)+2=2\left(\gamma\left(T^{\prime}\right)+1\right)=2 \gamma(T)$. Hence $T \in \mathscr{J}_{\mathrm{p}}$.
Case 3: $i=3$. Clearly, $\gamma(T) \leqslant \gamma\left(T^{\prime}\right)+1$. Let $X$ be any $\gamma$-set of $T$. Then $u_{2} \in X$. If $u_{3} \notin X$, then $X-\left\{u_{2}\right\} \succ T^{\prime}$. So $\gamma\left(T^{\prime}\right) \leqslant \gamma(T)-1$. If $u_{3} \in X$, then $\left(X-\left\{u_{2}, u_{3}\right\}\right) \cup\{v\} \succ T^{\prime}$. So, $\gamma\left(T^{\prime}\right) \leqslant \gamma(T)-2+1=\gamma(T)-1$. Consequently, $\gamma(T)=\gamma\left(T^{\prime}\right)+1$.

Clearly, $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$. Let $S$ be any $\gamma_{\mathrm{p}}$-set of $T$. By Lemma 5 , $u_{2} \in S$. If $u_{3} \notin S$, then $\bar{u}_{2}=u_{1}$. Hence $S-\left\{u_{1}, u_{2}\right\}$ is a paired-dominating set of $T^{\prime}$. So $\gamma_{\mathrm{p}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{p}}(T)-2$. Now assume that $u_{3} \in S$. If $\bar{u}_{2}=u_{1}$, then $\bar{u}_{3}=v$. Hence, $\operatorname{PN}(v, S) \neq \emptyset$ (otherwise, $S-\left\{u_{1}, v\right\}$ is a paired-dominating set of $T$, contradicts $S$ is a $\gamma_{\mathrm{p}}$-set of $T$ ). Let $w \in \operatorname{PN}(v, S)$, then $\left(S-\left\{u_{1}, u_{2}, u_{3}\right\}\right) \cup\{w\}$ is a paired-dominating set of $T^{\prime}$. So, $\gamma_{\mathrm{p}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{p}}(T)-3+1=\gamma_{\mathrm{p}}(T)-2$. If $\bar{u}_{2}=u_{3}$ and $v \notin \mathrm{PN}\left(u_{3}, S\right)$, then $S-\left\{u_{2}, u_{3}\right\}$ is a paired-dominating set of $T^{\prime}$. So $\gamma_{\mathrm{p}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{p}}(T)-2$. Consequently, $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$.

If $\bar{u}_{2}=u_{3}$ and $v \in \operatorname{PN}\left(u_{3}, S\right)$, we claim that $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$. If not, then $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)$. Then there exists a vertex $w \in N(v)$ such that $w \neq u_{3}$ and $w \notin S$ (otherwise, $v \notin \mathrm{PN}\left(u_{3}, S\right)$, a contradiction). Thus, $S^{\prime}=\left(S-\left\{u_{2}, u_{3}\right\}\right) \cup\{v, w\}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. By Lemma $9, X^{\prime} \subset S^{\prime}$. Since $S^{\prime}-\{v, w\}=S-\left\{u_{2}, u_{3}\right\} \succ T^{\prime}-\{v\}, \operatorname{PN}\left(\{v, w\}, S^{\prime}\right)=\emptyset$ and $w \in N\left(S^{\prime}-\{v, w\}\right)$. So we must be in the first case of the Type-3 operation, that is $v \in X^{\prime}$ and $w \notin X^{\prime}$. Since $v \in X^{\prime}$ and $v \notin S$, neither $v$ is a leaf nor $v$ is a remote vertex in $T^{\prime}$. So $w \notin L\left(T^{\prime}\right)$. Then the Type-3 operation requires that $\mathrm{PN}\left(\{v, w\}, S^{\prime}\right) \neq \emptyset$, a contradiction.

Therefore, $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)+2=2 \gamma\left(T^{\prime}\right)+2=2 \gamma(T)$. Hence $T \in \mathscr{J}_{\mathrm{p}}$.

## Lemma 11.

$$
\mathscr{F}_{\mathrm{p}} \subseteq \mathscr{J}_{\mathrm{p}}
$$

Proof. Note that $P_{3} \in \mathscr{J}_{\mathrm{p}}$. Let $T \in \mathscr{F}_{\mathrm{p}}$ be a tree obtained from $P_{3}$ by a number of operations of Type-1, Type-2, or Type-3. By Lemma 10, we can easily prove that $T \in \mathscr{F}_{\mathrm{p}}$ by induction on the number of operations required to construct the tree $T$.

## Lemma 12.

$$
\mathscr{J}_{\mathrm{p}}-\left\{P_{2}\right\} \subseteq \mathscr{F}_{\mathrm{p}} .
$$

Proof. Let $T \in \mathscr{\mathscr { p }}_{\mathrm{p}}$. If $|T|<3$, then $T=P_{2}$. If $|T| \geqslant 3$, we prove that $T \in \mathscr{F}_{\mathrm{p}}$ by induction on $n$, the order of the tree $T$. If $n=3$, then $T=P_{3} \in \mathscr{F}_{\mathrm{p}}$. Assume that the result is true for all trees $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$ of order $3 \leqslant n^{\prime}<n$. Let $T \in \mathscr{J}_{\mathrm{p}}$ be a tree of order $n$ and let $v_{0} v_{1} v_{2} \cdots v_{l}$ be a longest path in $T$. By Lemma $8, T$ has a unique $\gamma$-set $X$ containing no leaves of $T$. By Lemma $7, v_{1} \in X$.

Case 1: $d\left(v_{1}\right) \geqslant 3$. Then there exists a leaf $u$ such that $u \neq v_{0}$ and $u v_{1} \in E(T)$. Let $T^{\prime}=T-\{u\}$. As shown in Lemma $8, \gamma_{\mathrm{p}}\left(T^{\prime}\right)=\gamma_{\mathrm{p}}(T)=2 \gamma(T)=2 \gamma\left(T^{\prime}\right)$. Hence, $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$. By the inductive hypothesis, $T^{\prime} \in \mathscr{F}_{\mathrm{p}}$. Hence $T$ is obtained from $T^{\prime}$ by a Type-1 operation. By Lemma $10, T \in \mathscr{\mathscr { F }}$ p.

Case 2: $d\left(v_{1}\right)=2$.
Case 2.1: $d\left(v_{2}\right) \geqslant 3$. As shown in Lemma 8, $v_{2}$ is not a remote vertex of $T$, and $v_{2}$ is adjacent to a remote vertex $u_{2} \neq v_{1}, v_{3}$. Let $T^{\prime}=T_{v_{2}}$ be the subtree of $T-v_{2} u_{2}$ containing $v_{2}$. As discussed in Lemma $8, \gamma_{p}\left(T^{\prime}\right)=\gamma_{p}(T)-2=$ $2 \gamma(T)-2=2 \gamma\left(T^{\prime}\right)$, and $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$. By inductive hypothesis, $T^{\prime} \in \mathscr{F}_{\mathrm{p}}$. We claim that $v_{2}$ is a vertex of $T^{\prime}$ satisfying the conditions required by Type-2 operation. Let $S^{\prime}$ be a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$ with $v_{2} \in S^{\prime}$. By Lemma $8, T^{\prime}$ has a unique $\gamma$-set $X^{\prime}$. By Lemma $9, X^{\prime} \subset S^{\prime}$. By Lemma $7, v_{1} \in X^{\prime} \subset S^{\prime}$. By Lemma $4, v_{2} \notin X^{\prime}$. If $\bar{v}_{2}=v_{1}$, then $v_{0} \in \operatorname{PN}\left(\left\{v_{1}, v_{2}\right\}, S^{\prime}\right)$. So $\operatorname{PN}\left(\left\{v_{1}, v_{2}\right\}, S^{\prime}\right) \neq \emptyset$. If $\bar{v}_{2}=v_{3}$, then $\bar{v}_{1}=v_{0}$. So, $\mathrm{PN}\left(\left\{v_{2}, v_{3}\right\}, S^{\prime}\right) \neq \emptyset$ (otherwise, $S^{\prime}-\left\{v_{0}, v_{3}\right\}$ is a paired-dominating
set of $T^{\prime}$, contradicts $S^{\prime}$ is a $\gamma_{\mathrm{p}}$-set of $\left.T^{\prime}\right)$. Since $X^{\prime} \subset S^{\prime}$ and $v_{2} \notin X^{\prime}, \operatorname{PN}\left(v_{2}, S^{\prime}\right)=\emptyset$. The claim is true. Hence $T$ is obtained from $T^{\prime}$ by a Type-2 operation. By Lemma $10, T \in \mathscr{F}_{\mathrm{p}}$.

Case 2.2: $d\left(v_{2}\right)=2$. Let $T^{\prime}=T_{v_{3}}$ be the subtree of $T-v_{2} v_{3}$ containing $v_{3}$. As discussed in Lemma 8, $\gamma_{p}\left(T^{\prime}\right)=$ $\gamma_{\mathrm{p}}(T)-2, \gamma\left(T^{\prime}\right)=\gamma(T)-1$, and $T^{\prime} \in \mathscr{g}_{\mathrm{p}}$. By inductive hypothesis, $T^{\prime} \in \mathscr{F}_{\mathrm{p}}$. We claim that $v_{3}$ is a vertex of $T^{\prime}$ satisfying the conditions required by Type-3 operation. Let $S^{\prime}$ be a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$ with $v_{3} \in S^{\prime}$. By Lemma $8, T^{\prime}$ has a unique $\gamma$-set $X^{\prime}$. By Lemma $9, X^{\prime} \subset S^{\prime}$.

If $v_{3} \in X^{\prime}$, then $v_{3}$ is not a leaf of $T^{\prime}$. So $d\left(v_{3}\right) \geqslant 3$. Since $T^{\prime} \in \mathscr{J}_{\mathrm{p}}$, by Lemma 4 , every neighbor of $v_{3}$ in $T^{\prime}$ is not contained in $X^{\prime}$. Let $u$ be the paired vertex of $v_{3}$ in $S^{\prime}$. Then $u$ is not a remote vertex of $T^{\prime}$. If $u \neq v_{4}$, then either $u$ is a leaf or $u$ is adjacent to a remote vertex. If $u$ is not a leaf, we prove that $\operatorname{PN}\left(\left\{v_{3}, u\right\}, S^{\prime}\right) \neq \emptyset$. Let $u_{1}$ be the remote vertex which is adjacent to $u$ and $u_{2}$ be the leaf which is adjacent to $u_{1}$ in $T^{\prime}$. By Lemma 5, $u_{1} \in S^{\prime}$ and $\bar{u}_{1}=u_{2}$ since $u=\bar{v}_{3}$. If $\operatorname{PN}\left(\left\{v_{3}, u\right\}, S^{\prime}\right)=\emptyset$, then $S^{\prime}-\left\{v_{3}, u_{2}\right\}$ is a paired-dominating set of $T^{\prime}$, contradicts $S^{\prime}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. If $u=v_{4}$ and $v_{4}$ is not a leaf of $T$, we claim that $\mathrm{PN}\left(\left\{v_{3}, v_{4}\right\}, S^{\prime}\right) \neq \emptyset$. If there is a leaf $w \in N\left(v_{3}\right)-\left\{v_{2}, v_{4}\right\}$, then $w \in \operatorname{PN}\left(\left\{v_{3}, v_{4}\right\}, S^{\prime}\right)$. So $\operatorname{PN}\left(\left\{v_{3}, v_{4}\right\}, S^{\prime}\right) \neq \emptyset$. If there are no such leaves, let $w \in N\left(v_{3}\right)-\left\{v_{2}, v_{4}\right\}$ and $T_{w}$ be the subtree of $T-w v_{3}$ containing $w$, then $T_{w}=P_{3}$ since $w \notin X^{\prime}$. Let $T_{w}=w w_{2} w_{1}$, then $w_{2} \in X^{\prime} \subset S^{\prime}$. Hence $w \notin \operatorname{PN}\left(\left\{v_{3}, v_{4}\right\}, S^{\prime}\right)$. If $\operatorname{PN}\left(\left\{v_{3}, v_{4}\right\}, S^{\prime}\right)=\emptyset$ and there is a vertex $x \in N\left(v_{4}\right)-\left\{v_{3}\right\}$ such that $x \in S^{\prime}$, then $S^{\prime}-\left\{v_{3}, v_{4}\right\}$ is a paired-dominating set of $T^{\prime}$ if $\bar{w}_{2}=w$, or $S^{\prime}-\left\{v_{3}, v_{4}, w_{1}\right\} \cup\{w\}$ is a paired-dominating set of $T^{\prime}$ if $\bar{w}_{2}=w_{1}$. Contradicts $S^{\prime}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. If $\operatorname{PN}\left(\left\{v_{3}, v_{4}\right\}, S^{\prime}\right)=\emptyset$ and there is no vertex $x \in N\left(v_{4}\right)-\left\{v_{3}\right\}$ such that $x \in S^{\prime}$, then, for every $x \in N\left(v_{4}\right)-\left\{v_{3}\right\}, x \notin X^{\prime}$. Let $y \in X^{\prime} \subset S^{\prime}$ such that $y \succ x$. Then $\left(S^{\prime}-\left\{v_{3}, v_{4}, \bar{y}\right\}\right) \cup\{x\}$ is a paired-dominating set of $T^{\prime}$ if $\bar{w}_{2}=w$, or $\left(S^{\prime}-\left\{v_{3}, v_{4}, \bar{y}, w_{1}\right\}\right) \cup\{x, w\}$ is a paired-dominating set of $T^{\prime}$ if $\bar{w}_{2}=w_{1}$. Contradicts $S^{\prime}$ is a $\gamma_{\mathrm{p}}$-set of $T^{\prime}$. Therefore, $\operatorname{PN}\left(\left\{v_{3}, v_{4}\right\}, S^{\prime}\right) \neq \emptyset$.

If $v_{3} \notin X^{\prime}$, then $\bar{v}_{3} \in X^{\prime}$. If $\bar{v}_{3} \in N\left(S^{\prime}-\left\{v_{3}, \bar{v}_{3}\right\}\right)$ and $\operatorname{PN}\left(\left\{v_{3}, \bar{v}_{3}\right\}, S^{\prime}\right)=\emptyset$, then $\left(S^{\prime}-\left\{v_{3}, \bar{v}_{3}\right\}\right) \cup\left\{v_{1}, v_{2}\right\}$ is a paired-dominating set of $T$. So, $\gamma_{\mathrm{p}}(T) \leqslant \gamma_{\mathrm{p}}\left(T^{\prime}\right)$, contradicts $\gamma_{\mathrm{p}}(T)=\gamma_{\mathrm{p}}\left(T^{\prime}\right)+2$. Hence, $\bar{v}_{3} \notin N\left(S^{\prime}-\left\{v_{3}, \bar{v}_{3}\right\}\right)$ or $\operatorname{PN}\left(\left\{v_{3}, \bar{v}_{3}, S^{\prime}\right\}\right) \neq \emptyset$.

The claim is true. Thus, $T$ is obtained from $T^{\prime}$ by a Type-3 operation. By Lemma $10, T \in \mathscr{F}_{\mathrm{p}}$. The proof is completed.

Theorem 3 follows as an immediate consequence of Lemmas 11 and 12.

## References

[1] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[2] E.J. Cockayne, O. Favaron, C.M. Mynhardt, J. Puech, A characterization of ( $\gamma, i$ )-trees, J. Graph Theory 34 (2000) $277-292$.
[3] J.H. Hattingh, M.A. Henning, Characterizations of trees with equal domination parameters, J. Graph Theory 34 (2000) 142-153.
[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Ed.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[6] T.W. Haynes, M.A. Henning, P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77-87.
[7] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206.
[8] X. Hou, A characterization of trees with equal domination and total domination numbers, Ars Combin., in press.
[9] H. Qiao, L. Kang, M. Cardei, D.-Z. Du, Paired-domination of trees, J. Global Optim. 25 (2003) 43-54.


[^0]:    the work was supported by NNSF of China (No. 10671191).
    E-mail address: xmhou@ustc.edu.cn.

