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A b s t r a c t - - S o l u t i o n s  C(r) of the time-independent nonhomogeneous diffusion equation for three 
different piecewise-uniform source terms are used to examine the limiting size of multicell spheroids 
using a simple model which reproduces concentration-dependent mitotic behavior. A condition is 
derived under which nontrivial solutions do not exist (in all three cases), and a condition for the 
existence of a unique nontrivial solution is established for the case of growth-modifying factor (GMF) 
production throughout the spheroid. Qualitative behavior of the limiting size is established as a 
function of various physiological parameters. Of fundamental importance is the assumed GMF con- 
centration threshold 0, near which (i.e., as C --* 0-)  mitosis, and hence spheroid growth, is generally 
strongly inhibited. 

K e y w o r d s - - G r o w t h  factor, Spheroids, Mitotic stability, Diffusion-limited growth. 

Based on comments  by Wi t t en  [1], and mathemat ica l  models by Shymko and Glass [2], and 
A d a m  and Maggelakis [3], we examine the  possible self-limiting effects of  g rowth-modi fy ing  

factor  (GMF)  on the  size of  a prevascular multicell spheroid [4]. We posit  the  presence of  a 

G M F - p r o d u c i n g  region within the spheroid, which may  be the necrotic core (if one exists), the  
nonnecrot ic  region, or the  whole spheroid. We also posit, following [1] (and references therein),  
t h a t  low concentra t ions  of  G M F  do not  affect the mitot ic  rate of spheroid cells, somewhat  higher 

concent ra t ions  s t imulate  mitot ic  activity, increasingly higher concentrat ions of  G M F  depress or 

part ial ly inhibit  nfitotic activity, and at very high concentra t ions  (C(r) --. 0 - )  mitosis is alto- 

gether  inhibited, result ing in a limiting spheroid size, with outer  radius R ~  (R < R ~  being the  

outer  radius of  the spheroid; Ri < R is the radius of the necrotic core). The  s teady s ta te  G M F  

concent ra t ion  C(r)  satisfies the t ime- independent  diffusion equat ion and associated b o u n d a r y  

condit ions (see [2,3] for details) 

DV2C - 7 C  = -ASh(r ) ,  0 < r < R, 

C'(O) = O, DC ' (R)  + P C ( R )  = O, 

(1) 
(2) 

where D is the  diffusion coefficient within the  spheroid, 7 is the G M F  decay or depletion constant ,  
A is the  G M F  produc t ion  rate, and P is the permeabil i ty  of  the tissue surface. All four are assumed 
to  be cons tant  here. S~(r) represents the G M F  source location within the spheroid, and there  

are three cases to  consider (i = 1, 2, 3): 

(i) Sl (r)  = 1, 0 < r < R, 

1, 0 < r < R ~ ,  
(ii) S 2 ( r ) =  0, R ~ < r < R ,  
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(iii) S 3 ( r ) = { 0 '  0 < r < R ~ ,  
1, Ri < r < R .  

Thus, the source of GMF is uniformly throughout 

(i) the whole spheroid, or 
(ii) the necrotic core only, or 

(iii) the nonnecrotic region. 

Since not all spheroids exhibit necrotic cores, Case (i) is a valuable and simpler model which 
can help validate Cases (ii) and (iii) as Ri ~ R or Ri ~ 0, respectively. In no case do we 
require C(r) for r > R. The solutions corresponding to Case 1 and Cases 2 and 3 can be found 
in [2] and [3], respectively. In each case i -- 1, 2, Ci(r) is a monotonically decreasing function 
of r, and thus Ci(R) < Ci(r) for 0 _< r < R. It is Ci(R) that  is of importance in this note, 
since growth ceases throughout the spheroid if Ci(R) > 0. For Case 3, the behavior of C(r) is 
more complicated because the source of GMF is in the outer spheroid region; it is possible that  
C(R)  > C(r) for some range of r E [0, Ri], which would not preclude mitosis occurring, therefore, 
even if C(R)  > 0. This will be examined elsewhere; in this note, we assume that  C(r),  while not 
monotone in [0, R], is such that  C(R)  <_ C(r) throughout the spheroid. 

The above-mentioned qualitative mitotic behavior is perhaps most easily described by a gener- 
alization of the logistic model (over a timescale large compared to a typical diffusion time across 
the spheroid) 

=c~Ci(R) 1 0 ' ( R ( 0 ) > 0 ,  C i ( R ) > 0 ) ,  ( i = 1 , 2 , 3 ) ,  (3) 

where c~ is a constant of proportionality which need not be specified here. The following changes 
of variable are made: y = K R  (where K -- (7/D)1/2),  /3 = R i / R  -- y j y ,  m = A/70, r = "yt, and 
# = a K A / 7  2. Equation (3) then takes the form, with Ci(R) = (A/'y)¢i(y), 

dy 
d-~ =#¢i (y ) (1  - m ¢ i ( y ) ) .  (4) 

Of interest here are stationary values of y, i.e., those values of y, Yoo ~ 0 say, for which 
¢i(Y) --- m -1 (¢i(Y) -- 0 is of no consequence here). In [2], the quantities ~ = AD/P28  and 
~l = (~D)1/2 /P  are defined, from which it follows here that  m -- ~/~/2. The ¢i(Y) are defined as 
follows: 

~](coth y - y - l )  (5) 
(i) ¢1(Y) --- 1 + ~}(cothy - y - l ) "  

Note tha t  ¢1(Y) < 1, which implies that  m > 1, i.e., ~ > ~/2. The result is sharpened in a theorem 
below. 

~}(BY cosh Bly - sinh By) 
(ii) ¢2(y) = y sinh y[~/(coth y - y - l )  + 1]" (6) 

y sinh y - n(sinh BY - BY cosh BY) ], 
(iii)  3(Y) = 1 -  t J" (7) 

We are now in a position to draw some specific conclusions from the model. 

THEOREM. No nontrivial positive solutions of  ¢i(Y) = rn -1 exist for m <_ 1, i.e., for ~ <_ 712. 
Furthermore, a unique nontrivial positive solution exists for i = 1 when ~l(rn - 1) > 1, i.e., 
~ > ~ 2 + ~ .  

In order to prove this we require the following lemma. 
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Figure 1. Schematic representation of the qualitative dependence of the scaled lim- 
iting radius yoo for the various models. (a) and (b) are typical of models (i)-(iii); 
(c) is typical of model (ii); and (d) shows behavior specific to model (iii), where the 
source of inhibitor is in the outer regions of the spheroid. 

LEMMA. p(~)  = ~ c o s h ~  - s i n h ~  is a posit ive increasing function on (0, oo). 

T h e  p roo f  is t r iv ia l .  W e  ut i l ize  th i s  r e su l t  for i = 1, 2, 3 in  p r o v i n g  t h e  t h e o r e m .  

PROOF OF THEOREM. 

(i) ¢1(9) = m -1 is equivalent to  the equat ion 

( m -  lf i /p(y) = y s i n h 9 ,  

proving the  first part .  I f  a = (m - 1)~/, then we may  also write this equat ion as 

f ( y )  = ay _--_ t a n h y .  y + a  

(8) 

(9) 
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It  follows that  f ( y )  has horizontal asymptote f = a; if a _< 1, the functions f ( y )  and t a n h y  do 
not intersect in (0, oo); a unique intersection occurs for a > 1, establishing the result. The  proofs 
are similar for the remaining two cases. Briefly, 

(ii) ¢2 (Y) = m-1  can be written in the alternative form 

{p(/3y)m - p(y)}~} = y sinh y, (i0) 

which by the lemma has no appropriate solutions for m < 1, and 
(iii) ¢3(Y) = m -1 can be written in the alternative form 

{ (m - 1)p(y) - mp(Dy)}~} = y sinh y, (11) 

which again has no appropriate solutions for m < 1. 

The theorem is thus proven, and is consistent with the asymptotic results stated in [2], namely 
that  (for Case 1 at least) ( < z/2 for unstable tissue growth, and ( > ~/2 + 77 corresponds to stable, 
limited growth. On the basis of the model presented here, we have been able to establish our 
results for any finite value of R. 

Note from the definition of ~} that  it is a measure of the competing effects of inhibitor depletion 
and diffusion with the permeability of the spheroid "tissue" or cellular matrix. Likewise, m is 
a measure of the competing effects of inhibitor production rate with depletion and threshold 
concentration; equivalently, since A/7 has dimensions of concentration, m is also a measure of 
steady state to threshold concentration; if m < 1, growth is never suppressed. 

Qualitative features of the solutions of ¢i(y) = m -1, i.e., yoo(7/,m,/~), are shown in 
Figures l a - l d .  The behavior of Yoo is qualitatively the same for each case i = 1, 2, 3. In Case 1, 
Yoo(~}) is examined for given m > 1 (in the stable region), and yoo(m) for given 7/. In the remain- 
ing cases, Yoo(~}), yoo(m), and yoo(f~) are drawn for fixed values of the remaining parameters. All 
graphs apart  from Yoo(/~) in Case (iii) are monotonically decreasing functions of their argument, 
and concave up. These results may be understood as follows: as m increases away from 1, mitosis 
is more readily inhibited by increasing A and/or  decreasing the product 70; as ~} increases (i.e., by 
increasing the product  7D and/or  decreasing P) ,  and for Case (ii), by increasing the size of the 
source region (increasing/~), the spheroid growth is also more readily inhibited. For Case (iii), 
increasing f~ reduces the size of the source region, thus increasing the limiting spheroid size. 

Typical values and parameter ranges were taken from [2]: K ~ 10cm -1, D ~ 5 x 10 -7 cm2s-1; 
7 ~ 5 x 10-Ss-1;  P ~ 10 -4cms  -1, corresponding to 7} ~ 0.05. For this choice of K,  a typical 
spheroid radius of 0.1 cm gives y ~ 1. In some cases, yc¢ varied by factors of 3-6 as the dependent 
variables are changed by similar factors indicating a significant variation of spheroid sizes within 
physiologically acceptable parameter ranges. This will justify further attention as more spheroid 
data  becomes available. 
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