Some Multilinear Generating Functions for q-Hermite Polynomials

H. M. Srivastava

Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2

AND

V. K. Jain

Department of Mathematics, Bareilly College, Rohilkhand University, Bareilly 243001, Uttar Pradesh, India

Submitted by J. L. Brenner

Received April 1, 1988

As an application of the transformation theory of basic (or q-) hypergeometric series, a number of multilinear generating functions are developed for the q-Hermite polynomials studied by L. J. Rogers, G. Szegő, and others. Relevant connections of these general multilinear generating functions with various known results for the classical or basic Hermite polynomials are also indicated. © 1989 Academic Press, Inc.

1. INTRODUCTION, NOTATIONS, AND THE MAIN RESULTS

For real or complex q, $|q| < 1$, let

$$
(\lambda; q)_\mu = \prod_{j=0}^{\infty} \left(\frac{1 - \lambda q^j}{1 - \lambda q^{\mu+j}} \right)
$$

(1.1)

for arbitrary λ and μ, so that

$$
(\lambda; q)_n = \begin{cases}
1, & \text{if } n = 0, \\
(1 - \lambda)(1 - \lambda q) \cdots (1 - \lambda q^{n-1}), & \forall n \in \{1, 2, 3, \ldots\},
\end{cases}
$$

(1.2)

and

$$
(\lambda; q)_{\infty} = \lim_{n \to \infty} (\lambda; q)_n = \prod_{j=0}^{\infty} (1 - \lambda q^j).
$$

(1.3)
Define, as usual, a generalized basic (or \(q\)-) hypergeometric function by (cf. [13, Chap. 3])
\[
\Phi_s \left[\begin{array}{c} \alpha_1, \ldots, \alpha_r; \\ q, z \\ \beta_1, \ldots, \beta_s; \end{array} \right] = \sum_{n=0}^{\infty} (-1)^{1+s-r} q^{1+s-r} n (n-1)/2 \frac{(\alpha_1, \ldots, \alpha_r; q)_n}{(\beta_1, \ldots, \beta_s; q)_n} \frac{z^n}{(q; q)_n},
\]
(1.4)
where, and throughout this paper, we find it to be convenient to write
\[
(\lambda_1, \ldots, \lambda_k; q)_\mu = (\lambda_1; q)_\mu \cdots (\lambda_k; q)_\mu,
\]
(1.5)
and, for convergence of the infinite series in (1.4), \(|q| < 1\) and \(|z| < \infty\) when \(r \leq s\), or \(|q| < 1\) and \(|z| < 1\) when \(r = s + 1\), provided that no zeros appear in the denominator.

In his important memoirs on expansions of certain infinite products, L. J. Rogers [8, 9, 10] introduced the continuous \(q\)-Hermite polynomials \(H_n(x; q)\) and the continuous \(q\)-ultraspherical polynomials \(C_n(x; v; q)\), defined by
\[
\sum_{n=0}^{\infty} H_n(x; q) \frac{t^n}{(q; q)_n} = \frac{1}{h(x, t)},
\]
(1.6)
and
\[
\sum_{n=0}^{\infty} C_n(x; v; q) \frac{t^n}{h(x, t)} = \frac{h(x, vt)}{h(x, t)},
\]
(1.7)
where [cf. Eq. (1.5)]
\[
h(\cos \theta, \tau) = (\tau e^{i\theta}, \tau e^{-i\theta}; q)_\infty.
\]
(1.8)
As a matter of fact, Rogers used his results involving these polynomials in order to prove the celebrated Rogers–Ramanujan identities.

Another set of \(q\)-Hermite polynomials defined explicitly by (cf., e.g., [1] and [17])
\[
h_n(x; q) = \sum_{k=0}^{n} \binom{n}{k} x^k, \quad \binom{n}{k} = \frac{(q; q)_n}{(q; q)_{n-k} (q; q)_k} \binom{n}{n-k},
\]
(1.9)
are closely related to the continuous \(q\)-Hermite polynomials via
\[
H_n(\cos \theta | q) = e^{-in\theta} h_n(e^{2i\theta} | q),
\]
(1.10)
so that any given result involving one set of \(q\)-Hermite polynomials would apply also to the other set.
For these q-Hermite polynomials, Ismail and Stanton [6] have derived several interesting multilinear generating functions with the help of certain integrals which they have studied systematically. Combinatorial proofs of some of Ismail–Stanton results were given by Ismail, Stanton, and Viennot [7]. The object of the present paper is to apply the transformation theory of the q-hypergeometric series (1.4) with a view to deriving the following general multilinear generating function for the q-Hermite polynomials

$$
\sum_{n_1, \ldots, n_k=0}^{\infty} h_{n_1+\cdots+n_k+s}(x|q) h_{m_1+n_1}(x_1|q) \cdots h_{m_k+n_k}(x_k|q) \frac{t_1^{n_1} \cdots t_k^{n_k}}{(q;q)_{n_1} \cdots (q;q)_{n_k}}
$$

$$
= \sum_{r_1=0}^{m_1} \cdots \sum_{r_k=0}^{m_k} q^m(r_1+\cdots+m_k) \prod_{j=1}^{k} \left\{ \frac{(q^{-m_j};q)_r}{(q;q)_r} (x_j t_j)^r h_{m_j-r_j}(x_j|q) \right\}
$$

where, for convenience, $R = r_1 + \cdots + r_k$.

For $m_1 = \cdots = m_k = 0$, the multilinear generating function (1.11) simplifies considerably, and we thus obtain

$$
\sum_{n_1, \ldots, n_k=0}^{\infty} h_{n_1+\cdots+n_k+s}(x|q) h_{n_1}(x_1|q) \cdots h_{n_k}(x_k|q) \frac{t_1^{n_1} \cdots t_k^{n_k}}{(q;q)_{n_1} \cdots (q;q)_{n_k}}
$$

$$
= \frac{1}{(x, t_1, x_1 t_1, \ldots, t_k, x_k t_k; q)_{2k-1}} 2k \Phi_{2k-1} \left[\begin{array}{c}
q, q^{1+s+R} \\
q/x, 0, \ldots, 0;
\end{array} \right]
$$

$$
+ \frac{x^s}{(1/x, x t_1, x x_1 t_1, \ldots, x t_k, x x_k t_k; q)_{\infty}} 2k \Phi_{2k-1} \left[\begin{array}{c}
q, q^{1+s+R} \\
q x, 0, \ldots, 0;
\end{array} \right],
$$

(1.12)
which, for \(s = 0 \), corresponds to a result due to Ismail and Stanton [6, p. 1042, Eq. (5.14)]. Observe that, since \(s \) is not an index of summation, \((1.12)\) is markedly different from another result presented by Ismail and Stanton [6, p. 1042, Eq. (5.15)].

Formula \((1.12)\) may be looked upon as a \(q \)-analogue of a multilinear generating function for the classical Hermite polynomials, which was given by Srivastava and Singhal (cf. [15, p. 140, Eq. (4.6) with \(s = 0 \); see also [16, p. 1239, Eq. (4)] and [14, p. 496, Problems 11 and 12]).

We develop our proof of the general result \((1.11)\) in many stages. Indeed, in this process, we derive several interesting generating functions for the \(q \)-Hermite polynomials.

2. DERIVATION OF BILINEAR FORMULAS

We begin by proving the following alternative form of a known bilinear generating function for \(q \)-Hermite polynomials (cf. [3, p. 96, Eq. (4.1)]):

\[
\sum_{n=0}^{\infty} h_{n+s}(x|q)h_n(y|q)\frac{t^n}{(q;q)_n} = \frac{(xyt^2;q)_\infty}{(t, xt, yt, xyt; q)_\infty} \frac{(xt; q)_s}{(xyt^2; q)_s} 2\Phi_1 \left[\begin{array}{c} yt, q^{-s}; \\ q, q/t \end{array} \right] \, q^{1-s/xt;}, \tag{2.1}
\]

or, equivalently,

\[
\sum_{n=0}^{\infty} h_{n+s}(x|q)h_n(y|q)\frac{t^n}{(q;q)_n} = \frac{1}{(x, t, yt; q)_\infty} 2\Phi_1 \left[\begin{array}{c} t, yt; \\ q, q^{1+s} \end{array} \right] \frac{q}{q/x;},
\]

\[
+ \frac{x^s}{(1/x, xt, xyt; q)_\infty} 2\Phi_1 \left[\begin{array}{c} xt, xyt; \\ q, q^{1+s} \end{array} \right], \tag{2.2}
\]

where \(s \) is a nonnegative integer.

Formula \((2.1)\) is a \(q \)-analogue of a bilinear generating function due to
Carlitz [2, p. 127, Eq. (6.5)]. In our proof of (2.1) we shall make use of each of the following known results

\[
\sum_{n=0}^{\infty} h_{n+s}(x \mid q) \frac{t^n}{(q; q)_n} = \frac{1}{(t, xt; q)_{\infty}} \Phi^{(s)}(x, q),
\]

(2.3)

where \(\Phi^{(s)}_{n}(x, q) \) denotes a set of orthogonal \(q \)-polynomials studied by Hahn ([4, 5]), and by Al-Salam and Carlitz [11]; in fact, we have

\[
\Phi^{(s)}_{n}(x, q) = \sum_{k=0}^{n} \binom{n}{k} (\alpha; q)_k x^k,
\]

(2.4)

so that, by comparing Definitions (1.9) and (2.4),

\[
\Phi^{(0)}_{n}(x, q) = h_{n}(x \mid q).
\]

(2.5)

We shall also need the bilateral generating function

\[
\sum_{n=0}^{\infty} h_{n}(x \mid q) \phi^{(s)}_{n}(y, q) \frac{t^n}{(q; q)_n} = \frac{(x y t; q)_{\infty}}{(t, xt, xyt; q)_{\infty}} \phi_{1} \left[\begin{array}{c}
\alpha, xt; \\
q, yt
\end{array} \right],
\]

(2.6)

which, for \(\alpha = 0 \), reduces immediately to the \(q \)-Mehler formula

\[
\sum_{n=0}^{\infty} h_{n}(x \mid q) h_{n}(y \mid q) \frac{t^n}{(q; q)_n} = \frac{(x y t^2; q)_{\infty}}{(t, xt, y t, xyt; q)_{\infty}}.
\]

(2.7)

The generating function (2.3), which essentially is equivalent to (2.7), was given by Ismail and Stanton [6, p. 1042, Eq. (5.17)]. Formula (2.6), on the other hand, corresponds to the special case \(\alpha = 0 \) of a result given by Al-Salam and Carlitz [1, p. 49, Eq. (1.17)]; indeed, in view of Definitions (1.9) and (2.4), the bilateral generating function (2.6) can be established directly by applying the following \(q \)-identity [1, p. 49, Lemma 1]

\[
\sum_{n=0}^{\infty} \binom{n}{r} \binom{n}{s} \frac{t^n}{(q; q)_n} = \frac{1}{(t, q)_{\infty}} \sum_{k=0}^{\min(r, s)} \frac{(t; q)_k}{(q; q)_k (q; q)_{r-k} (q; q)_{s-k}},
\]

(2.7a)

which is implied, for example, by the bilinear relation (2.7).

Now we turn to the proof of the bilinear generating function (2.1). Denoting the left-hand side of (2.1) by \(\Delta_{x}(x, y, t) \), and making use of (2.3) and (2.6), we find from (2.1) that
\[
\sum_{s=0}^{\infty} \Delta_s(x, y, t) \frac{u^s}{(q; q)_s} = \sum_{n=0}^{\infty} h_n(y|q) \frac{t^n}{(q; q)_n} \sum_{s=0}^{\infty} h_{n+s}(x|q) \frac{u^s}{(q; q)_s} = \frac{1}{(u, xu; q)_\infty} \sum_{n=0}^{\infty} h_n(y|q) \Phi_n^{(u)}(x, q) \frac{t^n}{(q; q)_n} = \frac{(uxyt; q)_\infty}{(t, yt, xyt, u, xu; q)_\infty} \ _2\Phi_1 \left[\begin{array}{c} yt, u; \\ q, xt \\ uxyt; \end{array} \right] = \frac{(xyt^2; q)_\infty}{(t, xt, yt, xyt, xu; q)_\infty} \ _2\Phi_1 \left[\begin{array}{c} xt, xyt; \\ q, u \\ xyt^2; \end{array} \right],
\]

where we have employed the familiar Heine's transformation

\[
\ _2\Phi_1 \left[\begin{array}{c} a, b; \\ q, z \\ c; \end{array} \right] = \frac{(b, az; q)_\infty}{(c, z; q)_\infty} \ _2\Phi_1 \left[\begin{array}{c} z, c/b; \\ q, b \\ az; \end{array} \right].
\]

Now write the last member of (2.8) in the form

\[
\frac{(xyt^2; q)_\infty}{(t, xt, yt, xyt; q)_\infty} \sum_{r=0}^{\infty} \frac{(xu)^r}{(q; q)_r} \sum_{s=0}^{\infty} \frac{(xt, xyt; q)_s}{(xyt^2; q)_s} \frac{u^s}{(q; q)_s},
\]

which (upon replacing \(s \) by \(s - r \)) becomes

\[
\frac{(xyt^2; q)_\infty}{(t, xt, yt, xyt; q)_\infty} \sum_{s=0}^{\infty} \frac{(xt, xyt; q)_s}{(xyt^2; q)_s} \frac{u^s}{(q; q)_s} \sum_{r=0}^{\infty} \frac{(q^{-r}, q^{1-s}/(xyt^2); q)_r}{(q^{1-s}/(xt), q^{1-s}/(xyt); q), (q; q)_r}.
\]

Equating the coefficients of \(u^s \) in the first and last members of (2.8), we thus obtain

\[
\Delta_s(x, y, t) = \frac{(xyt^2; q)_\infty}{(t, xt, yt, xyt; q)_\infty} \frac{(xt, xyt; q)_s}{(xyt^2; q)_s} \ _3\Phi_2 \left[\begin{array}{c} q^{-s}, q^{1-s}/(xyt^2), 0; \\ q^{1-s}/(xt), q^{1-s}/(xyt), \end{array} \right].
\]
Finally, we transform this $3\Phi_2$ series by applying a particular case ($a = 0$ and $c = 0$) of Sears's formula [11, p. 167, Eq. (8.3)]

\[
\begin{align*}
\Phi_3 \left[\begin{array}{c}
a, b, c, q^{-n} \\
q, q \\
e, g, h;
\end{array} \right] &= \frac{(g/c, eg/ab; q)_n}{(g, cg/abc; q)_n} \Phi_3 \left[\begin{array}{c}
e/a, e/b, c, q^{-n} \\
q, q \\
e, cq^{1-n}/g, cq^{1-n}/h;
\end{array} \right], \\

\text{egh} &= abcq^{1-n} \quad (n = 0, 1, 2, ...),
\end{align*}
\]

and (2.10) leads us at once to the bilinear generating function (2.1).

In order to obtain the equivalent form (2.2), we use a known transformation [18, p. 370, Eq. (3)]

\[
\begin{align*}
\Phi_1 \left[\begin{array}{c}
a, b; \\
q, \frac{ec}{ab} \\
e;
\end{array} \right] &= \frac{(e/a, e/b; q)_\infty}{(e, e/ab; q)_\infty} \Phi_2 \left[\begin{array}{c}
a, b, c; \\
q, q \\
abq/e, 0;
\end{array} \right],
\end{align*}
\]

in (2.1) twice, so that

\[
\Delta_s(x, y, t) = (yt)^{-s} \frac{(x y t^2, q/(x y t^2), yq; q)_\infty}{(t, xt, yt, x y t, q/t, q/xt; q)_\infty} \Phi_1 \left[\begin{array}{c}
yt, xyt; \\
q, \frac{q^{1-s}}{x y t^2} \\
yq;
\end{array} \right],
\]

which yields (2.2), in view of another result due to Sears [12, p. 183, Eq. (4.1)]

\[
\begin{align*}
(q/b, aq/c, c; q)_\infty \Phi_1 \left[\begin{array}{c}
a, b; \\
q, z \\
c;
\end{array} \right] &= \frac{a/c, q^2/c, bz, q/bz; q}_\infty \Phi_1 \left[\begin{array}{c}
aq/c, bq/c; \\
q, z \\
q^2/c;
\end{array} \right] \\
&\quad + \frac{(c, q/c, aq/b, abz/c, cq/(abz); q)_\infty}{(bz/c, cq/bz; q)_\infty} \Phi_1 \left[\begin{array}{c}
a, aq/c; \\
q, \frac{cq}{abz} \\
aq/b;
\end{array} \right].
\end{align*}
\]
3. MULTILINEAR EXTENSIONS

If, in the bilinear generating function (2.2), we replace s by $s + m + r$, y by z, and t by v, multiply both sides by

$$\frac{y^r}{(q; q)_r} \frac{u^{m + r}}{(q; q)_m},$$

and sum the resulting expression with respect to m and r from 0 to ∞, we shall obtain the trilinear formula

$$\sum_{m, n = 0}^{\infty} h_{m+n+s}(x | q) h_{m}(y | q) h_{n}(z | q) \frac{u^{m}}{(q; q)_m} \frac{v^{n}}{(q; q)_n}$$

$$= \frac{1}{(x, u, v, yu, zu; q)_\infty} 4 \Phi_3 \left[\begin{array}{c} u, v, yu, zu; \\ q, q^{1+s} \\ \frac{q}{x}, 0, 0; \end{array} \right]$$

$$+ \frac{x^s}{(1/x, xu, xv, xyu, z xv; q)_\infty} 4 \Phi_3 \left[\begin{array}{c} xu, xv, xyu, z xv; \\ q, q^{1+s} \\ qx, 0, 0; \end{array} \right],$$

(3.1)

which, for $s = 0$, corresponds to a result due to Ismail and Stanton [6, p. 1041, Eq. (5.10)].

Now replace y and z in (3.1) by yt and zt, respectively, multiply both sides by

$$t^{\alpha-1} \tau^{\beta-1}(tq; q)_{\lambda-\alpha-1} (\tau q; q)_{\mu-\beta-1},$$

and q-integrate with respect to t and τ using the familiar result

$$\frac{\Gamma_q(\alpha) \Gamma_q(\beta)}{\Gamma_q(\alpha + \beta)} = \int_0^1 t^{\alpha-1}(tq; q)_{\beta-1} d(q, t),$$

(3.2)

where the q-Gamma function $\Gamma_q(z)$ is defined by

$$\Gamma_q(z) = \frac{(q; q)_\infty}{(q^z; q)_\infty} (1 - q)^{1-z}.$$

(3.3)

Upon letting $\lambda, \mu \to \infty$, and replacing q^x and q^β by α and β, respectively, we thus find from (3.1) and (2.4) that
\[
\sum_{m, n = 0}^{\infty} h_{m+n+s}(x | q) \Phi_m^{(a)}(y, q) \Phi_n^{(b)}(z, q) \frac{u^m}{(q; q)_m} \frac{v^n}{(q; q)_n} \\
= \frac{(axyu, \beta zv; q)_\infty}{(x, u, v, yu, zv; q)_\infty} \left[\begin{array}{c}
\frac{u, v, yu, zv;}{q, q^{1+s}} \\
q/x, axyu, \beta zv;
\end{array} \right]
\]
\[
+ \frac{(axyu, \beta zv; q)_\infty}{(1/x, xu, xv, yu, zv; q)_\infty} x^s 4 \Phi_3 \left[\begin{array}{c}
xu, xv, xyu, zxo; \\
q, q^{1+s}
\end{array} \right].
\]

(3.4)

Formula (3.4) would obviously reduce to (3.1) when \(a = \beta = 0\). It may be of interest to remark in passing that, by applying the aforementioned process of \(q\)-integration for augmenting parameters in the multilinear generating function (1.12), we can easily deduce the following interesting result

\[
\sum_{n_1, \ldots, n_k = 0}^{\infty} h_{n_1 + \ldots + n_k + s}(x | q) \Phi_{n_1}^{(a_1)}(x_1, q) \cdots \Phi_{n_k}^{(a_k)}(x_k, q) \frac{t_1^{n_1}}{(q; q)_{n_1}} \cdots \frac{t_k^{n_k}}{(q; q)_{n_k}} \\
= \frac{(a_1 x_1 t_1, \ldots, a_k x_k t_k; q)_\infty}{(x, t_1, x_1 t_1, \ldots, t_k, x_k t_k; q)_\infty} \cdot 2k \Phi_{2k-1} \left[\begin{array}{c}
t_1, x_1 t_1, \ldots, t_k, x_k t_k; \\
q/x, a_1 x_1 t_1, \ldots, a_k x_k t_k, 0, \ldots, 0;
\end{array} \right]
\]
\[
+ \frac{(a_1 x x_1 t_1, \ldots, a_k x x_k t_k; q)_\infty}{(1/x, x t_1, x x_1 t_1, \ldots, x t_k, x x_k t_k; q)_\infty} x^s \\
\cdot 2k \Phi_{2k-1} \left[\begin{array}{c}
x t_1, x x_1 t_1, \ldots, x t_k, x x_k t_k; \\
q, q^{1+s}
\end{array} \right],
\]

(3.5)

which, for \(a_1 = \cdots = a_k = 0\), yields (1.12) by virtue of (2.5).

The multilinear generating function (1.12) can be proven \textit{directly} by suitably iterating our method of derivation of the trilinear formula (3.1).

We now outline our derivation of the general result (1.11) for \(k = 2\).

In view of (2.3), the generating function (3.4) may be rewritten in the form
where, for convenience,

\[
S_1 = \frac{(xu, yu, czv; q)_{\infty}}{(x, u, v, yu, zv, \alpha, \beta, xy, \beta z; q)_{\infty}} 4\mathbf{\Phi}_3 \left[\begin{array}{c} u, v, yu, zv; \\ q, q^{1+s} \end{array} \right] \left[\begin{array}{c} q/x, xyu, \beta zv; \\ q/x, yu, \beta zv; \end{array} \right]
\] \tag{3.7}

and

\[
S_2 = \frac{(axyu, \beta zxv; q)_{\infty}}{(1/x, xu, xv, xyu, zxv, \alpha, \beta, xy, \beta z; q)_{\infty}} x^s \cdot 4\mathbf{\Phi}_3 \left[\begin{array}{c} xu, xv, xyu, zxv; \\ q, q^{1+s} \end{array} \right] \left[\begin{array}{c} qx, axyu, \beta zxv; \\ qx, axyu, \beta zxv; \end{array} \right].
\] \tag{3.8}

Expanding \(S_1 \) and \(S_2 \) in double series of powers of \(\alpha \) and \(\beta \), and equating the coefficients of \(\alpha^i \beta^j \) from both sides of (3.6), we finally obtain the trilinear case \((k = 2)\) of (1.11). The multilinear case can indeed be proven similarly, and we omit the details involved.

ACKNOWLEDGMENTS

The present investigation was carried out at the University of Victoria while the second author was on academic leave from Bareilly College (Rohilkhand University). This work was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353. The second author thanks the University Grants Commission of India for providing financial assistance.

REFERENCES

