
The Journal of Logic and
Algebraic Programming 67 (2006) 87–113

��� ����	
���

����
	�

����
��
����
���	

www.elsevier.com/locate/jlap

An institution of modal logics for coalgebras

Corina Cîrstea 1

School of Electronics and Computer Science, University of Southampton,
Southampton SO16 7PX, UK

Abstract

This paper presents a modular framework for the specification of certain inductively-defined
coalgebraic types. Modal logics for coalgebras of polynomial endofunctors on the category of sets
have been studied in [M. Rößiger, Coalgebras and modal logic, in: H. Reichel (Ed.), Coalgebraic
Methods in Computer Science, Electronic Notes in Theoretical Computer Science, vol. 33, Elsevier
Science, 2000, pp. 299–320; B. Jacobs, Many-sorted coalgebraic modal logic: a model-theoretic study,
Theoretical Informatics and Applications 35(1) (2001) 31–59]. These logics are here generalised
to endofunctors on categories of sorted sets, in order to allow collections of inter-related types to
be specified simultaneously. The inductive nature of the coalgebraic types considered is then used
to formalise semantic relationships between different types, and to define translations between the
associated logics. The resulting logical framework is shown to be an institution, whose specifications
and specification morphisms admit final and respectively cofree models.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Coalgebras; Modal logic; Institutions

1. Introduction

During the last decade, coalgebras have been used to model various kinds of state-based,
dynamical systems, including transition systems, automata, and object systems [6,5,7,18].
The emphasis in such modelling is on the observable properties of system states, with the
indistinguishability of states by observations being captured by coalgebraic bisimulation.

The use of coalgebras as models for systems [18] generalises the use of transition systems
as models for processes [17], with coalgebraic bisimulation generalising the standard,
process-theoretic notion of bisimulation. And since, in the case of transition systems,
bisimulation-invariant properties of processes can be expressively captured within modal

E-mail address: cc2@ecs.soton.ac.uk
URL: http://www.ecs.soton.ac.uk/∼cc2/

1 Research partially supported by St. John’s College, Oxford.

1567-8326/$ - see front matter (2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2005.09.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82748406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/jlap
mailto:cc2@ecs.soton.ac.uk

88 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

logic2 [4], when seeking to formalise bisimulation-invariant properties of system states it
is natural to consider logics which are modal in nature.

Various such logics have been studied in recent years [14,9,16,8,15]. The idea underlying
these logics is to generalise the use of standard modal operators to quantify over successor
states in Kripke structures, to arbitrary coalgebraic structures. Coalgebras generalise Kripke
structures by replacing the accessibility relations between their states with arbitrarily com-
plex ways of observing the states of a system. Correspondingly, modal logics for coalgebras
generalise standard modal logic by employing type-specific modal operators that arise from
particular ways of observing the system states in one step. And while such logics differ in
the kinds of coalgebraic types they apply to, as well as in the level of abstraction of the modal
operators they employ, they all capture bisimulation, i.e. the logical equivalence relation
between the states of coalgebras coincides with the bisimilarity relation3.

The present paper is concerned with logics for inductively-defined coalgebraic types,
as considered in [16,8]. The definition of these logics exploits the inductive nature of the
underlying types in order to derive a concrete modal language for each particular type. How-
ever, the approach in [16,8] only considers coalgebras with one sort. Moreover, different,
but semantically-related coalgebraic types give rise to different, but not yet formally related
modal logics. The aim of this paper is to define a specification framework wherein the logics
associated to semantically-related types can themselves be related. Such a framework would
provide support for modular specification, as well as for specification reuse.

The modal logics introduced in [16] have, as models, coalgebras of certain endofunctors
on the category of sets. These endofunctors are constructed from constant and identity
functors, using products, coproducts, certain exponentials and powersets. Here we consider
similar endofunctors on categories of sorted sets, with sorts being used to denote coalgebraic
types, and with the components of the endofunctors in question defining the particular (and
possibly interdependent) structures associated to these types. Moreover, we use natural
transformations arising from the structure of particular endofunctors to capture semantic
relationships between different coalgebraic types. Such natural transformations are shown
to induce translations between the classes of coalgebras associated to these types, as well as
translations between the modal languages induced by these types. Moreover, the satisfaction
of modal formulae by coalgebras is shown to be preserved and reflected by these transla-
tions. That is, the resulting framework constitutes an institution [3]. The morphisms of this
institution capture both refinement and encapsulation relations between coalgebraic types,
as illustrated by several examples. Furthermore, coalgebraic specifications are shown to
admit final coalgebras, whereas coalgebraic specification morphisms come equipped with
cofree coalgebra constructions.

The paper is structured as follows. Section 2 establishes the notation for subsequent
sections, and recalls some basic coalgebraic concepts. Section 3 generalises the approach
in [16,8] to categories of sorted sets, and at the same time defines semantic relationships
between the coalgebraic types of interest. Section 4 defines translations between the logics
associated to semantically-related types, and shows that the resulting framework is an
institution. Section 5 investigates the semantic constructions associated to this institution.
Finally, Section 6 summarises the results presented.

2 The formulae of modal logic are in fact interpreted over Kripke structures; these are annotated transition
systems, with the annotations specifying the atomic propositions which hold in particular states.

3 Restrictions similar to those used in standard modal logic (i.e. image finiteness) are required to obtain
expressiveness for these logics.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 89

2. Preliminaries

Given a category C, its collection of objects will be denoted |C|, and its collection of
arrows will be denoted ‖C‖. Also, the identity map on an object C will be denoted 1C , while
the equality relation on C will be denoted 〈�C, 1C, 1C〉.4 Binary products (coproducts) will
be denoted X × Y (X + Y), with canonical projections (injections) π1 : X × Y → X and
π2 : X × Y → Y (κ1 : X → X + Y and κ2 : Y → X + Y). Exponentials will be denoted
XY , the induced evaluation map will be denoted evalX,Y : XY× Y → X, and the curried
version of a function f : X × Y → Z will be denoted f ∗ : X → ZY .

The opposite category of a category C will be denoted Cop. The category of categories
and functors will be denoted Cat. Also, for conciseness of presentation, functor applications
F(X) will be written FX, while functor compositions F ◦ G will sometimes be written FG.
Given categories C and D, the category of functors from C to D and natural transformations
between them will be denoted [C,D].

Throughout the paper, Set will denote the category of sets and functions, and 1 = {∗}
will denote a one-element set. The identity functor on Set will be denoted Id : Set → Set,
while the powerset functor, taking a set to the set of its subsets, and a function to its direct
image, will be denoted P : Set → Set. For a regular cardinal κ , the κ-bounded powerset
functor, taking a set to the set of its subsets of cardinality smaller that κ , will be denoted
Pκ : Set → Set. In particular, the finite powerset functor Pω takes a set to the set of its
finite subsets.

Given a set S (of sorts), SetS will denote the category of S-sorted sets and S-sorted
functions: its objects are given by S-indexed families C = (Cs)s∈S of sets, while arrows
from C to D are given by S-indexed families f = (fs)s∈S of functions, with fs : Cs → Ds
for s ∈ S. For s ∈ S, the s-projection functor, taking S-sorted sets/functions to their s-sorted
component, will be denoted�s : SetS → Set. (If S = {s}, we identify�s : Set{s} → Set
with Id : Set → Set.)

Now let T : C → C be an endofunctor.5 A T-coalgebra is a pair 〈C, γ 〉 with C ∈ |C|
(the carrier of the coalgebra) and (γ : C → TC) ∈ ‖C‖6 (the coalgebra map). Also, a T-
coalgebra homomorphism between T-coalgebras 〈C, γ 〉 and 〈D, δ〉 is a C-arrow f : C →
D additionally satisfying Tf ◦ γ = δ ◦ f . The category of T-coalgebras and T-coalgebra
homomorphisms is denoted Coalg(T).

In what follows, we will only be concerned with weak pullback preserving endofunctors7

T : C → C. For such endofunctors, notions of T-subcoalgebra and T-bisimulation are
defined as follows.

For a T-coalgebra 〈C, γ 〉, a T-subcoalgebra of 〈C, γ 〉 is given by a T-coalgebra 〈D, δ〉
together with a T-coalgebra homomorphism m : 〈D, δ〉 → 〈C, γ 〉, with m : D → C a C-
monomorphism.8 The category whose arrows are T-subcoalgebras of 〈C, γ 〉, and whose
arrows from 〈〈D, δ〉,m〉 to 〈〈D′, δ′〉,m′〉 are T-coalgebra homomorphisms f : 〈D, δ〉 →
〈D′, δ′〉 additionally satisfying m′ ◦ f = m, is denoted SubCoalg(〈C, γ 〉). Also, given a

4 The category-theoretic definition of relations as monic spans is used here.
5 For C = SetS , such an endofunctor can be used to specify the structure associated to an S-indexed collection

of coalgebraic types.
6 Each such γ provides a particular interpretation of the structure specified by T.
7 Weak pullbacks are defined similarly to standard pullbacks, except that the mediating arrows are not required

to be unique.
8 The preservation of weak pullbacks (and hence of weak kernel pairs) by T results in the T-subcoalgebras of

〈C, γ 〉 being in one-to-one correspondence with the Coalg(T)-subobjects of 〈C, γ 〉.

90 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

C-monomorphism ι : X → C, the full subcategory of SubCoalg(〈C, γ 〉) whose objects
〈〈D, δ〉,m〉 are such that m : D → C factors through ι9 is denoted SubCoalg(〈C, γ 〉, ι).

Given T-coalgebras 〈C, γ 〉 and 〈D, δ〉, a T-bisimulation between them is a relation10

〈R,π1, π2〉 between C and D, with R carrying a T-coalgebra structure ρ : R → TR, making
π1 : R → C and π2 : R → D T-coalgebra homomorphisms. The largest T-bisimulation
between 〈C, γ 〉 and 〈D, δ〉 (obtained as the union of all such bisimulations) is called T-
bisimilarity and is denoted ∼.

3. Modal logics for Kripke polynomial endofunctors on categories of sorted sets

Modal logics for an inductively-defined class of endofunctors on Set have been studied
in [16,8]. This section generalises the approach in [16,8] to endofunctors on categories of
sorted sets.

In order to facilitate the definition of a modular specification framework in the next
section, the components of such endofunctors are regarded as objects of a category whose
arrows, arising naturally from the structure of the functors, capture semantic relationships
between coalgebraic types.

Definition 1. Let S denote a set (of sorts). The category of Kripke polynomial functors
on SetS , denoted KPS , is the subcategory of [SetS,Set] defined by
• the objects of KPS are generated by the following grammar:

F ::= D | �s | F1 × F2 | F1 + F2 | FD | P ◦ F

withD : SetS → Set denoting the constant functorX �→ D, forD /= ∅, and with FD :
SetS → Set denoting the functor X �→ (FX)D , for D finite and non-empty;

• the arrows of KPS are generated from:
(i) natural transformations α : D′ ⇒ D induced by functions α : D′ → D with α−1(d)

finite for all d ∈ D, and
(ii) constant natural transformations d : F ⇒ D (given by dX(f) = d for all f ∈ FX),

for d ∈ D,
by closing KPS under products, coproducts, exponentials and powersets.

The restrictions concerning the finiteness of the sets α−1(d) with d ∈ D, and of the sets
D appearing as exponents in the definition of Kripke polynomial functors will be required
later in the paper, namely when defining translations between the logics induced by different
functors (Definition 25).

Replacing the closure under powersets in Definition 1 with closure under finite powersets
yields a notion of finite Kripke polynomial functor on SetS . Most of the results in this
paper are formulated for Kripke polynomial functors11, however, they also hold for finite
Kripke polynomial functors.

9 That is, m = ι ◦ n for some n : D → X.
10 In Set, relations are given by subsets of the cartesian productC ×D. In SetS , relations are given by S-indexed
families (Rs)s∈S , with Rs a subset of Cs ×Ds for s ∈ S.
11 Exceptions to this are Lemma 19 and Proposition 20, which only hold for finite Kripke polynomial functors.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 91

Remark 2. An immediate consequence of the definition of KPS is the existence, in this
category, of arrows of form:
• πi : F1 × F2 ⇒ Fi with i ∈ {1, 2}, whenever Fi ∈ |KPS | for i = 1, 2,

• 〈η1, η2〉 : F ⇒ F1 × F2 whenever (ηi : F ⇒ Fi) ∈ ‖KPS ‖ for i = 1, 2,

• κi : Fi ⇒ F1 + F2 with i ∈ {1, 2}, whenever Fi ∈ |KPS | for i = 1, 2,

• [η1, η2] : F1 + F2 ⇒ F whenever (ηi : Fi ⇒ F) ∈ ‖KPS ‖ for i = 1, 2,

• evalF,D : FD ×D ⇒ F whenever F,D ∈ |KPS | with D a constant functor induced by
some finite, non-empty D,

• η∗ : F′ ⇒ FD whenever (η : F′ ×D ⇒ F) ∈ ‖KPS ‖ with D a constant functor induced
by some finite, non-empty D,

• P(η) : P ◦ F ⇒ P ◦ F′ whenever (η : F ⇒ F′) ∈ ‖KPS ‖,
subject to the following equalities:

(1) πi ◦ 〈η1, η2〉 = ηi for i = 1, 2.
(2) [η1, η2] ◦ κi = ηi for i = 1, 2.
(3) evalF,D ◦ (η∗ × 1D) = η.

In particular, KPS contains arrows of form:
• η1 × η2 : F1 × F2 ⇒ F′

1 × F′
2 (given by 〈η1 ◦ π1, η2 ◦ π2〉) whenever (ηi : Fi ⇒ F′

i) ∈
‖KPS ‖ for i = 1, 2.

• η1 + η2 : F1 + F2 ⇒ F′
1 + F′

2 (given by [κ1 ◦ η1, κ2 ◦ η2]) whenever (ηi : Fi ⇒ F′
i) ∈

‖KPS ‖ for i = 1, 2.

• ηD : F′D ⇒ FD (given by (η ◦ evalF ′,D)∗) whenever (η : F′ ⇒ F) ∈ ‖KPS ‖ and D ∈
|KPS | with D a constant functor induced by some finite, non-empty D.

• Fα : FD ⇒ FD
′
(given by (evalF,D ◦ (1FD × α))∗) whenever F ∈ |KPS | and (α : D′ ⇒

D) ∈ ‖KPS ‖ with D,D′ being constant functors induced by some finite, non-empty
D,D′.

The notion of Kripke polynomial endofunctor on Set, as defined in [8], now generalises
to categories of sorted sets as follows.

Definition 3. Let S denote a set (of sorts). A Kripke polynomial endofunctor on SetS is
an endofunctor T : SetS → SetS such that Ts ∈ |KPS | for each s ∈ S.

Kripke polynomial endofunctors on SetS specify the structure associated to an S-indexed
collection of (interdependent) coalgebraic types. Any occurrence of the projection functor
�s : SetS → Set in the definition of Ts′ , with s, s′ ∈ S, specifies a dependence of the type
denoted by s′ on the type denoted by s.

For S � 1, the objects of the category KPS are precisely the Kripke polynomial endo-
functors on Set, as defined in [8]. The emphasis in [8] is, however, on a different aspect
of Kripke polynomial endofunctors, namely on the syntactic dependencies between these
endofunctors, with the notion of ingredient being used to capture such a dependency.
An endofunctor F : Set → Set is an ingredient [8] of a Kripke polynomial endofunctor
T : Set → Set in case the inductive definition of T incorporates that of F, i.e. in case F
“occurs” in the definition of T. In contrast, the arrows of the category KP1 (and indeed,
KPS , for an arbitrary S) capture semantic relationships between (the components of) Kripke
polynomial endofunctors: any natural transformation η : F ⇒ G also induces a mapping

92 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

from F-coalgebras to G-coalgebras, which takes an F-coalgebra 〈C, γ 〉, with γ : C → FC,
to the G-coalgebra 〈C, γ ′〉, with γ ′ : C → GC being given by ηC ◦ γ . This observation
will be exploited in Section 4, where an institution of many-sorted coalgebraic modal logics
will be defined.

Example 4. Let A be a set (of labels), and let TLTS : Set → Set be given by

TLTS = PA = (P ◦ Id)A

Then, any TLTS-coalgebra 〈S, next〉 defines an A-labelled transition system with states S
and transition relations Ra ⊆ S × S given by

s Ra t iff next (s)(a) � t

for s, t ∈ S anda ∈ A. Conversely, any A-labelled transition system defines a TLTS-coalgebra.

Example 5. Lists whose elements belong to a set E can be specified using the endofunctor
TLIST : Set → Set given by

TLIST = (1 + E)× (1 + Id)

Then, a TLIST-coalgebra defines a set L (of lists) together with a pair of functions 〈hd, tl〉 :
L → (1 + E)× (1 + L) (defining the head and the tail of each list). Not any such coalgebra,
however, provides a meaningful implementation of lists; for this, one has to additionally
require that the head and tail of a list are either both undefined (i.e. equal to κ1(∗)) or both
defined.

Example 6. A specification of finite lists which exploits the previous specification of lists
can be given using the endofunctor TFLIST : Set → Set defined by

TFLIST = TLIST × N

In addition to the structure required of TLIST-coalgebras, TFLIST-coalgebras also have to
provide a function len : L → N (defining the length of each list). Again, not any coalgebra
of this endofunctor provides a meaningful implementation of finite lists; for this, one has to
also require that the length of a list is consistent with the information provided by the tail
operation.

Example 7. A specification of arrays of size m can be obtained by reusing the speci-
fication of lists given in Example 5. Specifically, one can consider the endofunctor T :
Set{mList,Array} → Set{mList,Array} whose two components are given by

TmList = (TLIST�mList × {0, . . . , m})× (1 + E){1,... ,m}

TArray = �mList × E{1,... ,m}

These components correspond to the types of lists of length not exceeding m, and re-
spectively of arrays of size m (with lists of length m being used to implement such

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 93

arrays). In defining TmList, the projection functor �mList : Set{mList,Array} → Set
is used to extract the mList-sorted component of the (two-sorted) argument of T, to
which the endofunctor specifying lists is then applied. The result of this application is
(1 + E)× (1 +�mList). TmList also specifies a length, between 0 and m, for each list,
as well as an observer for extracting the element situated in a given position (between
1 and m) in a list, in case such an element exists. Next, TArray specifies a list used
to implement an array (again, by using �mList to extract the mList-sorted component
of the argument of T), as well as an observer for extracting the element with a given
index in the array. A complete specification of arrays of size m will have to include a
specification of lists as outlined in Example 5 (subject to a suitable translation), as well
as to further constrain the length operation on lists, the additional list observer and the
array observer.

In [8], the notion of ingredient is used to associate a modal language to each Kripke
polynomial endofunctor on Set (by means of structural induction). Such modal
languages are subsequently interpreted over coalgebras of the underlying Kripke poly-
nomial endofunctors. The next definition generalises the notion of modal formula in-
troduced in [8] to Kripke polynomial endofunctors on SetS . Instantiating it to Kripke
polynomial endofunctors on Set yields a definition equivalent to the one in [8], but
which does not make use of ingredient functors. Similarly to [8], the resulting modal
languages will later be interpreted over coalgebras of Kripke polynomial endofunctors
on SetS .

Definition 8. Let T : SetS → SetS denote a Kripke polynomial endofunctor. For F ∈
|KPS |, the set FormT(F) of modal formulae over T of type F is defined inductively (on
the structure of F) as follows:
• ⊥ ∈ FormT(F)

• (ϕ → ψ) ∈ FormT(F) if ϕ ∈ FormT(F) and ψ ∈ FormT(F)

• d ∈ FormT(D) if d ∈ D
• [nexts]ϕ ∈ FormT(�s) if ϕ ∈ FormT(Ts), with s ∈ S
• [πi]ϕ ∈ FormT(F1 × F2) if ϕ ∈ FormT(Fi), with i ∈ {1, 2}
• [κi]ϕ ∈ FormT(F1 + F2) if ϕ ∈ FormT(Fi), with i ∈ {1, 2}
• [ev(d)]ϕ ∈ FormT(FD) if d ∈ D and ϕ ∈ FormT(F)

• [P]ϕ ∈ FormT(P ◦ F) if ϕ ∈ FormT(F)
Also, for s ∈ S, the set SForm(T)s of state formulae over T of type s is given by
FormT(�s).

If T is an endofunctor on Set and F is an ingredient of T (see [8]), then modal formulae
over T of type F are essentially the same as modal formulae of sort F, as defined in [8]
(w.r.t. T).12 The above definition, however, differs from the one in [8] in that it makes
the coalgebraic type of interest explicit. This will later allow us to consider semantic

12 The modal logic defined in [8] is also qualified as many-sorted. However, in [8], sorts are used to refer to the
ingredients of an endofunctor on Set, whereas here, many-sortedness is a feature of the underlying category, with
sorts being used to denote the types of interest.

94 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

relationships between different coalgebraic types, and to lift such relationships to a logical
level.

Remark 9. For a Kripke polynomial endofunctor T : SetS → SetS , one can also define:
• � ::= ⊥ → ⊥ ∈ FormT(F)

• ¬ϕ ::= ϕ → ⊥ ∈ FormT(F)

• ϕ ∨ ψ ::= ¬ϕ → ψ ∈ FormT(F)

• ϕ ∧ ψ ::= ¬(ϕ → ¬ψ) ∈ FormT(F)

• 〈nexts〉ϕ ::= ¬[nexts]¬ϕ ∈ FormT(�s) for ϕ ∈ FormT(Ts) with s ∈ S
• 〈πi〉ϕ ::= ¬[πi]¬ϕ ∈ FormT(F1 × F2) for ϕ ∈ FormT(Fi) with i ∈ {1, 2}
• 〈κi〉ϕ ::= ¬[κi]¬ϕ ∈ FormT(F1 + F2) for ϕ ∈ FormT(Fi) with i ∈ {1, 2}
• 〈ev(d)〉ϕ ::= ¬[ev(d)]¬ϕ ∈ FormT(FD) for d ∈ D and ϕ ∈ FormT(F)

• 〈P〉ϕ ::= ¬[P]¬ϕ ∈ FormT(P ◦ F) for ϕ ∈ FormT(F)
(Similar modal operators are defined in [16] in a one-sorted setting.)

Example 10. Let TLIST : Set → Set be as in Example 5. Then, one can successively
infer:

� ∈ FormTLIST(1)

〈κ1〉� ∈ FormTLIST(1 + E)

[π1]〈κ1〉� ∈ FormTLIST(TLIST)

[next][π1]〈κ1〉� ∈ FormTLIST(Id)

〈κ2〉[next][π1]〈κ1〉� ∈ FormTLIST(1 + Id)

[π2]〈κ2〉[next][π1]〈κ1〉� ∈ FormTLIST(TLIST)

[next][π2]〈κ2〉[next][π1]〈κ1〉� ∈ FormTLIST(Id)

Example 11. Let T : Set{mList,Array} → Set{mList,Array} be as in Example 7. Then,
one can successively infer:

m ∈ FormT({0, . . . , m})
[π2]m ∈ FormT(TLIST�mList × {0, . . . , m})

[π1][π2]m ∈ FormT(TmList)

[nextmList][π1][π2]m ∈ FormT(�mList)

[π1][nextmList][π1][π2]m ∈ FormT(TArray)

[nextArray][π1][nextmList][π1][π2]m ∈ FormT(�Array)

The formulae which interest us are the state formulae, defined as formulae of projection
type (i.e. �s with s ∈ S). They refer to the states of coalgebras, and are to be interpreted
as subsets of the carriers of coalgebras. The definition of such interpretations follows the
structure of the corresponding components (i.e. Ts with s ∈ S).

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 95

Definition 12. Let T : SetS → SetS denote a Kripke polynomial endofunctor, and let
〈C, γ 〉 denote a T-coalgebra. For F ∈ |KPS |, the interpretation13 [[ϕ]]γF ∈ P(FC) of a
modal formulaϕ ∈ FormT(F) in the coalgebra 〈C, γ 〉 is defined inductively (on the structure
of ϕ and F) as follows:
• [[⊥]]γF = ∅
• [[ϕ → ψ]]γF = [[ϕ]]γF ∪ [[ψ]]γF14

• [[d]]γD = {d} with d ∈ D
• [[[nexts]ϕ]]γ�s = γ−1

s ([[ϕ]]γTs) with s ∈ S
• [[[πi]ϕ]]γF1×F2

= π−1
i ([[ϕ]]γFi) with i ∈ {1, 2}

• [[[κi]ϕ]]γF1+F2
= κi([[ϕ]]γFi) ∪ κj (FjC) with i ∈ {1, 2} and {j} = {1, 2} \ {i}

• [[[ev(d)]ϕ]]γFD = { f : D → FC | f (d) ∈ [[ϕ]]γF } with d ∈ D
• [[[P]ϕ]]γ

P◦F = P([[ϕ]]γF)
An element c ∈ FC is said to satisfy a modal formula ϕ ∈ FormT(F) (written c |= ϕ)

if and only if c ∈ [[ϕ]]γF . Also, the coalgebra 〈C, γ 〉 is said to satisfy the modal formula
ϕ (written 〈C, γ 〉 |= ϕ) if and only if [[ϕ]]γF = FC. In particular, given s ∈ S, an element
c ∈ Cs is said to satisfy a state formula ϕ ∈ SForm(T)s if and only if c ∈ [[ϕ]]γ�s , while

the coalgebra 〈C, γ 〉 is said to satisfy the state formula ϕ if and only if [[ϕ]]γ�s = Cs . Two
modal formulae ϕ,ψ ∈ FormT(F) are said to be semantically equivalent (written ϕ ≡ ψ)
if and only if [[ϕ]]γF = [[ψ]]γF for any T-coalgebra 〈C, γ 〉.

(The above definition generalises a similar definition in [8] to Kripke polynomial endo-
functors on sorted sets.)

Remark 13. The following are consequences of Remark 9 and Definition 12:
• [[�]]γF = FC

• [[¬ϕ]]γF = [[ϕ]]γF
• [[ϕ ∨ ψ]]γF = [[ϕ]]γF ∪ [[ψ]]γF
• [[ϕ ∧ ψ]]γF = [[ϕ]]γF ∩ [[ψ]]γF
• [[〈nexts〉ϕ]]γ�s = [[[nexts]ϕ]]γ�s
• [[〈πi〉ϕ]]γF1×F2

= [[[πi]ϕ]]γF1×F2

• [[〈ev(d)〉ϕ]]γFD = [[[ev(d)]ϕ]]γFD
• [[〈κi〉ϕ]]γF1+F2

= κi([[ϕ]]γF1
)�κi([[ϕ]]γF1

) ∪ κj (F2C) = [[[κi]ϕ]]γF1+F2

• [[〈P〉ϕ]]γ
P◦F = {X ⊆ FC | X ∩ [[ϕ]]γF /= ∅ } /= P([[ϕ]]γF) = [[[P]ϕ]]γ

P◦F

Example 14. Let TLTS : Set → Set be as in Example 4. Then, the formulae of Hennessy-
Milner logic are essentially a subset of SForm(TLTS). For, one can successively infer:

13 The definition of [[ϕ]]γF also depends on T. However, to keep the notation as simple as possible, this dependency
is not reflected in the notation.
14 For X ∈ P(FC), X is given by FC \X.

96 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

ϕ ∈ FormTLTS(Id)

[P]ϕ ∈ FormTLTS(P ◦ Id)

[ev(a)][P]ϕ ∈ FormTLTS((P ◦ Id)A)

[next][ev(a)][P]ϕ ∈ FormTLTS(Id)

Thus, the modal operators of Hennessy-Milner logic can be recovered by letting 〈a〉 ::=
[next][ev(a)][P] for a ∈ A. Moreover, the interpretations of state formulae of form 〈a〉ϕ
over TLTS-coalgebras coincide with the standard interpretations of such formulae over the
corresponding transition systems:

s |= 〈a〉ϕ ⇔ ∃ t ∈ next (s)(a). t |= ϕ

for any TLTS-coalgebra next : S → P(S)A, s ∈ S and a ∈ A.

Example 15. Let TLIST : Set → Set be as in Example 10. Also, let γ = 〈hd, tl〉 : L →
(1 + E)× (1 + L) denote a TLIST-coalgebra. One can then successively infer:

[[�]]γ1 = 1

[[〈κ1〉�]]γ1+L = κ1(1)

[[[π2]〈κ1〉�]]γTLIST = (1 + E)× κ1(1)

[[[next][π2]〈κ1〉�]]γId = γ−1((1 + E)× κ1(1)) = t l−1(κ1(1))

Thus, the formula [next][π2]〈κ1〉� ∈ FormTLIST(Id) holds in precisely those states l ∈ L
on which the tail operation t l : L → 1 + L yields an undefined result. Similarly, the formula
[next][π1]〈κ1〉� ∈ FormTLIST(Id) holds in precisely those states l ∈ L on which the head
operation hd : L → 1 + E yields an undefined result. The following modal formula now
completes the specification of lists:

[next][π1]〈κ1〉� ↔ [next][π2]〈κ1〉�
After renaming [next][π1]〈κ1〉 to <hdU> and [next][π2]〈κ1〉 to <tlU>, this formula be-
comes:

<hdU>� ↔ <tlU>�
where

l |= <hdU>ϕ1 ⇔ ∃ s . hd(l) = κ1(s) and s |= ϕ1
l |= <tlU>ϕ1 ⇔ ∃ s . t l(l) = κ1(s) and s |= ϕ1

for any TLIST-coalgebra 〈hd, tl〉 : L → (1 + E)× (1 + L) and any l ∈ L. Thus, the spec-
ification of lists formalises the observation that the head and tail of a list are either both
undefined or both defined.

Example 16. Let T : Set{mList,Array} → Set{mList,Array} be as in Example 11. Also, let
γ = (γmList, γArray) : (L,A) → (TmList(L,A),TArray(L,A)) denote a T-coalgebra.
One can then successively infer:

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 97

[[m]]γ{0,... ,m} = {m}

[[[π2]m]]γTLIST�mList×{0,... ,m} = π−1
2 ({m})

[[[π1][π2]m]]γTmList = π−1
1 (π−1

2 ({m}))

[[[nextmList][π1][π2]m]]γ�mList
= γ−1

mList(π
−1
1 (π−1

2 ({m})))

[[[π1][nextmList][π1][π2]m]]γTArray = π−1
1 (γ−1

mList(π
−1
1 (π−1

2 ({m}))))

[[[nextArray][π1][nextmList][π1][π2]m]]γ�Array
= γ−1

Array(π
−1
1 (γ−1

mList(π
−1
1 (π−1

2 ({m})))))

That is, a state a ∈ A satisfies the formula [nextArray][π1][nextmList][π1][π2]m precisely
when π2(π1(γmList(π1(γArray(a))))) = m, i.e. precisely when the length of the list used
to implement the array a is m.

It is shown in [16] that the modal logics defined there for finite Kripke polynomial
endofunctors on Set capture bisimulation, that is, the logical equivalence relation between
states coincides with the bisimilarity relation. The proof of this result uses an alternative
definition of the notion of bisimulation induced by Kripke polynomial endofunctors on Set.
Both the result and its proof generalise to Kripke polynomial endofunctors on SetS . The
remainder of this section briefly sketches this generalisation.

Definition 17. Let T : SetS → SetS denote a Kripke polynomial endofunctor, and let
〈C, γ 〉 and 〈D, δ〉 be T-coalgebras. For s ∈ S, two states c ∈ Cs and d ∈ Ds are said to be
logically equivalent (written c ≈ d) if for all ϕ ∈ SForm(T)s , c |= ϕ if and only if d |= ϕ.

Definition 18. Let C,D ∈ |SetS |, and let R denote a relation between C and D. For F :
SetS → Set a finite Kripke polynomial functor, the F-lifting of R15, denoted RF, is a
relation between FC and FD defined inductively by
• RD = �D for D ∈ |Set| finite and non-empty

• R�s = Rs for s ∈ S
• RF1×F2 = { 〈s, t〉 | πi(s) RFi πi(t) for i = 1, 2 }
• RF1+F2 = { 〈κ1(s), κ1(t)〉 | s RF1 t } ∪ { 〈κ2(s), κ2(t)〉 | s RF2 t }
• RFD = { 〈f, g〉 | f (d)RF g(d) for all d ∈ D }
• RPω(F) = { 〈S, T 〉 | ∀ s ∈ S ∃ t ∈ T . s RF t and ∀ t ∈ T ∃ s ∈ S . s RF t }

Now given a finite Kripke polynomial endofunctor T : SetS → SetS , the T-lifting of
R, denoted RT, is the (S-sorted) relation between TC and TD whose components are given
by (RT)s = RTs for s ∈ S.

Lemma 19. Let T : SetS → SetS denote a finite Kripke polynomial endofunctor, and
let 〈C, γ 〉 and 〈D, δ〉 be T-coalgebras. An S-sorted relation R between C and D is a
T-bisimulation if and only if, for all s ∈ S and all c ∈ Cs and d ∈ Ds, cRd implies
γs(c)RTs δs(d).

15 Such liftings have also been defined in [7,16,8], in a one-sorted setting.

98 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

Proof (Sketch). The statement follows easily from the definitions of RTs and of the notion
of bisimulation. �

The result in [16] now generalises to endofunctors on SetS .

Proposition 20. Let T : SetS → SetS denote a finite Kripke polynomial endofunctor, and
let 〈C, γ 〉 and 〈D, δ〉 be T-coalgebras. Then, given c ∈ Cs and d ∈ Ds with s ∈ S, c ≈ d

if and only if c ∼ d. �

Proof (Sketch). Similar to the proof of [16, Proposition 4.8]. Specifically, the “if” direction
uses Lemma 19 along a structural induction on Ts , whereas the “only if” direction uses
structural induction on Ts to define a formula ϕ ∈ FormT(�s) which holds in c but not in
d, whenever c �∼ d . �

4. An institution of modal logics

The arrows of the category KPS capture semantic relationships between (the components
of) Kripke polynomial endofunctors. In the following, such arrows will be shown to induce
translations between the logics associated to different endofunctors, in such a way that the
satisfaction of modal formulae by coalgebras is preserved and reflected along the induced
translations. This approach will provide support for modular specification, by allowing
specifications and their global semantic consequences16 to be carried over from simpler
coalgebraic types to more complex ones.

Collections of (interdependent) coalgebraic types are specified using many-sorted cosig-
natures, whereas semantic relationships between different such collections are specified
using many-sorted cosignature morphisms.

Definition 21. A many-sorted cosignature is a pair (S,T) with S a set and T : SetS →
SetS a Kripke polynomial endofunctor. A many-sorted cosignature morphism from
(S,T) to (S′,T′) is a pair (f, η) with f : S → S′ and η : UT′ ⇒ TU,17 such that �sη ∈
‖KPS′ ‖ for each s ∈ S. The category of many-sorted cosignatures and many-sorted cosig-
nature morphisms is denoted Cosign.

The endofunctor U : SetS
′ → SetS satisfies �sU = �f(s) for each s ∈ S. As a result,

the natural transformation�sη is of form ηs : T′
f (s) ⇒ TsU, for each s ∈ S. Such a natural

transformation specifies a semantic relationship between the coalgebraic structure specified
by T for the type denoted by s and the coalgebraic structure specified by T′ for the type
denoted by f (s). Specifically, if we regard T′

f (s) as defining some additional structure to the
structure specified by Ts for the sort s, then ηs shows how the Ts-structure can be retrieved
from the T′

f (s)-structure.

16 A formulaϕ is a global semantic consequence of a set�of formulae if 〈C, γ 〉 |= ϕ holds whenever 〈C, γ 〉 |= �,
for any T-coalgebra 〈C, γ 〉. On the other hand, ϕ is a local semantic consequence of � if c |= � implies c |= ϕ,
for any T-coalgebra 〈C, γ 〉 and any c ∈ Cs , with s ∈ S denoting the type of ϕ.
17 Here, U : SetS

′ → SetS denotes the functor taking an S′-sorted set C′ (S′-sorted function g′) to the S-sorted
set C (S-sorted function g) given by Cs = C′

f (s)
(gs = g′

f (s)
) for s ∈ S.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 99

In case ηs is the identity natural transformation on TsU, we say that the type s is
encapsulated along η. Otherwise, we say that s is refined along η.

It follows from Definition 1 (see also Remark 2) that each component�sη of the natural
transformation η defining a many-sorted cosignature morphism is constructed from natural
transformations of form 1F : F ⇒ F, α : D′ ⇒ D, d : F ⇒ D, πi : F1 × F2 ⇒ Fi , κi :
Fi ⇒ F1 + F2 and evalF,D : FD ×D ⇒ F, using pairing 〈η1, η2〉, co-pairing [η1, η2], cur-
rying η∗, direct image P(η) and horizontal composition. This will allow us to use induction
to define translations of modal formulae along many-sorted cosignature morphisms.

Example 22. Let TLIST : Set → Set and TFLIST : Set → Set be as in Examples 5 and
respectively 6. Then, the natural transformation η1 ::= π1 : TFLIST ⇒ TLIST defines a
cosignature morphism (11, η1) : (1,TLIST) → (1,TFLIST). This cosignature morphism
refines the type of lists to finite lists.

Example 23. Let TLIST : Set → Set and TFLIST : Set → Set be as before, and let T :
Set{mList,Array} → Set{mList,Array} be as in Example 7. Also, let U : Set{mList,Array} →
Set be given by�mList. Then, one can define a cosignature morphism (f, η2) : ({FList},
TFLIST) → ({mList, Array},T) by letting f : {FList} → {mList, Array} take the sort
FList to the sort mList, and letting η2 : UT ⇒ TFLISTU be given by (1 × ι) ◦ π1:

UT = TmList
π1�⇒ TLIST�mList × {0, . . . , m} 1×ι�⇒ TLIST�mList × N = TFLISTU

where ι : {0, . . . , m} → N is the canonical inclusion.

Remark 24. More general notions of morphisms between coalgebraic signatures have been
defined e.g. in [2] or [11]. In [2, Section 3.1], a cosignature was defined as a pair (C,T)with
C a category and T : C → C an endofunctor, whereas a morphism between cosignatures
(C,T) and (D,T′) was defined as a pair (U, η) with U : D → C a limit-preserving functor
which admits a right adjoint, and with η : UT′ ⇒ TU a natural transformation. A similar
definition was given in [11, Section 4.2], only there, no restrictions on the functor U were
imposed. The notion of many-sorted cosignature morphism considered here is an instance
of either of these notions (with C, D, U and η all taking specific forms).

Many-sorted cosignature morphisms (f, η) : (S,T) → (S′,T′) induce reduct functors
Uη : Coalg(T′) → Coalg(T), with Uη taking a T′-coalgebra 〈C′, γ ′〉 to the T-coalgebra
〈UC′, ηC′ ◦ Uγ ′〉. This yields a functor Coalg : Cosign → Catop, taking a many-sorted
cosignature to its category of coalgebras, and a many-sorted cosignature morphism to the
induced reduct functor.

Next, we show that many-sorted cosignature morphisms induce translations of state
formulae over their domain to state formulae over their codomain. The definition of such
translations mirrors the definition of state formulae over a Kripke polynomial endofunctor:
in the same way as defining state formulae over a Kripke polynomial endofunctor T involved
first defining modal formulae over T of arbitrary type F, and then instantiating F with �s ,
defining a translation of state formulae over T along a many-sorted cosignature morphism
η : (S,T) → (S′,T′)will involve first defining translations (w.r.t. η) of modal formulae over
T of arbitrary type F along arbitrary natural transformations τ : F′ ⇒ FU, and then instan-
tiating τ with 1�f(s) : �f(s) ⇒ �sU. The resulting translations will, in general, depend not
only on the natural transformation τ but also on the underlying natural transformation η.

100 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

Consequently, translations along identity natural transformations τ will not leave modal
formulae unchanged, unless the underlying η is itself an identity natural transformation.

For a particular natural transformation τ , the definition of the translation along τ (w.r.t. a
fixed η) is driven by the need to ensure that the interpretations of formulae are preserved
along the translation. This will later allow us to prove that the resulting logical framework
is an institution.

Definition 25. Let (f, η) : (S,T) → (S′,T′) denote a many-sorted cosignature morphism.
For F ∈ |KPS |, F′ ∈ |KPS′ | and (τ : F′ ⇒ FU) ∈ ‖KPS′ ‖18, the translation along τ w.r.t.η
of modal formulae ϕ over T of type F to modal formulae over T′ of type F′ is defined
inductively (on the structure of ϕ and τ) as follows:

(1) (a) ⊥ τη−−−→ ⊥
(b) (ϕ → ψ)

τη−−→ (ϕ′ → ψ ′) if ϕ
τη−−→ ϕ′ and ψ

τη−−→ ψ ′
(2) If τ is given by an identity natural transformation, the following subcases can be

distinguished:
(a) If τ is given by 1DU : D = DU ⇒ DU:

d
(1DU)η−−−→ d

(b) If τ is given by 1�f(s) : �f(s) ⇒ �f(s) = �sU with s ∈ S:

[nexts]ϕ
(1�f (s))η−−−−→ [nextf (s)]ϕ′ if ϕ

(ηs)η−−→ ϕ′

where ηs : T′
f (s) ⇒ TsU.

(c) If τ is given by 1F1U×F2U : F1U × F2U ⇒ F1U × F2U = (F1 × F2)U:

[πi]ϕ
(1F1U×F2U)η−−−−−−→ [πi]ϕ′ if ϕ

(1FiU)η−−−→ ϕ′ , with i ∈ {1, 2}
(d) If τ is given by 1F1U+F2U : F1U + F2U ⇒ F1U + F2U = (F1 + F2)U:

[κi]ϕ
(1F1U+F2U)η−−−−−−→ [κi]ϕ′ if ϕ

(1FiU)η−−−→ ϕ′ , with i ∈ {1, 2}
(e) If τ is given by 1(FU)D : (FU)D ⇒ (FU)D = FDU:

[ev(d)]ϕ (1(FU)D)η−−−−→ [ev(d)]ϕ′ if ϕ
(1FU)η−−→ ϕ′

(f) If τ is given by 1PFU : P ◦ (FU) ⇒ P ◦ (FU) = (P ◦ F)U:

[P]ϕ (1PFU)η−−−→ [P]ϕ′ if ϕ
(1FU)η−−→ ϕ′

(3) (a) If τ is given by α : D′ ⇒ D = DU19:

d
αη−−→ ∨

α(d ′)=d
d ′

(b) If τ is given by d : F ⇒ D = DU:

d ′ dη−−→
{

� if d ′ = d

⊥ if d ′ /= d

(c) If τ is given by πi : F′
1 × F′

2 ⇒ FiU with i ∈ {1, 2} and with F′
i = FiU:

ϕ
(πi)η−−→ [πi]ϕ′ if ϕ

(1FiU)η−−−→ ϕ′

18 Note that F ∈ |KPS | implies FU ∈ |KPS′ |. This follows from �sU = �f (s) for any s ∈ S.
19 Here it is essential that the sets α−1(d) with d ∈ D be finite.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 101

(d) If τ is given by 〈τ1, τ2〉 : F ⇒ F1U × F2U = (F1 × F2)U with τi : F ⇒ FiU for
i = 1, 2:

[πi]ϕ 〈τ1,τ2〉η−−−→ ϕ′ if ϕ
(τi)η−−→ ϕ′ , i ∈ {1, 2}

(e) If τ is given by κi : FiU ⇒ F1U + F2U = (F1 + F2)U with i ∈ {1, 2}:

[κj]ϕ (κi)η−−→

⎧⎨
⎩ϕ

′ if j = i and ϕ
(1FiU)η−−−→ ϕ′

� if j /= i

, j ∈ {1, 2}

(f) If τ is given by [τ1, τ2] : F1 + F2 ⇒ FU with τi : Fi ⇒ FU for i = 1, 2:

ϕ
[τ1,τ2]η−−−→ [κ1]ϕ1 ∧ [κ2]ϕ2

if ϕ
(τi)η−−→ ϕi

for i = 1, 2

(g) If τ is given by evalFU,D : (FU)D ×D ⇒ FU20:

ϕ
(evalFU,D)η−−−−−→ ∧

d∈D
([π2]d → [π1][ev(d)]ϕ′) if ϕ

(1FU)η−−→ ϕ′

(h) If τ is given by ζ ∗ : F′ ⇒ (FU)D = FDU with ζ : F′ ×D ⇒ FU:

[ev(d)]ϕ (ζ ∗)η−−→ ϕ′ if ϕ
ζη−−→ ϕ1

〈1F′d〉1T′−−−−→ ϕ′
(i) If τ is given by P(ζ) : P ◦ F′ ⇒ P ◦ (FU) = (P ◦ F)U with ζ : F′ ⇒ FU:

[P]ϕ P(ζ)η−−→ [P]ϕ′ if ϕ
ζη−−→ ϕ′

(4) If τ is given by τ1 ◦ τ2 : F′ ⇒ FU, with τ1 : F1 ⇒ FU and τ2 : F′ ⇒ F1 in ‖KPS′ ‖,
and if τη has not yet been defined21:

ϕ
(τ1◦τ2)η−−−→ ϕ′ if ϕ

(τ1)η−−→ ϕ1
and ϕ1

(τ2)1T′−−−→ ϕ′
Also, for s ∈ S, the translation along η of state formulae over T of type s to state

formulae over T′ of type f (s), denoted ηs : SForm(T)s → SForm(T′)f (s), is given by
(1�f(s))η : FormT(�s) → FormT′(�f (s)) (where 1�f(s) : �f(s) ⇒ �sU).

Thus, the boolean structure of formulae is always preserved by the translations (by (1)
of Definition 25). In addition, translations between similar22 types also preserve the modal
structure of formulae (by (2) of Definition 25). Finally, in defining the translations induced
by non-identity natural transformations τ (in (3) of Definition 25), all possible shapes for
the formula being translated have to be considered. In particular:
• the translation of a formula of type F1 along π1 : F1U × F′

2 ⇒ F1U requires the first
component of a state satisfying it to satisfy the translation of the given formula along
1F1U;

• the translation of a formula of type F1 + F2 along κ1 : F1U ⇒ (F1 + F2)U depends
on which coproduct component the given formula refers to: if it refers to the first
coproduct component, its translation requires whatever the original formula required
of states coming from the first coproduct component, but translated along 1F1U; and if
the formula refers to the second coproduct component, its translation does not require
anything;

20 Here it is essential that the set D be finite.
21 This condition ensures that τη is only defined once, by preventing the definition of τη to be based on equalities
of form τ = π1 ◦ 〈τ, ζ 〉, τ = [τ, ζ] ◦ κ1 or τ = evalF,D ◦ (τ∗ × 1D).
22 Similarity here refers to FU and F′.

102 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

• the translation of a formula of form [ev(d)]ϕ along ζ ∗ : F′ ⇒ FDU is obtained by first
translating ϕ along ζ : F′ ×D ⇒ FU to ϕ1, and then “extracting” from ϕ1 a formula ϕ′
of type F′, which holds in f ′ precisely when ϕ1 holds in 〈f ′, d〉;

• the translation of a formula ϕ along evalFU,D : (FU)D ×D ⇒ FU holds in 〈f, d〉
precisely when the translation of ϕ along 1FU holds in f (d).
Finally, (4) of Definition 25 defines translations along compositions of natural transfor-

mations in terms of the translations along the natural transformations being composed. The
next two results ensure the correctness of Definition 25.

Proposition 26. Let (f, η) : (S,T)→ (S′,T′)denote a many-sorted cosignature morphism,
and let (τ : F′ ⇒ F) ∈ ‖KPS ‖23. Then, (τU)1T′ ◦ (1FU)η = (τU)η = (1F′U)η ◦ τ1T :

Proof (Sketch). The statement follows by structural induction on τ . �

Corollary 27. Let (f, η) : (S,T) → (S′,T′) denote a many-sorted cosignature morphism,
and let (τ1 : F1 ⇒ F) ∈ ‖KPS ‖24 and (τ2 : F′ ⇒ F1U) ∈ ‖KPS′ ‖ be such that (τ1U ◦ τ2)η
is defined in terms of (τ1U)η and (τ2)1T′ using (4) of Definition 25. Then, (τ2)1T′ ◦ (τ1U)η =
(τ1U ◦ τ2)η = (τ2)η ◦ (τ1)1T :

Proof (Sketch). Definition 25 and Proposition 26 are used. �

Remark 28. The following are consequences of Definition 25 and Corollary 27:

• [πi]ϕ (τ1×τ2)η−−−−→ [πi]ϕ′ if ϕ
(τi)η−−→ ϕ′

• [κi]ϕ (τ1+τ2)η−−−−→ ([κi]ϕ′ ∧ [κj]�) ≡ [κi]ϕ′ if ϕ
(τi)η−−→ ϕ′, j = {1, 2} \ {i}

• [ev(d)]ϕ (τD)η−−→ ψ ≡ [ev(d)]ϕ′ if ϕ
τη−−→ ϕ′

• [ev(d)]ϕ ((FU)α)η−−−−→ ξ ≡ [ev(α(d))]ϕ′ if ϕ
(1FU)η−−→ ϕ′

23 Hence, (τU : F′U ⇒ FU) ∈ ‖KPS′ ‖.
24 Hence, (τ1U : F1U ⇒ FU) ∈ ‖KPS′ ‖.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 103

where the natural transformations τ1 × τ2 : F′
1 × F′

2 ⇒ F1U × F2U, τ1 + τ2 : F′
1 +

F′
2 ⇒ F1U + F2U, τD : F′D ⇒ (FU)D and (FU)α : (FU)D

′ ⇒ (FU)D are as in
Remark 2.

Moreover, the translation of formulae along cosignature morphisms is compatible with
the equalities (2)–(2) in Remark 2, in a sense made precise below.

Proposition 29. Let (f, η) : (S,T)→ (S′,T′)denote a many-sorted cosignature morphism.
Then, the following hold up to semantic equivalence:

(1) 〈τ1, τ2〉η ◦ (πi)1T = (τi)η for (τi : F ⇒ FiU) ∈ ‖KPS′ ‖, i = 1, 2:

(2) (κi)1T′ ◦ [τ1, τ2]η = (τi)η for (τi : Fi ⇒ FU) ∈ ‖KPS′ ‖, i = 1, 2:

(3) (τ ∗ × 1D)η ◦ (evalF,D)1T = τη for (τ : F′ ×D ⇒ FU) ∈ ‖KPS′ ‖:

Proof (Sketch). The statement follows directly from Definition 25.25 �

In practice, translating a particular formula involves a number of applications of the
rules in Definition 25. Typically, each occurrence of [nexts] in the formula being translated
triggers an application of the rule (2b), followed by a number of applications of rules in (3)
and a number of applications of rules in (2).

Example 30. Let (11, η1) : (1,TLIST) → (1,TFLIST)be as in Example 22. The translation
of the modal formula defining lists over E (see Example 15) along (11, η1) is obtained as
follows:

25 Note that Corollary 27 can not be applied here, since the translations along (τi)η and τη have been defined
independently of the translations along the other cosignature morphisms involved.

104 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

� (11)η1−−−→ �
〈κ1〉� (11+E)η1−−−−→ 〈κ1〉�

[π1]〈κ1〉� (1(1+E)×(1+Id))η1−−−−−−−−−−→ [π1]〈κ1〉�

[π1]〈κ1〉�
η1η1−−−→ [π1][π1]〈κ1〉�

[next][π1]〈κ1〉� (1Id)η1−−−→ [next][π1][π1]〈κ1〉�

� (11)η1−−−→ �
〈κ1〉� (11+Id)η1−−−−→ 〈κ1〉�

[π2]〈κ1〉� (1(1+E)×(1+Id))η1−−−−−−−−−−→ [π2]〈κ1〉�

[π2]〈κ1〉�
η1η1−−−→ [π1][π2]〈κ1〉�

[next][π2]〈κ1〉� (1Id)η1−−−→ [next][π1][π2]〈κ1〉�

[next][π1]〈κ1〉� ↔ [next][π2]〈κ1〉� (1Id)η1−−−→ [next][π1][π1]〈κ1〉� ↔ [next][π1][π2]〈κ1〉�
Any specification of finite lists should include the above formula. In addition, any such

specification should require a certain consistency between the length operation and the tail
operation. This is captured by the following formulae:

[next][π2]0 ↔ [next][π1][π2]〈κ1〉�
[next][π2](n+ 1) ↔ [next][π1][π2]〈κ2〉[next][π2]n, n ∈ N

formalising the observation that the length of a list is 0 precisely when the tail of the list is
undefined, while the length of a list whose tail is defined is obtained by adding 1 to the length
of the tail. After renaming [next][π1][π1]〈κ1〉, [next][π1][π2]〈κ1〉, [next][π1][π2]〈κ2〉 and
[next][π2] to <hdU>, <tlU>, <tlD> and respectively [len], the specification of finite lists
becomes:

<hdU>� ↔ <tlU>�
[len]0 ↔ <tlU>�

[len](n+ 1) ↔ <tlD>[len]n, n ∈ N

where

l |= <hdU>ϕ1 ⇔ ∃ s . hd(l) = κ1(s) and s |= ϕ1
l |= <tlU>ϕ1 ⇔ ∃ s . t l(l) = κ1(s) and s |= ϕ1
l |= <tlD>ϕ2 ⇔ ∃ t . t l(l) = κ2(t) and t |= ϕ2
l |= [len]n ⇔ len(l) = n

for any TFLIST-coalgebra 〈〈hd, tl〉, len〉 : L → ((1 + E)× (1 + L))× N and any l ∈ L.

Example 31. Let (f, η2) : ({FList},TFLIST) → ({mList, Array},T) be as in Exam-
ple 23. Translating the modal formulae defining finite lists over E (see Example 30) along
(f, η2) yields the formulae:

[nextmList][π1][π1][π1]〈κ1〉� ↔ [nextmList][π1][π1][π2]〈κ1〉�
[nextmList][π1][π2]0 ↔ [nextmList][π1][π1][π2]〈κ1〉�

[nextmList][π1][π2](n+ 1) ↔ [nextmList][π1][π1][π2]〈κ2〉[nextmList][π1][π2]n, n < m

⊥ ↔ [nextmList][π1][π1][π2]〈κ2〉[nextmList][π1][π2]n, n = m

⊥ ↔ ⊥, n > m

of type mList. In particular, the translation of the last formula defining finite lists over E
yields three different formulae, depending on the value of n in this formula. For n � m,
its left subformula translates to ⊥ along (1�mList)η2 , since n+ 1 translates to ⊥ along ιη2

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 105

(with ι : {0, . . . , m} → N). For n > m, its right subformula also translates to ⊥ (for similar
reasons). For n = m, the translated formula states that there are no lists whose tail has length
m. Its left and right subformulae are computed as follows:

m+ 1
ιη2−−→ ⊥

[π2](m+ 1)
(1×ι)η2−−−→ [π2]⊥ ≡ ⊥

⊥ [π1]1T−−→ ⊥

[π2](m+ 1)
η2η2−−→ ⊥

[next][π2](m+ 1)
(1�mList)η2−−−−−−→ [nextmList]⊥ ≡ ⊥

m
ιη2−−→ m

[π2]m
(1×ι)η2−−−→ [π2]m

[π2]m
[π1]1T−−→ [π1][π2]m

[π2]m
η2η2−−→ [π1][π2]m

[next][π2]m
η2η2−−→ [nextmList][π1][π2]m

. . .

[next][π1][π2]〈κ2〉[next][π2]m
η2η2−−→ [nextmList][π1][π1][π2]〈κ2〉[nextmList][π1][π2]m

After introducing the following abbreviations:

<hdU> ::= [nextmList][π1][π1][π1]〈κ1〉
<hdD> ::= [nextmList][π1][π1][π1]〈κ2〉
<tlU> ::= [nextmList][π1][π1][π2]〈κ1〉
<tlD> ::= [nextmList][π1][π1][π2]〈κ2〉
[len] ::= [nextmList][π1][π2]

the previous formulae become:

<hdU>� ↔ <tlU>�
[len]0 ↔ <tlU>�

[len](n+ 1) ↔ <tlD>[len]n, n < m

⊥ ↔ <tlD>[len]n, n = m

In addition to these formulae, formulae which constrain the list observer and the array
observer have to be specified. For this purpose, we introduce some additional abbreviations,
namely:

<elU(p)> ::= [nextmList][π2][ev(p)]〈κ1〉
<elD(p)> ::= [nextmList][π2][ev(p)]〈κ2〉
[list] ::= [nextArray][π1]

[get(p)] ::= [nextArray][π2][ev(p)]

106 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

With this notation, the following formulae complete the specification of arrays:

<elU(1)>� ↔ <hdU>�
<elD(1)>e ↔ <hdD>e, e ∈ E

<elU(p + 1)>� ↔ <tlU>� ∨ <tlD><elU(p)>�, p ∈ {1, . . . , m− 1}
<elD(p + 1)>e ↔ <tlD><elD(p)>e, p ∈ {1, . . . , m− 1}, e ∈ E

[get(p)]e ↔ [list]<elD(p)>e, p ∈ {1, . . . , m}, e ∈ E
The first four formulae, of type mList, specify the list observer in terms of the head and
tail operations on lists. The last formula, of type Array, specifies the array observer in
terms of the previously-defined list observer. What this formula actually states is that, for
any position p ∈ {1, . . . , m}, the pth element of an array is given by the pth element of
the associated list. As a result, all the lists used to represent arrays are constrained to have
length (at least) m. Thus, the formula:

[list][len]m

(see Example 16) is a global semantic consequence of the array specification.

As mentioned previously, the translation of formulae along cosignature morphisms
preserves the interpretations of formulae.

Proposition 32. Let (f, η) : (S,T)→ (S′,T′)denote a many-sorted cosignature morphism,
let 〈C′, γ ′〉 denote a T′-coalgebra, and let γ = ηC′ ◦ Uγ ′ : UC′ → TUC′ denote its T-

reduct along η. Then, τ−1
C′ ([[ϕ]]γF) = [[τη(ϕ)]]γ

′
F′ for any F ∈ |KPS |, F′ ∈ |KPS′ |, (τ : F′ ⇒

FU) ∈ ‖KPS′ ‖ and ϕ ∈ FormT(F).

Proof. The statement follows by structural induction on ϕ and τ . Only a few cases are
considered here. The remaining ones (see Definition 25) are treated similarly.
• If τ is given by 1�f(s) : �f(s) ⇒ �f(s) = �sU with s ∈ S:

[[[nexts]ϕ]]γ�s = γ−1
s ([[ϕ]]γTs) = (γ ′

f (s))
−1(η−1

s,C′([[ϕ]]γTs))
= (γ ′

f (s))
−1([[(ηs)η(ϕ)]]γ

′
T′

f (s)
) = [[[nextf (s)](ηs)η(ϕ)]]γ

′
�f(s)

= [[(1�f(s))η([nexts]ϕ)]]γ
′
�f(s)

= [[τη([nexts]ϕ)]]γ
′
�f(s)

• If τ is given by α : D′ ⇒ D = DU:

τ−1
C′ ([[d]]γD) = τ−1

C′ ({d}) = { d ′ ∈ D′ | α(d ′) = d } =
⋃

α(d ′)=d
{d ′}

=
⋃

α(d ′)=d
[[d ′]]γ ′

D′ =
[[∨
α(d ′)=d

d ′]]γ ′

D′ = [[αη(d)]]γ
′
D′ = [[τη(d)]]γ

′
D′

• If τ is given by πi : F′
1 × F′

2 ⇒ FiU with i ∈ {1, 2} and with F′
i = FiU:

τ−1
C′ ([[ϕ]]γFi) = π−1

i ([[ϕ]]γFi) = π−1
i ([[(1FiU)η(ϕ)]]γ

′
FiU
)

= [[[πi](1FiU)η(ϕ)]]γ
′

F′
1×F′

2
= [[(πi)η(ϕ)]]γ

′
F′

1×F′
2

= [[τη(ϕ)]]γ
′

F′
1×F′

2

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 107

• If τ is given by κi : FiU ⇒ F1U + F2U = (F1 + F2)U with i ∈ {1, 2}:
· If j = i and {l} = {1, 2} \ {j}:

τ−1
C′ ([[[κj]ϕ]]γF1+F2

) = κ−1
j (κj ([[ϕ]]γFj) ∪ κl(FlUC′)) = [[ϕ]]γFj

= [[(1FjU)η(ϕ)]]γ
′

FjU = [[(κj)η([κj]ϕ)]]γ
′

FjU

= [[τη([κj]ϕ)]]γ
′

FjU

· If j /= i:

τ−1
C′ ([[[κj]ϕ]]γF1+F2

) = κ−1
i (κj ([[ϕ]]γFj) ∪ κi(FiUC′)) = FiUC′

= [[�]]γ ′
FiU

= [[(κi)η([κj]ϕ)]]γ
′

FiU
= [[τη([κj]ϕ)]]γ

′
FiU

• If τ is given by ζ ∗ : F′ ⇒ (FU)D = FDU with ζ : F′ ×D ⇒ FU:

τ−1
C′ ([[[ev(d)]ϕ]]γFD) = (ζ ∗

C′)−1({ f : D → FUC′ | f (d) ∈ [[ϕ]]γF })
= { f ′ ∈ F′C′ | ζ ∗

C′(f ′)(d) ∈ [[ϕ]]γF }
= { f ′ ∈ F′C′ | ζC′(f ′, d) ∈ [[ϕ]]γF }
= 〈1F′ , d〉−1

C′ (ζ
−1
C′ ([[ϕ]]γF)) = [[〈1F′ , d〉1T′ (ζη(ϕ))]]γ

′
F′

= [[τη([ev(d)]ϕ)]]γ
′

F′ �

Thus, the denotation of a translated formula in a T′-coalgebra is obtained as an inverse
image of the denotation of the original formula in the T-reduct of the given coalgebra. In
particular, the denotation of a translated state formula in a T′-coalgebra coincides with the
denotation of the original formula in the T-reduct of that T′-coalgebra—this follows by
taking τ = 1�f(s) with s ∈ S.

Definition 25 yields a functor SForm : Cosign → Set, taking a many-sorted cosigna-
ture to the set of state formulae over it, and a many-sorted cosignature morphism to the
induced translation. We are then ready for our main result.

Theorem 33. (Cosign,Coalg,SForm, |=) is an institution.

Proof. The property of being an institution amounts to the following equivalence hold-
ing for any many-sorted cosignature morphism η : (S,T) → (S′,T′), any T′-coalgebra
〈C′, γ ′〉, and any formula ϕ ∈ SForm(T):

〈C′, γ ′〉 |= η(ϕ) ⇔ Uη〈C′, γ ′〉 |= ϕ

Showing that the above equivalence holds can be reduced to showing that, given η and

〈C′, γ ′〉, [[ϕ]]γ�s = [[ηs(ϕ)]]γ
′
�f(s)

holds for any ϕ ∈ SForm(T)s and any s ∈ S (where γ =
ηC′ ◦ Uγ ′). Then, one can reason as follows: 〈C′, γ ′〉 |= ηs(ϕ) ⇔ [[ηs(ϕ)]]γ

′
�f(s)

= C′
f (s)

⇔ [[ϕ]]γ�s = (UC′)s ⇔ Uη〈C′, γ ′〉 |= ϕ for any ϕ ∈ SForm(T)s and any s ∈ S. But the

108 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

previous claim follows from Proposition 32, namely by taking F = �s , F′ = �f(s) and
τ = 1�f(s) for s ∈ S. �

Any institution comes equipped with notions of specification and specification morphism
(see [3]). In our setting, they are as follows.

Definition 34. A (many-sorted) coalgebraic specification is given by a tuple (S,T,�),
with (S,T) a many-sorted cosignature and� a set of state formulae over T. A (many-sorted)
coalgebraic specification morphism from (S,T,�) to (S′,T′,�′) is given by a many-
sorted cosignature morphism (f, η) : (S,T) → (S′,T′), additionally satisfying�′ |= η(ϕ)

for any ϕ ∈ �.26

For a coalgebraic specification Sp = (S,T,�), the full subcategory of Coalg(T)whose
objects satisfy � is denoted Coalg(Sp). Then, any specification morphism (f, η) : Sp →
Sp′ induces a reduct functor U(f,η) : Coalg(Sp′) → Coalg(Sp): by Theorem 33, the reduct
functor induced by the underlying cosignature morphism takes T′-coalgebras satisfying�′
(and hence η(�)) to T-coalgebras satisfying �.

Related work

We conclude this section by comparing our approach to similar work concerning (insti-
tutions of) modal logics induced by predicate liftings.

In [12], the notion of parameterised signature, defined as a functor� : L × C → C, was
used to define coalgebraic signatures and their morphisms. Given such a functor�, and given
L ∈ |L|, the functorX �→ �(L,X) defines a coalgebraic signature�L : C → C. Also, for
each (l : L → L′) ∈‖L‖, the C-arrows �(l, 1C) : �L(C) → �L′(C) with C ∈ |C| define
a natural transformation l̂ : �L ⇒ �L′ , and hence a morphism of coalgebraic signatures.

In the case when C = Set, modal logics induced by |L|-indexed sets of predicate liftings
were used in [12] formalise bisimulation-invariant properties of states of coalgebras. Given
an endofunctor T : Set → Set, a predicate lifting for T [12] is a natural transformation
λ : P̂ ⇒ P̂ ◦ T, with P̂ : Set → Set denoting the contravariant powerset functor.27 The
modal language L(�) induced by a set� of predicate liftings then contains a unary modal
operator [λ] for each λ ∈ �, as well as basic propositional connectives. Its coalgebraic
semantics is defined inductively on the structure of formulae:

c |=γ [λ]ϕ iff γ (c) ∈ λC([[ϕ]]γ)
for each T-coalgebra 〈C, γ 〉 and c ∈ C. Then, an |L|-indexed family of predicate liftings
(�L)L∈|L|, with�L containing predicate liftings for�L, is said to be coherent if, for any (l :
L → L′) ∈‖L‖ and any λ′ ∈ �L′ , P̂l̂ ◦ λ′ ∈ �L. Any coherent family of predicate liftings
(�L)L∈|L| induces a translation l∗ : L(�L′) → L(�L) along each L-arrow l : L → L′,
with l∗ being defined inductively by: l∗([λ′]ϕ′) = [P̂l̂ ◦ λ′]l∗(ϕ′) for ϕ′ ∈ L(�L′). Finally,
each pair consisting of a parameterised signature� : L × Set → Set and a coherent family
of predicate liftings (�L)L∈|L| is shown in [12] to give rise to an institution of modal logics
for �L-coalgebras, with L ranging over |L|.
26 Here, |= ⊆ P(SForm(T′))× SForm(T′) denotes global semantic consequence.
27 P̂ takes a set to the set of its subsets, and a function to its inverse image.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 109

The setting considered in [12] is, in a sense, more general than the one here, as it allows
for arbitrary endofunctors on Set (and indeed, on any fixed category C). However, the
modal logics considered here are not subsumed by logics induced by predicate liftings – the
formulae associated to a Kripke polynomial endofunctor T have a multi-sorted structure,
which can not, in general, be derived from a set of predicate liftings. This multi-sorted
structure also makes the logics considered here generally more expressive than logics
induced by predicate liftings. For instance, by taking T = Pω ◦ Pω, an expressive logic
for T-coalgebras is obtained using the approach in [16,8], whereas no expressive logic
arising from a set of predicate liftings is known to exist.

Nonetheless, our approach to defining translations of modal formulae along many-sorted
cosignature morphisms follows the same principles as that of [12], with the notion of
cosignature morphism being chosen in such a way that modal operators can be naturally
translated along cosignature morphisms. Moreover, the proof of Proposition 32 is similar
to that of [12, Theorem 4.7], where induction on the structure of formulae is used to show
that the semantics of formulae is preserved by translations along L-arrows.

5. Semantic constructions

We now use final and cofree coalgebras to provide denotations for the specifications and
specification morphisms of the institution defined in Section 4.

We begin by showing the existence of final models for coalgebraic specifications. A
further restriction on Kripke polynomial endofunctors is required in this sense. Specifically,
κ-bounded powerset functors (with κ some regular cardinal) must be used in the definition
of Kripke polynomial endofunctors, in order to ensure that the resulting endofunctors are
κ-accessible,28 and hence have final coalgebras. The remainder of this section refers to
Kripke polynomial endofunctors whose definition involves the bounded powerset functor
Pκ , rather than the unbounded powerset functor P. For such endofunctors, the existence
of final coalgebras can be inferred from results in [13] (see also [1]).

Corollary 35. Let (S,T) denote a many-sorted cosignature. Then, Coalg(T) has a final
object.

Example 36. Let TLIST : Set → Set be as in Example 5. A final TLIST-coalgebra has
carrier given by S = (1 + E)+ ∪ (1 + E)ω,29 and the coalgebra map 〈hd, tl〉 : S → (1 +
E)× (1 + S) given by

hd(e : s) = e

tl(e : s) =
{
κ1(∗) if s = []
κ2(s) if s /= []

for e ∈ 1 + E and s ∈ (1 + E)∗ ∪ (1 + E)ω.

28 For an endofunctor T : SetS → SetS , κ-accessibility amounts to the action of T on an S-sorted set C being
determined by its action on the S-sorted subsets of C of cardinality smaller than κ .
29 For a set A, the sets of finite sequences, finite and non-empty sequences, and respectively infinite sequences
of elements of A are denoted A∗, A+ and Aω .

110 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

In order to extend the existence of final models from many-sorted cosignatures to
specifications, we need the existence of largest subcoalgebras induced by sets of formulae.

Proposition 37. Let T : SetS → SetS denote a (weak pullback preserving) endofunctor.
Then, for any T-coalgebra 〈C, γ 〉 and any SetS-monomorphism ι : X → C, the category
SubCoalg(〈C, γ 〉, ι) has a final object.

Proof (Sketch). The conclusion follows from the observation that a factorisation system
for sinks30 exists for Coalg(T) – [10, Corollary 1.3.14] states this for T : Set → Set, but
the result can be easily generalised to T : SetS → SetS . Consequently, a final object in
SubCoalg(〈C, γ 〉, ι) is obtained as the union of all subcoalgebras of 〈C, γ 〉 whose carrier
is “contained in X”. �

Before applying Proposition 37 to Kripke polynomial endofunctors, we observe that all
these endofunctors preserve weak pullbacks: constant and projections functors preserve
weak pullbacks, and this property is preserved by products, coproducts, exponentials and
bounded powersets.

Theorem 38. Let Sp = (S,T,�) denote a coalgebraic specification. Then, the category
Coalg(Sp) has a final object.

Proof (Sketch). Let 〈F, ζ 〉 denote a final T-coalgebra (see Corollary 35), let X ∈ |SetS | be
given by Xs = { f ∈ Fs | f |= �s }31 for s ∈ S, and let ι : X → F denote the induced in-
clusion. Also, let 〈〈D, δ〉,m〉 be a final object in SubCoalg(〈C, γ 〉, ι) (see Proposition 37).
Then, 〈D, δ〉 is final in Coalg(Sp). �

Example 39. Let Sp = (TLIST,�) denote the coalgebraic specification of lists, as given
in Example 15. That is, � consists of the following formula:

<hdU>� ↔ <tlU>�
A state e : s of the final TLIST-coalgebra (see Example 36) satisfies this formula if e = κ1(∗)
precisely when s = []. Taking the largest subcoalgebra induced by the above formula yields
a coalgebra whose carrier is isomorphic to E∗ ∪ Eω (i.e. the set of finite or infinite lists
with elements from E).

An important property of institutions is liberality. This amounts to the existence of ad-
joints to the reduct functors induced by specification morphisms. In algebraic specification,
left adjoints are of interest, as they yield free algebra constructions. However, in coalgebraic
specification, cofree coalgebras are typically used at the semantic level (see e.g. [18,2]).
The following generalisation of [2, Theorem 3.1.62] (see also [18, Theorem 17.1]) will
allow us to prove the existence of cofree coalgebras induced by coalgebraic specification
morphisms.

Proposition 40. Let C and D be categories with binary products, and let U : D → C be a
functor which preserves binary products, and has a right adjoint R.Also, let T : C → C and

30 See [10] for a definition.
31 Here, �s consists of all formulae in � which have type s.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 111

S : D → D be (weak pullback preserving) endofunctors, and η : US ⇒ TU be a natural
transformation, inducing a reduct functor Uη : Coalg(S) → Coalg(T). If the functors
T × C and S × RC have final coalgebras for any C-object C, then Uη has a right adjoint.

Proof (Sketch). The proof is similar to that of [2, Theorem 3.1.62]. �

Remark 41. We briefly comment on the relationship with similar results formulated in [12].
In the setting of [12], any parameterised cosignature� : L × C → C induces a cofibration
p : E → L, with the fibre over L ∈ |L| being (isomorphic to) Coalg(�L). It is shown in
[12, Theorem 3.3] that, if cofree �L-coalgebras over C-objects exist, and if equalisers
exist in each fibre Coalg(�L), then p is also a fibration. This translates to the functors
Ul : Coalg(�L) → Coalg(�L′) induced by L-arrows l : L → L′ having right adjoints.
Thus, a result similar to Proposition 40 is obtained in [12], in the case when U : D → C
of Proposition 40 is the identity functor. Moreover, by [12, Corollary 3.7], the requirement
that Coalg(�L) has equalisers is satisfied for endofunctors T : Set → Set which preserve
weak pullbacks. Thus, in the case when C = D = Set and U = Id, the hypotheses of
Proposition 40 imply those of [12, Theorem 3.3]—the existence of final�L × C-coalgebras
results in the existence of cofree�L-coalgebras over C-objects. As a result, Proposition 40
is a consequence of [12, Theorem 3.3], in this particular case.

We now prove the existence of cofree coalgebras w.r.t. specification morphisms.

Theorem 42. Let (f, η) : (S,T,�) → (S′,T′,�′) denote a coalgebraic specification
morphism. The reduct functor U(f,η) : Coalg(S′,T′,�′) → Coalg(S,T,�) has a right
adjoint.

Proof (Sketch). We first use Proposition 40 to obtain a right adjoint to the reduct functor
induced by the cosignature morphism (f, η) : (S,T) → (S′,T′). For this, we note that the
functor U : SetS

′ → SetS induced by f : S → S′ (see Definition 21) preserves binary
products and has a right adjoint R.32 Also, since T and T′ are Kripke polynomial endo-
functors defined using Pκ , so are the endofunctors T × C and T′ × RC, for any C ∈ |C|.
Hence, by Corollary 35, final coalgebras exist for these endofunctors. It then follows by
Proposition 40 that the reduct functor induced by the cosignature morphism (f, η) has a right
adjoint. Now let 〈C, γ 〉 ∈ |Coalg(S,T,�)|, let 〈C′, γ ′〉 denote a cofree (S′,T′)-coalgebra
over 〈C, γ 〉 w.r.t. U(f,η) : Coalg(S′,T′) → Coalg(S,T), and let 〈〈D, δ〉,m〉 denote the
largest (S′,T′)-subcoalgebra of 〈C′, γ ′〉 which satisfies �′.33 Then, 〈D, δ〉 is cofree over
〈C, γ 〉 w.r.t. U(f,η) : Coalg(S′,T′,�′) → Coalg(S,T,�). �

Example 43. Let LIST and ARRAY denote the coalgebraic specifications of lists and respec-
tively arrays of size m, as given in Examples 15 and 23, and let (g, η) : ({List},TLIST) →
({mList, Array},TARRAY) denote the cosignature morphism obtained by composing the
cosignature morphisms given in Examples 22 and 23. Then, (g, η) defines a coalgebraic
specification morphism from LIST to ARRAY (since ARRAY contains the translations along
η of all the formulae in LIST). Now let 〈C, γ 〉 denote the TLIST-coalgebra whose carrier
is given by E∗ (i.e. only the finite lists), and whose coalgebraic structure is given by

32 R takes an S-sorted set (Cs)s∈S to the S′-sorted set (
∏
f (s)=s′ Cs)s′∈S′ .

33 〈〈D, δ〉,m〉 is constructed as in the proof of Theorem 38.

112 C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113

γ ([]) = 〈κ1(∗), κ1(∗)〉
γ (e : s) = 〈κ2(e), κ2(s)〉

for e ∈ E and s ∈ E∗. The cofree TARRAY-coalgebra 〈C′, γ ′〉 over 〈C, γ 〉 has the carrier
given by C′

mList = E0 ∪ . . . ∪ Em and C′
Array = Em (with En denoting the set of lists of

length n, for n ∈ N), and the coalgebraic structure given by

γ ′
mList(l) = γList(l)

γ ′
Array([e1 . . . em]) = 〈[e1 . . . em], (i �→ ei)i=1,... ,m〉

for l ∈ C′
mList ⊆ CList and [e1 . . . em] ∈ Em. On the other hand, starting with a LIST-

coalgebra with carrier En, where n < m, yields an ARRAY-coalgebra whose carrier has
the Array-sorted component given by the empty set. (There are not enough lists in the
LIST-coalgebra to implement arrays of size m.)

6. Conclusions

The main contributions of the paper can be summarised as follows. First, a generalisation
of the modal logic described in [16,8] to endofunctors on categories of sorted sets was
presented. Moreover, natural transformations arising from the structure of the endofunctors
defining coalgebraic types were used to formally capture semantic relationships between
these types. Such semantic relationships were subsequently lifted to a logical level, by equip-
ping the underlying natural transformations with translations between the corresponding
categories of coalgebras, as well as with translations between the corresponding languages.
The resulting framework was shown to be an institution, with final and cofree coalgebras
providing suitable denotations for its specifications and specification morphisms.

Acknowlegements

The author is grateful to the two anonymous referees for their valuable comments and
suggestions.

References

[1] M. Barr, Terminal coalgebras in well-founded set theory, Theor. Comput. Sci., 114 (2) (1993) 299–315.
[2] C. Cîrstea, Integrating Observations and computations in the specification of state-based,

dynamical systems. Ph.D. thesis, University of Oxford, 2000. Available from: <http://www.ecs.
soton.ac.uk/∼cc2/>.

[3] J. Goguen, R. Burstall, Institutions: abstract model theory for specification and programming, J. ACM 39
(1) (1992) 95–146.

[4] R. Goldblatt, Logics of Time and Computation, CSLI Lecture Notes, vol. 7, Stanford University, 1992.
[5] B. Jacobs, Inheritance and cofree constructions, in: P. Cointe (Ed.), European Conference on Object-Oriented

Programming, Lecture Notes in Computer Science, vol. 1098, Springer, 1996, pp. 210–231.
[6] B. Jacobs, Objects and classes, coalgebraically, in: B. Freitag, C.B. Jones, C. Lengauer, H.-J. Schek (Eds.),

Object Orientation with Parallelism and Persistence, Kluwer Academic Publishers, 1996, pp. 83–103.
[7] B. Jacobs, Invariants, bisimulations and the correctness of coalgebraic refinements, in: M. Johnson (Ed.),

Algebraic Methodology and Software Technology, Lecture Notes in Computer Science, vol. 1349, Springer,
1997, pp. 276–291.

C. Cı̂rstea / Journal of Logic and Algebraic Programming 67 (2006) 87–113 113

[8] B. Jacobs, Many-sorted coalgebraic modal logic: a model-theoretic study, Theor. Informatics Appl. 35 (1)
(2001) 31–59.

[9] A. Kurz, Specifying coalgebras with modal logic, in: B. Jacobs, L. Moss, H. Reichel, J. Rutten (Eds.),
Coalgebraic Methods in Computer Science, Electronic Notes in Theoretical Computer Science, vol. 11,
Elsevier Science, 1998, pp. 57–71.

[10] A. Kurz, Logics for coalgebras and applications to computer science, Ph.D. thesis, Ludwig Maximilians
Universität München, 2000.

[11] A. Kurz, R. Hennicker, On institutions for modular coalgebraic specifications, Theor. Comput. Sci. 280
(2002) 69–103.

[12] A. Kurz, D. Pattinson, Coalgebras and modal logic for parameterised endofunctors, Technical Report SEN-
R0040, CWI, 2000.

[13] M. Makkai, R. Paré, Accessible Categories, Contemporary Mathematics, vol. 104, American Mathematical
Society, 1990.

[14] L.S. Moss, Coalgebraic logic, Ann. Pure Appl. Logic 96 (1999) 277–317.
[15] D. Pattinson, Expressive logics for coalgebras via terminal sequence induction, Notre Dame J. Formal Logic

45 (1) (2004) 19–33.
[16] M. Rößiger, Coalgebras and modal logic, in: H. Reichel (Ed.), Coalgebraic Methods in Computer Science,

Electronic Notes in Theoretical Computer Science, vol. 33, Elsevier Science, 2000, pp. 299–320.
[17] J.J.M.M. Rutten, A calculus of transition systems (towards universal coalgebra), Technical Report CS-R9503,

CWI, 1995.
[18] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theor. Comput. Sci. 249 (1) (2000) 3–80.

	An institution of modal logics for coalgebras
	Introduction
	Preliminaries
	Modal logics for Kripke polynomial endofunctors on categories of sorted sets
	An institution of modal logics
	Semantic constructions
	Conclusions
	References

