
Information and Computation 186 (2003) 140–162

www.elsevier.com/locate/ic

Follow automata�

Lucian Ilie∗,1 and Sheng Yu2

Department of Computer Science, University of Western Ontario, London, ON, Canada N6A 5B7

Received 11 October 2002; revised 27 March 2003

Abstract

We give two new algorithms for constructing small nondeterministic finite automata (NFA) from regular expres-
sions. The first constructs NFAs withε-transitions (εNFA) which are smaller than all the otherεNFAs obtained by
similar constructions. Their size is at most3

2|α| + 5
2, whereα is the regular expression. This is very close to optimal

since we prove also the lower bound4
3|α| + 5

2. The second constructs NFAs. It usesε-elimination in theεNFAs
we just introduced and builds a quotient of the well-known position automaton w.r.t. the equivalence given by the
follow relation; therefore giving the name offollow automaton. The new automaton uses optimally the information
from the positions of a regular expression. We compare the follow automaton with the best constructions to date
and show that it has important advantages over those.
© 2003 Elsevier Science (USA). All rights reserved.

MSC:68P20, 68Q19, 68Q45, 68Q70, 68W05

Keywords: Regular expressions; Nondeterministic finite automata; Partial derivatives; Quotients; Right-invariant equivalences;
ε-Elimination

1. Introduction

The importance of regular expressions for applications is well known. They describe lexical tokens for
syntactic specifications and textual patterns in text manipulation systems. Regular expressions have be-
come the basis of standard utilities such as scanner generators (lex), editors (emacs, vi), or programming

� An extended abstract of this paper has been presented atThe 13th Annual Symposium on Combinatorial Pattern Matching
(CPM’02) (Fukuoka, 2002); see [15].

∗ Corresponding author. Fax: +519-661-3515.
E-mail addresses:ilie@csd.uwo.ca (L. Ilie), syu@csd.uwo.ca (S. Yu).
1 Research partially supported by NSERC Grant R3143A01.
2 Research partially supported by NSERC Grant OGP0041630.

0890-5401/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0890-5401(03)00090-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82748374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 141

languages (perl, awk), see [1,9]. While regular expressions provide an appropriate notation for regular
languages, their implementation is done using finite automata. The size of the automata is crucial for the
efficiency of the algorithms using them; e.g., for regular expression matching. Since the deterministic
finite automata obtained from regular expressions can be exponentially larger in size, in many cases
nondeterministic finite automata are used instead. Minimization of NFAs is PSPACE-complete, see [20],
so other methods need to be used to obtain small NFAs. Probably the most famous such constructions
are the ones of Thompson [19] which builds a nondeterministic finite automaton withε transitions
(εNFA) and the one of Glushkov and McNaughton-Yamada [10,17] which outputs a nondeterministic
finite automaton withoutε-transitions (NFA), called position automaton. While Thompson’s automaton
has linear size (in terms of the size of the regular expression), the position automaton has size at most
quadratic and can be computed in quadratic time by the algorithm of Brüggemann-Klein [4]. We note
that throughout the paper the size of automata will include both transitions and states.

Antimirov [2] generalized Brozozowski’s derivatives and built the partial derivative automata. Cham-
parnaud and Ziadi [6,7] improved very much Antimirov’sO(n5) algorithm for the construction of such
NFA; their algorithm runs in quadratic time. They proved also that the partial derivative automaton is a
quotient of the position automaton and so it is always smaller than or equal to the position automaton.

The best worst case comes with the construction of Hromkovic̆ et al. [14]; their NFA, called common
follow sets automaton, has size at mostO(n(logn)2) and, by the algorithm of Hagenah and Muscholl
[11], it can be computed in timeO(n(logn)2). This construction artificially increases the number of
states in order to reduce the number of transitions.

In this paper, we propose new algorithms to construct very small nondeterministic finite automata,
with or withoutε-transitions, from regular expressions. Our first algorithm constructsεNFAs which are
smaller than all the others obtained by similar constructions; e.g., the one of Thompson [19] or the one
of Sippu and Soisalon-Soininen [18] (which builds a smallerεNFA than Thompson’s). Given a regular
expressionα, the size of ourεNFA for α is at most32|α| + 5

2. This is very close to the optimal; we prove
a lower bound of43|α| + 5

2.
We give then a method for constructing NFAs. It usesε-elimination in theεNFA newly introduced.

The obtained NFAs have several remarkable properties. First, although the construction of this NFA
has, apparently, nothing to do with positions, it turns out, unexpectedly, that the NFA is a quotient of
the position automaton with respect to the equivalence given by the follow relation; therefore giving
the name offollow automaton. Second, we show that the follow automaton uses optimally the infor-
mation from the positions of the regular expression and thus it cannot be improved this way. Third,
the follow automaton is, conceptually, the simplest compared to the best similar constructions. Finally,
the follow automaton seems to perform very well in practical applications. Even if the worst case is
quadratic in what concerns both the size of the automaton and the running time of the algorithm,
in practice it performs much better. For instance, it seems to outdo on most examples the common
follow sets automaton which, as we mentioned, has the best worst case size and running time. The
worst case seems to be quite irrelevant here. On the other hand, it seems very difficult to compute
the average case size and running time of such constructions. Therefore, we have to rely on exam-
ples to make comparisons. For most examples, the common follow sets automaton reaches its upper
bound ofO(n(logn)2), while the follow automaton is linear. (Precisely, we consider parameterized
examples.)

The paper is organized as follows. Section 2 contains the basic definitions we need. In Section
3 we give an algorithm to reduce regular expressions such that many redundant elements are elim-

142 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

inated. Section 4 gives our construction ofεNFAs. It also gives the proof that it is always smaller
than the well known constructions of [18,19] and the lower bound showing that it is very close to
optimal. Section 5 recalls the position and partial derivative automata. The fact that the partial deriv-
ative automaton is a quotient of the position automaton is given a simpler proof in Section 6. The
construction of our follow NFAs is given in Section 7. Section 8 contains the proof that our NFA is
a quotient of the position automaton. The optimal use of positions in the construction of the follow
NFA is shown in Section 9. Some examples are given in Section 10 to compare our constructions
with the position, partial derivative, and common follow sets automata. Finally, we discuss in Section
11 some of the most important problems which should be clarified about follow automata and related
constructions.

2. Regular expressions and automata

We recall here the basic definitions we need throughout the paper. For further details we refer to [13]
or [20].

Let A be an alphabet andA∗ the set of all words overA; ε denotes the empty word and the length
of a wordw is denoted|w|. A languageover A is a subset ofA∗. A regular expressionover A is ∅,
ε, or a ∈ A, or is obtained from these applying the following rules finitely many times: for two regular
expressionsα andβ, theunion, α + β, thecatenation, α · β, and thestar, α∗, are regular expressions.
The regular language denoted by a regular expressionα is L(α). Also, we defineε(α) to beε if ε ∈ L(α)

and∅ otherwise. Thesizeof α is denoted|α| and represents the number of symbols inα when written
in postfix (parentheses are not counted).

A finite automatonis a quintupleM = (Q, A, δ, q0, F), whereQ is the set of states,A is the input
alphabet,q0 ∈ Q is the initial state,F ⊆ Q is the set of final states, andδ ⊆ Q × (A ∪ {ε}) × Q is the
transition mapping; we shall denote, forp ∈ Q, a ∈ A ∪ {ε}, δ(p, a) = {q ∈ Q | (p, a, q) ∈ δ}. The
automatonM is calleddeterministic(DFA) if δ : Q × A → Q is a (partial) function,nondeterministic
(NFA) if δ ⊆ Q × A × Q, andnondeterministic withε-transitions(εNFA) if there are no restrictions on
δ. The language recognized byM is denotedL(M). Thesizeof a finite automatonM is |M| = |Q| + |δ|;
we count both states and transitions.

Let ≡⊆ Q × Q be an equivalence relation. Forq ∈ Q, [q]≡ denotes the equivalence class ofq w.r.t.
≡ and, forS ⊆ Q, S/≡ denotes the quotient setS/≡ = {[q]≡ | q ∈ S}.

We say that≡ is right invariantw.r.t. M iff
(i) ≡⊆ (Q − F)2 ∪ F 2 (final and non-final states are not≡-equivalent) and

(ii) for any p, q ∈ Q, a ∈ A, if p ≡ q, thenδ(p, a)/≡ = δ(q, a)/≡.
If ≡ is right invariant, thequotient automatonM/≡ is constructed asM/≡ = (Q/≡, A, δ≡, [q0]≡, F/≡),
whereδ≡ = {([p]≡, a, [q]≡) | (p, a, q) ∈ δ}; notice thatQ/≡ = (Q − F)/≡ ∪ F/≡, so we do not merge
final with non-final states. Notice thatL(M/≡) = L(M).

3. Reduced regular expressions

We give in this section an algorithm for reducing regular expressions. The intent is to reduce the
number of∅’s andε’s, as well as the total size of the expression. Such reductions are often mentioned

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 143

in literature, but we want to make things more precise here. The reduced form of regular expressions
is used later in the paper where precise assumptions about the structure of the regular expressions are
needed. As it will be seen, our results hold as well for expressions which are not reduced.

We first introduce several notations. For a regular expressionα overA, we denote by|α|A and|α|ε
the number of occurrences inα of letters fromA andε, respectively.

Given a regular expressionα overA, assume we have the syntax tree for it; when building the tree we
assume ‘+’ left associative (that is,a + b + c = (a + b) + c), which will enable us to reduce further the
number|α|ε. We also assume that each vertex in the tree is labelled by the corresponding symbol from
A ∪ {ε, +, ·, ∗} and has associated with it the subexpression corresponding to the subtree rooted at the
vertex.

The regular expressions are reduced according to the algorithm below.

Algorithm 1.
(a) ∅-reduction: compute, for each vertexβ, whether or notL(β) = ∅ and then modifyα such that, at

the end, eitherα = ∅ or α contains no∅.
(b) ε-reduction: compute, for each vertexβ, whetherε ∈ L(β) and whetherL(β) = {ε}; for each vertex

β with L(β) = {ε}, replace the subtree rooted atβ by ε and then:
• if the parent ofβ is labelled by ‘·’, then replace the parent by the other child,
• if the parent is labelled by ‘∗’, then replace the parent by the child,
• if the parent ofβ is labelled ‘+’ and ε is in the language of the other child, then replace the

parent by the other child.
(c) ‘∗’-reduction: for any vertex labelled by ‘∗’, if its child is also labelled by ‘∗’, then replace it by its

child.

We shall callα obtained after applying Algorithm 1reduced. We give next two observations concerning
the size of reduced regular expressions followed by some examples proving their optimality.

Proposition 2. For any reduced regular expressionα such thatα �∈ {∅, ε}, we have
(i) |α|A � |α|ε,
(ii) |α| � 6|α|A − 2.

Proof.
(i) We prove by structural induction that, for any reducedα /= ε, if ε �∈ L(α), then|α|A � |α|ε + 1 and

if ε ∈ L(α), then|α|A � |α|ε.
The property is true forα = a, a ∈ A. Whenα has at least one operator, we assume the property
true for all subexpressions ofα different fromε and prove it forα.
First, assumeα = β + γ . If both β andγ are different fromε, the property is shown true forα
by the inductive hypothesis onβ andγ . If β = ε (the caseγ = ε is symmetric), then, sinceα is
reduced, we haveε �∈ L(γ). The inductive hypothesis gives|α|A = |γ |A � |γ |ε + 1 = |β|ε + |γ |ε
= |α|ε.
If α = β · γ , then none ofβ andγ can beε, and the property follows from the inductive hypothe-
sis.
If α = β∗, thenβ /= ε and, by the inductive hypothesis,|α|A = |β|A � |β|ε = |α|ε.

(ii) We prove the following assertions simultaneously by structural induction:

144 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

• if ε �∈ L(α), then|α| � 6|α|A − 5,
• if the root ofα’s tree is labelled by ‘∗’, then |α| ≤ 6|α|A − 2,
• if the root ofα’s tree is labelled by ‘+’ or ‘ ·’, then |α| ≤ 6|α|A − 3.
Forα = a, a ∈ A, the property is true. Assume the property true for all subexpressions ofα different
from ε and prove it forα.
First, takeα = β + γ . If both β andγ are different fromε, then the property follows by the in-
ductive hypothesis onβ andγ . If β = ε (similarly for γ = ε), then the inductive hypothesis gives
|α| = |γ | + 2 � 6|γ |A − 5 + 2 = 6|α|A − 3.
Assumeα = β · γ . If ε �∈ L(α), then at least one ofL(β) andL(γ) does not containε and the
inductive hypothesis gives|α| = |β| + |γ | + 1 ≤ 6|β|A + 6|γ |A − 5 − 2 + 1 < 6|α|A − 5. If ε ∈
L(α), then ε must be in bothL(β) and L(γ) and we have, by the inductive hypothesis,|α| =
|β| + |γ | + 1 � 6|β|A − 2 + 6|γ |A − 2 + 1 = 6|α|A − 3.
Finally, if α = β∗, thenβ /= ε and|α| = |β| + 1 � 6|β|A − 3 + 1 = 6|α|A − 2. �

Example 3. Considerα1 = (a1 + ε)∗ and define inductively, for alli � 1, αi+1 = (αi + βi)
∗, where

βi is obtained fromαi by replacing eachaj by aj+|αi |A . For instance,

α3 = (((a1 + ε)∗ + (a2 + ε)∗)∗ + ((a3 + ε)∗ + (a4 + ε)∗)∗)∗.

Then, for anyn � 1, αn is reduced and|αn|A = 2n−1, |αn|ε = 2n−1, and|αn| = 6 · 2n−1 − 2.

We shall assume that all regular expressions throughout the paper are reduced. This will not affect
the complexity of our algorithms since reducing an expression takes only linear time and the size of the
reduced expression is less than or equal to the size of the initial expression. Also, Proposition 2 says
that all complexities can be expressed in terms of the number of letters in the regular expression, that is,
|α|A.

4. Small �NFAs from regular expressions

We give in this section our new construction ofεNFAs from regular expressions. As in the pre-
vious constructions, we construct theεNFA by induction using the structure of the regular expres-
sion.

Algorithm 4. Given a regular expressionα, the algorithm constructs anεNFA for α inductively, fol-
lowing the structure ofα, and is shown in Fig. 1. The steps should be clear from the figure but we bring
some further improvements at each step:
(a) After catenation (Fig. 1(v)): denote the state common to the two automata byp; (a1) if there is a

single transition outgoing fromp, sayp
ε→ q, then the transition is removed andp andq merged;

otherwise (a2) if there is a single transition incoming top, sayq
ε→ p, then the transition is removed

andp andq merged.

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 145

Fig. 1. The construction ofAε
f .

Fig. 2. Aε
f (τ) for τ = (a + b)(a∗ + ba∗ + b∗)∗.

(b) After iteration (Fig. 1(vi)), denote the middle state byp. If there is a cycle containingp such that
all its transitions are labelled byε, then all transitions in the cycle are removed and all states in the
cycle are merged.

(c) After the end of all steps in Fig. 1; if there is only one transition leaving the initial state and is
labelledε, sayq0

ε→ p, then the transition is removed andq0 andp merged.
(d) In case of multiple transitions, that is, transitions with the same source, target, and label, only one

transition is kept, the others are removed.

Example 5. An example of the construction in Algorithm 4 is given in Fig. 2. The regular expressionτ

used there will be our running example throughout the paper. The example was carefully contrived such
that any two constructions which are, in general, different will be different onτ .

We call the automaton returned by Algorithm 4follow εNFA (the reason for this name will be clear
later) and denote it

Aε
f (α) = (Qε

f , A, δε
f , 0f , qf).

The next theorem proves the correctness and running time of the Algorithm 4.

Theorem 6. For any regular expressionα we have:
(i) L(Aε

f (α)) = L(α) and
(ii) Aε

f (α) can be computed in timeO(|α|).

Proof. (i) is clear by construction. For (ii), we just point out how the improvements at (b) can be done
in linear time. Anytime a ‘∗’ corresponding to a subexpressionβ∗ of α is processed, we attempt finding
ε-cycles. Because all previousε-cycles have been removed, the only possible cycles are those containing
the state obtained by merging the initial and final state of the followεNFA for β. We can do a complete

146 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

Fig. 3. The construction of Thompson [19].

Fig. 4. The construction of Sippu and Soisalon-Soininen [18].

search using backtracking on theε-transitions inβ ’s automaton; when a cycle is found, it is removed and
the states are merged; when we backtrack on anε-transition, we mark thatε-transition such that it will
not be tried second time. This is correct because suchε-transitions cannot be involved in otherε-cycles
during the remaining of the construction. Consequently, all improvements at (b) can be done together in
timeO(|α|). �

The next theorem says that thisεNFA is always smaller than the ones obtained by the construc-
tions of Thompson [19] and Sippu and Soisalon-Soininen [18]. We give also an example showing
that it can be much smaller. Notice that in the example we do not use the improvements (a)–(d) at
all since we want to emphasize the superiority of the core of our construction. (It is easy to
construct artificial expressions for which our construction, using (a)–(d), gives an arbitrarily smaller
automaton.)

Theorem 7. For any regular expressionα, the size ofAε
f (α) is smaller than the size of theεNFAs

obtained fromα using the constructions of Thompson or Sippu and Soisalon-Soininen.

Proof. Recall first the other two constructions. They are inductive and should be clear from Figs. 3
and 4.

All three constructions start the same way and at each inductive step (according to the structure of the
regular expression), ours adds less transitions and less states. Precisely, the total number of states and
transitions added by each of the three constructions for an operation ‘+’, ‘ ·’, and ‘∗’, respectively, is (a
negative number means that the size decreases):
• for our construction:−2, −1, 3;
• for Thompson’s construction: 6, 1, 6;
• for Sippu and Soisalon-Soininen’s construction: 2,−1, 5. �

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 147

Example 8. For the regular expressionα = a1 + a2 + · · · + an, Aε
f (α) has sizen + 2 (2 states,n tran-

sitions), Thompson’s has size 9n − 6 (4n − 2 states, 5n − 4 transitions), and Sippu and Soisalon-Soini-
nen’s has size 5n − 2 (2n states, 3n − 2 transitions).

We discuss next an upper bound on the size of ourεNFA.
A first remark concerns the following invariant of our construction. For any subexpression ofα, the

automaton constructed by our algorithm has one starting state of indegree zero and one final state of
outdegree zero, except for the improvement at (c) which is done only at the very end of the construction.

A technical remark concerns the inductive proofs about the followεNFA. When using induction, we
shall tacitly work withAε

f obtained without the improvement (c), as this is the way induction is done.
The improvements in the above steps (a)–(d) are actually very important since they can reduce signif-

icantly the size of theAε
f ; especially the one at (b). As a consequence, for any subexpression of the form

(β∗
1 + · · · + β∗

m + α∗
1α∗

2 · · ·α∗
n)∗, the ‘∗’s for αi ’s andβi ’s do not increase the size of the automaton. For

instance, the constructed automata for the expressions(a∗ + b∗)∗, (a∗b∗)∗, and(a + b)∗ are identical.
The same is true for anyε in an expression like(β1 + · · · + ε + · · · + βm)∗.

We see next a very general case when ‘∗’s in the regular expression do not change the size of the
automaton and we shall be able to make important assumptions on the structure of the expressions. We
say that a regular expressionα is ∗-avoidableif there is a path inα’s tree from the root to a leaf such
that no vertex on this path (including the root and the leaf) is labelled by ‘∗’. Otherwiseα is called
∗-unavoidable.

Assumeβ is ∗-unavoidable and construct a regular expression,remove(β), as follows. For any path
from the root ofβ ’s tree to a leaf, consider the ‘∗’ which is closest to the root (there is at least one ‘∗’).
We remove this ‘∗’ and change all ‘·’s on the path from the removed ‘∗’ to the root into ‘+’s. For in-
stance, ifβ = a∗b∗ + c∗, thenremove(β) = a + b + c. Now, for any regular expressionα, we construct
another expressionavoid(α) as follows. As long as there are subexpressions of the formβ∗ in α with
β ∗-unavoidable, we choose a minimal suchβ, i.e.,β has no subexpressionγ ∗ with γ ∗-unavoidable,
and replaceβ by remove(β). As an example, ifα = (

(a∗(bc)∗ + d∗)∗ + (c(a + b))∗b∗)∗
a + b, then

avoid(α) = (a + bc + d + c(a + b) + b)∗a + b.
The idea is to remove ‘∗’s from α such that the language ofα remains unchanged but the size de-

creases. As we shall see in a moment, the automatonεNFA remains the same but for an expression of
smaller size. This will help us when proving an upper bound on the size ofAε

f .

Lemma 9. For any regular expressionα, Aε
f (α

∗) andAε
f (avoid(α)∗) are identical.

Proof. It is enough to show that, for any∗-unavoidable expressionβ, Aε
f (β

∗) andAε
f (remove(β)∗) are

the same. Asβ is ∗-unavoidable, there areβi, i � i � n, subexpressions ofβ such thatβ is obtained
from β∗

i , 1 � i � n, by using only ‘+’ and ‘·’. When building the followεNFA for β∗
i , the initial and

final states of the followεNFA for βi are merged to a single state, sayqi . This qi is on a path labelled
ε from the initial to the final state of the followεNFA for β. Therefore, in the automaton ofβ∗, all qis
will be merged. Clearly, the same happens in the follow automaton ofremove(β)∗. �

Before proving the upper bound on the size of the followεNFA, we need several notations and a tech-
nical lemma. For a regular expressionα overA, we denote by|α|+, |α|•, |α|∗ the number of occurrences
in α of ‘+’, ‘ ·’, ‘ ∗’, respectively. Thus|α| = |α|A + |α|ε + |α|+ + |α|• + |α|∗.

148 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

We partition the set of vertices inα’s tree that are labelled by ‘∗’ into four classes: the first contains
the root, if labelled by ‘∗’, and those whose parent is labelled by ‘·’ and whose sibling is not labelled by
‘∗’ – let their number bec1; the second contains those whose parent is labelled by ‘·’ and whose sibling
is also labelled by ‘∗’ – their number is 2c2; the third and fourth sets are defined as the previous two by
replacing the label ‘·’ of the parent by ‘+’ – their numbers arep1 and 2p2, respectively.

Lemma 10. Let α be a regular expression such that for any subexpressionβ∗ of it, β is ∗-avoidable.
Then|α|∗ + p2(α) � 1

2(|α| + 1).

Proof. We prove the following properties, which imply the statement; it is assumed thatα below has
the property in the statement, i.e., for any subexpressionβ∗ of it, β is ∗-avoidable:
(1) if α is ∗-unavoidable and the root ofα’s tree is not labelled by ‘∗’, then |α|∗ + p2(α) � 1

2(|α| + 1),
(2) if the root ofα’s tree is labelled by ‘∗’, then |α|∗ + p2(α) � 1

2|α|,
(3) if α is ∗-avoidable, then|α|∗ + p2(α) � 1

2(|α| − 1).
We use structural induction. Ifα ∈ {∅, ε} ∪ {a | a ∈ A}, then |α|∗ + p2(α) = 0 and (3) is satisfied.
Whenα has at least one operator, we assume the properties true for all subexpressions ofα and prove
them forα.
(1) Consider first the caseα = β + γ . If at least one ofβ andγ has the root of the syntax tree not

labelled by ‘∗’, then, by the inductive hypothesis,|α|∗ + p2(α) = |β|∗ + |γ |∗ + p2(β) + p2(γ) �
1
2(|β| + 1) + 1

2(|γ | + 1) = 1
2(|α| + 1). If both roots of the syntax trees ofβ and γ are labelled

by ‘∗’, then the inductive hypothesis gives|α|∗ + p2(α) = |β|∗ + |γ |∗ + p2(β) + p2(γ) + 1 �
1
2|β| + 1

2|γ | + 1 = 1
2(|α| + 1). The caseα = β · γ is similar.

(2) Putα = β∗. Then, by hypothesis,β is ∗-avoidable and we have, using the inductive hypothesis,
|α|∗ + p2(α) = |β|∗ + 1 + p2(β) � 1

2(|β| − 1) + 1 = 1
2|α|.

(3) In this case, eitherα = β · γ or α = β + γ and at least one out ofβ and γ is ∗-avoidable. In
particular,p2(α) = p2(β) + p2(γ). We have then|α|∗ + p2(α) = |β|∗ + |γ |∗ + p2(β) + p2(γ) �
1
2|β| + 1

2|γ | + 1
2 − 1

2 = 1
2(|α| − 1). �

Theorem 11. For any reduced regular expressionα, |Aε
f (α)| � 3

2|α| + 5
2 .

Proof. Using the notations introduced above, we have

|Aε
f (α)| � 3|α|A + 3|α|ε − 2|α|+ − |α|• + c1 + 4c2 + 3p1 + 6p2.

Using the equality|α|A + |α|ε − 1 = |α|+ + |α|•, we can write

|Aε
f (α)| � |α| + 2 − |α|+ + 2c2 + 2p1 + 4p2 = |α| + 2 − |α|+ + |α|∗ − c1 + p1 + 2p2.

By Lemma 9, we may assumeα has no subexpressionβ∗ with β∗-unavoidable (as otherwise we have
the same automaton but for a longer expression) and may apply Lemma 10. Using also the inequality
p1 + p2 � |α|+, we get|Aε

f (α)| � |α| + 2 + |α|∗ + p2 � 3
2|α| + 5

2, which was to be proved.�

We move next to proving a lower bound which is very close to the upper bound in Theorem 11.

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 149

Theorem 12. Letαn = (a∗
1 + a∗

2)(a∗
3 + a∗

4) · · · (a∗
2n−1 + a∗

2n). EveryεNFA acceptingL(αn) has size at

least8n − 1 = 4
3|α| + 1

3.

Proof. Let An be anεNFA acceptingL(αn). For anyi, 1 � i � 2n, there must be a stateqi of Ai and a
cycle containingqi and labelled by a nontrivial power ofai . Moreover, allqis are different and all these
cycles are disjoint. Also, for anyi, 1 � i � n − 1, there is a path from either ofq2i−1 andq2i to either
of q2i+1 andq2i+2. The first transitions on these paths belong to no others. So far we have shown that
|An| � 4n + 4(n − 1). The rest comes from the fact that we have only one initial state.�

Using Theorem 11 and Proposition 2(ii), we obtain that|Aε
f (α)| � 9|α|A − 1

2. However, this result
does not seem to be close to optimal and investigating upper bounds for the size ofAε

f (α) in terms of
the number of letters inα remains to be further investigated.

5. Positions and partial derivatives

We recall in this section two well-known constructions of NFAs from regular expressions. The first
is theposition automaton, discovered independently by Glushkov [10] and McNaughton and Yamada
[17].

Let α be a regular expression. Putpos(α) = {1, 2, . . . , |α|A} andpos0(α) = pos(α) ∪ {0}. All letters
in α are made different by marking each letter with its position inα; denote the obtained expressionα ∈
A

∗
, whereA = {ai | a ∈ A, 1 � i � |α|A}. For instance, ifα = a(baa + b∗), thenα = a1(b2a3a4 +

b∗
5). Notice thatpos(α) = pos(α). The same notation will also be used for removing indices, that is, for

unmarked expressionsα, the operator· adds indices, while for marked expressionsα the same operator·
removes the indices:α = α. We extend the notation for arbitrary structures, like automata, in the obvious
way. It will be clear from the context whether· adds or removes indices.

Three mappingsfirst, last, andfollow are then defined as follows. For any regular expressionα and
anyi ∈ pos(α), we have:

first(α) = {i | aiw ∈ L(α)},
last(α) = {i | wai ∈ L(α)},
follow(α, i) = {j | uaiajv ∈ L(α)}.

(1)

The three mappings have also an inductive definition, which we shall give later, when needed in the
proofs. For future reasons, we extendfollow(α, 0) = first(α). Also, let last0(α) stand for last(α) if
ε(α) = ∅ andlast(α) ∪ {0} otherwise.
Theposition automatonfor α is

Apos(α) = (pos0(α), A, δpos, 0, last0(α))

with δpos = {(i, a, j) | j ∈ follow(α, i), a = aj }. As shown by Glushkov [10] and McNaughton and Ya-
mada [17],L(Apos(α)) = L(α). Brüggemann-Klein [4] gave an algorithm which computes the position
automaton in quadratic time.

Example 13. Consider the regular expressionτ = (a + b)(a∗ + ba∗ + b∗)∗. The marked version of
τ is τ = (a1 + b2)(a

∗
3 + b4a

∗
5 + b∗

6)
∗. The values of the mappingsfirst, last, andfollow for τ and the

corresponding position automatonApos(τ) are given in Fig. 5.

150 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

Fig. 5. Apos(τ) for τ = (a + b)(a∗ + ba∗ + b∗)∗.

The second construction we recall in this section is thepartial derivative automaton, introduced
by Antimirov [2]. Recall the notion of partial derivative introduced by him. For a regular expression
α and a lettera ∈ A, the set�a(α) of partial derivatives ofα w.r.t. a is defined inductively as
follows:

�a(ε) = �a(∅) = ∅,

�a(b) =
{{ε} if a = b,

∅ otherwise,
�a(α + β) = �a(α) ∪ �a(β),

�a(αβ) =
{
�a(α)β if ε(α) = ∅,

�a(α)β ∪ �a(β) if ε(α) = ε.

�a(α
∗) = �a(α)α∗.

(2)

The definition of partial derivatives is extended to words by�ε(α) = {α}, �wa(α) = �a(�w(α)), for
anyw ∈ A∗, a ∈ A. The set of all partial derivatives ofα is denoted PD(α) = {�w(α) | w ∈ A∗}. An-
timirov [2] showed that the cardinality of this set is less than or equal to|α|A + 1 and constructed the
partial derivative automaton

Apd(α) = (PD(α), A, δpd, α, {q ∈ PD(α) | ε(q) = ε}),
whereδpd(q, a) = �a(q), for q ∈ PD(α), a ∈ A; he provedL(Apd(α)) = L(α).

Champarnaud and Ziadi [6,7] proved that the partial derivative automaton is a quotient of the position
automaton and showed how the partial derivative automaton can be computed in quadratic time, improv-
ing very much Antimirov’s quintic time bound. We shall see in the next section a simplified presentation
of some of their results.

Example 14. Consider the regular expressionτ from Example 5. The partial derivatives ofτ are com-
puted in Fig. 6 where also its partial derivative automatonApd(τ) is shown.

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 151

Fig. 6. Apd(τ) for τ = (a + b)(a∗ + ba∗ + b∗)∗.

6. Apd revisited

In this section we give a simplified proof of the fact, proved by Champarnaud and Ziadi, that the
partial derivative automatonApd is a quotient ofApos. Essentially, we rely only on the work of Berry and
Sethi [3]. We shall not use the notions of canonical derivative and c-continuation of [6] but show that,
under certain hypotheses, they are in fact the same as the continuations of Berry and Sethi.

We assume in the following that therules for ∅ and ε hold: α + ∅ = ∅ + α = α, α · ∅ = ∅ · α =
∅, and α · ε = ε · α = α. Two regular expressionsα and β which reduce to the same expression
using associativity, commutativity, and idempotence of+ are calledsimilar [5]; this is denotedα
∼aci β.

We recall also the definition of the(total) derivative, due to Brzozowski [5]. The derivative ofα w.r.t.
a lettera, a−1(α), is defined inductively as:

a−1(ε) = a−1(∅) = ∅,

a−1(b) =
{
ε if a = b,

∅ otherwise,
(3)

a−1(α + β) = a−1(α) + a−1(β),

a−1(αβ) = a−1(α)β + ε(α)a−1(β),

a−1(α∗) = a−1(α)α∗.

The definition of the total derivatives is extended to words byε−1(α) = α, (wa)−1(α) = a−1(w−1(α)),
for anyw ∈ A∗, a ∈ A.

Consider the marked version ofα, α ∈ A
∗

which has all letters different. Berry and Sethi proved,
for a fixedai ∈ A, that for all wordsw ∈ A

∗
, (wai)

−1(α) is either∅ or unique modulo∼aci. It is clear
that, for any two disjoint subexpressionsβ1 andβ2 of α, at most one of the expressions(wai)

−1(β1)

and(wai)
−1(β2) is different from∅. Therefore, when computing total derivatives using (3), we get at

each moment at most one term different from∅. Hence, it is natural to require that we apply, whenever
possible, the rules for∅ andε during the computation of the total derivatives. What we get is that the
derivative(wai)

−1(α) so computed is either∅ or unique; we got rid of the∼aci-similarity.

152 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

Fig. 7. Apd(τ) � Apos(α)/=c for τ = (a + b)(a∗ + ba∗ + b∗)∗.

The same can be done for the computation of the partial derivatives: when using (2), we apply the
rules for∅ andε after each step. Since they are computed in the same way, we have�wai

(α) = (wai)
−1

(α).
Recall next the notion of acontinuation, also from Berry and Sethi. For a letterai ∈ A, the con-

tinuation ofai in α, denotedci(α), is any expression(wai)
−1(α) /= ∅. From the above, this notion is

well defined. Notice again that we are not talking about∼aci-equivalent expressions because, by our
assumption, there is only one. Denote alsoc0(α) = α. Berry and Sethi’scontinuation automatonis
then Acon(α) = (Q, A, δ, q0, F), whereQ = {ci(α) | i ∈ pos0(α)}, q0 = α, F = {q | ε(q) = ε}, and
δ = {(ci(α), aj , cj (α)) | aj ∈ first(ci(α))}. As Berry and Sethi proved.

Proposition 15. Acon(α) � Apos(α) andAcon(α) � Apos(α).

The difference between the continuation or position automaton, forα or α is that the labels on transi-
tions are unmarked or marked, respectively. Obviously, if two automata with marked letters are isomor-
phic, so are the unmarked versions.

It is worth mentioning that the language accepted by the two automata forα is L(α). Also, L(α) =
L(α). Notice that for the continuation and position automata, it makes no difference whether we work
first with α and unmark the obtained automaton or we work withα. However, as we shall see in a
moment, the same is not valid for the partial derivative automaton.

Now, from the definition ofApd(α), the difference w.r.t.Acon(α) is that whenever two continuations
of α (includingα) are the same, they represent different states inAcon(α) but the same inApd(α). Define
then the equivalence=c⊆ (pos(α))2 by i =c j iff ci(α) = cj (α); =c is right-invariant w.r.t. the position
automaton. What we have so far is that

Proposition 16.
(i) Apd(α) � Acon(α)/=c � Apos(α)/=c

(ii) Apd(α) � Acon(α)/=c � Apos(α)/=c .

Example 17. For the regular expressionτ from Example 5, we construct in Fig. 7 the automaton
Apd(τ); the classes of the equivalence=c are also shown.

We have worked so far in this section only with regular expressions which have all letters different. We
shall now remove the marking and see what happens. Define another equivalence,≡c⊆ (pos(α))2 by
i ≡c j iff ci(α) = cj (α); ≡c is also right-invariant w.r.t. the position automaton and=c⊆≡c.

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 153

Fig. 8. Apd(τ) � Apos(τ)/≡c for τ = (a + b)(a∗ + ba∗ + b∗)∗.

For any lettera and regular expressionβ, it is clear that�a(α) = {�ai
(α) | ai = a}. Therefore, the

partial derivative automaton is obtained by merging those states in the continuation automaton which
have the same continuation when indices are removed. We therefore have the result of Champarnaud
and Ziadi [6]

Theorem 18. Apd(α) � Apos(α)/≡c .

Notice that we gave also a proof for the result of Antimirov [2] that|PD(α)| � |α|A + 1.

Example 19. For the regular expressionτ from Example 5, we construct in Fig. 8 the automaton
Apd(τ); the classes of the equivalence≡c are also shown. According to Theorem 18, we haveApd(τ) �
Apos(τ)/≡c as it can be seen by comparing with Fig. 5, whereApos(τ) is shown.

7. Follow automata

In this section we give our new algorithm for constructing NFAs from regular expressions. The idea is
very simple: just eliminate (in a certain way, to be made precise below) theε-transitions from theAε

f (α).

Essentially, for any path labelledε, p
ε� q, and any transitionq

a→ r, we add a transitionp
a→ r. The

obtained automaton is calledfollow NFA, denoted

Af(α) = (Qf , A, δf , 0f , Ff).

We give below the precise details of the elimination ofε-transitions fromAε
f (α). We notice that, due to

improvement (b) in Algorithm 4, there are noε-cycles inAε
f (α).

Algorithm 20. GivenAε
f (α), the algorithm constructsAf(α).

1. Ff ← {qf }
2. sort topologicallyQε

f w.r.t. the orderp � q iff p
ε→ q ∈ δε

f ;
3. denote the orderedQε

f = (q1, q2, . . . , qr)

4. for i from r downto 1 do
5. for each transitionqi

ε→ p do
6. for each transitionp

a→ q do
7. if qi

a→ q �∈ δε
f then addqi

a→ q to δε
f

8. if p ∈ Ff then addqi to Ff

9. remove the transitionqi
ε→ p

154 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

10. for eachq ∈ Qε
f − {0f } such that there is nop

a→ q in δε
f do

11. eliminateq from Qε
f and all transitions involvingq from δε

f

12. Qf ← Qε
f ; δf ← δε

f

13. return Af(α) = (Qf , A, δf , 0f , Ff)

Theorem 21. For any regular expressionα, Af(α) is an NFA acceptingL(α) which can be constructed
in time and spaceO(|α|2).
Proof. For the first assertion, it should be clear from Algorithm 20 thatL(Af(α)) = L(Aε

f (α)). We then
use Theorem 6(i).

The complexity is given by the number of pairs(p
ε→ q, q

a→ r) which are considered in the algo-
rithm. There areO(|α|) ε-transitions andO(|α|) transitions labelled by the same letter which leave a
certain state. AssumingA is fixed, we obtain the result.�

Example 22. We give an example of an application of Algorithm 20. For the same regular expression
τ = (a + b)(a∗ + ba∗ + b∗)∗ from Example 5, we build in Fig. 9 the automatonAf(τ); compare with
Example 5 to see theε-elimination.

We conclude this section with some very important comments concerning both the size ofAf(α) and
the running time of Algorithm 20 which builds it. The worst case in Theorem 21 is reached for instance
for the regular expression of [14], that is,α = (a1 + ε)(a2 + ε) · · · (an + ε). However, in most examples
(see also the examples at the end) both the size ofAf(α) and the running time of Algorithm 20 are linear.
Also, we do not have examples where theε-elimination requires essentially more time than the size of
Af(α). This remains an open problem. We finally notice that ourε-elimination algorithm is different
from, and faster than, the classical one of [13]. The difference is that we do not computeε-closures.

8. Af is a quotient of Apos

We prove in this section thatAf(α) introduced above is a quotient ofApos(α). This is unexpected
because the construction ofAf(α) does not have, apparently, anything to do with positions. However,
the consequences of this result are very important.
We start by defining the equivalence≡f ⊆ pos0(α)2 by

i ≡f j iff (i) both i, j or none belong tolast(α) and
(ii) follow(α, i) = follow(α, j)

Notice that we restrict the equivalence so that we do not make equivalent final and non-final states in
Apos(α). The maim result of this section follows.

Fig. 9. Af(τ) for τ = (a + b)(a∗ + ba∗ + b∗)∗.

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 155

Fig. 10. Af(τ) � Apos(τ)/≡f for τ = (a + b)(a∗ + ba∗ + b∗)∗.

Theorem 23. Af(α) � Apos(α)/≡f
.

We notice first that the restriction we imposed on≡f so that final and non-final states inpos0(α)

cannot be≡f -equivalent is essential, as shown by the expressionα = (a∗b)∗. Herefollow(α, i) = {1, 2},
for any 0� i � 2. However, merging all three states ofApos(α) is an error as the resulting automaton
would accept the language(a + b)∗.

Example 24. Here is an example of an application of Theorem 23. For the same regular expressionτ =
(a + b)(a∗ + ba∗ + b∗)∗ from Example 5, we build in Fig. 10 theAε

f (τ) and then give the equivalence
classes of≡f and the automatonAf(τ).

We move next to the proof of Theorem 23. First of all we need to see that we are allowed to make the
quotient of the position automaton by the equivalence≡f .

Lemma 25. The equivalence≡f is right invariant w.r.t. Apos(α).

Proof. The first condition, compatibility with the set of final stateslast0(α), is verified by the definition
of ≡f . For the second condition, consideri ∈ last0(α), a ∈ A. We haveδpos(i, a) = {k ∈ pos(α) | k ∈
follow(α, i), ak = a} and so, ifi ≡f j , thenδ(i, a) = δ(j, a) and the claim follows. �

The following well-known properties of these mappings will be used in the sequel:

first(β + γ) = first(β) ∪ first(γ),

first(βγ) = first(β) ∪ ε(β)first(γ),

first(β∗) = first(β),

last(β + γ) = last(β) ∪ last(γ),

last(βγ) = last(γ) ∪ ε(γ)last(β),

last(β∗) = last(β),

follow(β + γ, i) =
{
follow(β, i) if i ∈ pos(β),

follow(γ, i) if i ∈ pos(γ),

follow(βγ, i) =

follow(β, i) if i ∈ pos(β) − last(β),

follow(β, i) ∪ first(γ) if i ∈ last(β),

follow(γ, i) if i ∈ pos(γ),

follow(β∗, i) =
{
follow(β, i) if i ∈ pos(β) − last(β),

follow(β, i) ∪ first(β) if i ∈ last(β).

(4)

156 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

Also, we shall need several results before proving Theorem 23. First, it is clear thatAε
f (α) is obtained

from Aε
f (α) by eliminating multiple transitions, if any. Therefore,Af(α) is obtained fromAf(α) in the

same way. Also,Apos(α) = Apos(α), which implies thatApos(α)/≡f
is obtained by eliminating multiple

transitions fromApos(α)/≡f
. Consequently, it is enough to prove thatAf(α) � Apos(α)/≡f

. Notice that
≡f is right invariant w.r.t.Apos(α).
We define the function

m : pos0(α) −→ Qε
f m(0) = 0f and

m(i) = p, if i /= 0 andq
ai→ p, for someq ∈ Qε

f .
There is a single transition labelledai in Aε

f (α), som(i) is well defined as its target. Because the initial
states ofAf(α) andAε

f (α) are the same and all transitions labelledai in Af(α) have the same target state,
m can be equivalently defined asm : pos0(α) −→ Qf by m(0) = 0f and, fori /= 0, m(i) = p, for any
p ∈ Qf such that there is an transition labelledai which is incoming top. Notice thatm is ontoQf as
the states ofAε

f (α) which have all incoming transitions labelledε were removed by Algorithm 20. The
functionm will be the isomorphism we look for.
We prove next several results concerning the functionm. For two statesp andq, we denote the fact that
there is a path labelledε form p to q by p

ε� q; this path can also empty, that is,p = q.

Lemma 26. For anyi, j ∈ pos(α), we have

(i) i ∈ first(α) iff there is0f
ε� p

ai→ m(i) in Aε
f (α).

(ii) i ∈ last(α) iff there ism(i)
ε� qf in Aε

f (α).

(iii) j ∈ follow(α, i) iff there ism(i)
ε� p

aj→ m(j) in Aε
f (α).

Proof. The assertions follow from the definitions offirst, last, andfollow in (1) and the equalityL(α) =
L(Aε

f (α)) in Theorem 6(i). �

Lemma 26 implies that, to show the isomorphismAf(α) � Apos(α)/≡f
, it is enough to prove that,

for any i, j ∈ pos0(α), i ≡f j iff m(i) = m(j). If we define the equivalence≡m = {(i, j) | m(i) =
m(j)}, then we have to show≡m = ≡f . Indeed, assume this holds. Lemma 26(ii) assures that final

states ofApos(α)/≡f
are mapped to final states ofAf(α). Then, we have a transition[i]≡f

aj→ [j]≡f
in

Apos(α)/≡f
iff j ∈ follow(α, i) iff (by Lemma 26(i)(iii)) m(i)

ε� p
aj→ m(j) in Aε

f (α) iff m(i)
aj→ m(j)

in Af(α). The isomorphism follows.
The next result concerning initial states follows from Lemma 26.

Corollary 27. We have thatm−1(0f) = {0} iff there is no incoming transition labelled by someai to
0f in Aε

f (α) (or, equivalently, in Af(α)). Also, if i ∈ m−1(0f), thenfollow(α, i) = first(α).

We make an observation concerning notations, such as 0f , qf , m, ≡f , etc. They depend onα but we
omit α when it is understood; when it is not clear from the context, we add it as a further subscript, e.g.,
0f,α, qf,α, mα, ≡f,α, etc.
We shall need several further lemmata to prove our goal.

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 157

Lemma 28. The final stateqf ∈ Qε
f remains as a state inQf after Algorithm20 iff there isi ∈ last(α)

such thatfollow(α, i) = ∅; moreover, in this case, for anyi ∈ last(α), m(i) = qf iff follow(α, i) = ∅.

Proof. The stateqf is not eliminated by Algorithm 20 if and only if there is a transitionq
ai→ qf

in Aε
f (α). By definition of m, we havem(i) = qf and Lemma 26(ii)(iii) give thati ∈ last(α) and

follow(α, i) = ∅. Conversely, assumei ∈ last(α) with follow(α, i) = ∅. By Lemma 26(ii), there is a
pathm(i)

ε� qf in Aε
f (α). Assume this path is not empty and consider the last transition of it,q

ε→ qf .
According to the construction ofAε

f (α) in Algorithm 4, thisε-transition may appear in two ways: from
anε initial y in α or from a ‘*’ in α. In the former case, there must be (becauseα is reduced) a path from
q to qf which has at least one transition labelled by someaj . Thus, by Lemma 26(iii),follow(α, i) /= ∅,
a contradiction. In the latter case, we obtain a similar contradiction; asα is reduced, there must be a path
as before fromq to q. Therefore, it must be thatm(i) = qf and soqf remains inAf(α). Notice that we
proved also the second statement.�

Lemma 29. For any i ∈ last(α) such that∅ /= follow(α, i) ⊆ first(α), there is0f
ε� m(i)

ε� qf in
Aε

f (α).

Proof. By induction onα. Denote the property to be provedP1(α, i).
If α ∈ {∅, ε, a}, then the property is true. Whenα has at least one operator, assumeP1 true for all

subexpressions ofα and let us prove it forα. We shall use (4).
(1) α = β + γ . Assumei ∈ last(β). The casei ∈ last(γ) is similar. Then∅ /= follow(β, i) ⊆ first(β) ∪

first(γ) and hence∅ /= follow(β, i) ⊆ first(β). Therefore, by the inductive hypothesis,P1(β, i) is
true and so isP1(α, i).

(2) α = βγ . If ε(γ) = ∅, then i ∈ last(γ) with ∅ /= follow(γ, i) ⊆ first(β) ∪ ε(β) first(γ) and so it
must be thatε(β) = ε and ∅ /= follow(γ, i) ⊆ first(γ). Now, the inductive hypothesis gives that
P1(γ, i) holds, in particularε(γ) = ε, a contradiction. Thus, we haveε(γ) = ε.
Now, if i ∈ last(γ), then, as above, we getε(β) = ε and the inductive hypothesis givesP1(γ, i).
Together, these implyP1(α, i).
Wheni ∈ last(β), we have∅ /= follow(β, i) ∪ first(γ) ⊆ first(β) ∪ ε(β) first(γ) andε(β) = ε, as
γ /= ε (α is reduced). Iffollow(β, i) = ∅, then Lemma 28 gives thatm(i) = qf,β (the final state
of Aε

f (β)). Hence,P1(α, i) holds. If follow(β, i) /= ∅, then the inductive hypothesis givesP1(β, i)

which will give againP1(α, i).
(3) α = β∗. Then i ∈ last(β) and∅ /= follow(β, i) ∪ first(β) ⊆ first(β) which impliesfollow(β, i) ⊆

first(β). If follow(β, i) /= ∅, thenP1(α, i) follows from the inductive hypothesis onβ. If follow(β, i)

= ∅, we use again Lemma 28 and obtainP1(α, i). �

Lemma 30. For any i, j ∈ last(α) with ∅ /= follow(α, i) − first(α) = follow(α, j) −first(α), we have
eitheri ≡f j or m(i) = m(j).

Proof. By induction onα. Denote the property to be proved byP2(α, i, j). For α ∈ {∅, ε, a} there is
nothing to prove. We assume nextα has at least one operator andP2 is true for all subexpressions ofα.
(1) α = β + γ . Theni andj are both in eitherlast(β) or last(γ) and the property follows from (4) and

the inductive hypothesis.

158 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

(2) α = βγ . We use (4). Assume firsti, j ∈ last(γ). If ε(β) = ε, then the inductive hypothesis gives
P2(γ, i, j) which, in turn, impliesP2(α, i, j). If ε(β) = ∅, then i ≡f,α j . If i, f ∈ last(β), then
ε(γ) = ε. If ε(β) = ε, we can use inductive hypothesis onβ. Assumeε(β) = ∅. Thenfollow(β, i) −
first(β) = follow(β, j) − first(β). If both members of the last equality are non-empty, then we can
again use the inductive hypothesis onβ. Otherwise, for anyk ∈ {i, j}, follow(β, k) = ∅; if non-
empty, then Lemma 29 would giveP1(β, k), implying ε(β) = ε, a contradiction. Therefore, by
Lemma 28, we getm(i) = m(j).

The remaining possibility isi ∈ last(β), j ∈ last(γ); we have alsoε(γ)=ε. The equalityfollow
(α, i) − first(α) = follow(α, j) − first(α) is possible only ifε(β) = ∅, follow(β, i) ⊆ first(β), and
follow(γ, j) = first(γ). Also, it must be thatfollow(β, i) = ∅, as otherwise Lemma 29 would give
ε(β) = ε, a contradiction. Therefore,i ≡f,α j .

(3) α = β∗. ThenP2(α, i, j) follows from the inductive hypothesis onβ. �

Proof of Theorem 23.We can start now the proof of the equality≡f =≡m which, as argued before, is
enough to prove the statement of Theorem 23. We do this again by induction onα. If α ∈ {∅, ε, a}, then
≡f,α = ≡m,α= ∅. Assumeα has at least one operator and that the property holds for all subexpressions
of α. We shall tacitly use (4). Also, recall that all expressions are assumed to be reduced.
(1) α = β + γ . Corollary 27 givesm−1(0f,α) = {0}. Consider first the case whenβ = ε; the caseγ = ε

is symmetric. Ifi /= 0 andi ≡f,α 0, thenfollow(γ, i) = first(γ) /= ∅, and so, by Lemma 29,ε ∈
L(γ), contradiction withα reduced. Therefore,≡f,α = ≡f,γ ∩pos(α)2. Since also≡m,α = ≡m,γ

∩pos(α)2, the inductive hypothesis implies≡f,α = ≡m,α.
Assume nowβ /= ε, γ /= ε. We know that noi /= 0 can havei ≡f,α 0. Takei /= 0, j /= 0 such that

i ≡f,α j . If i andj are both inpos(β) or pos(γ), theni ≡f,β j or i ≡f,γ j , respectively. If not, then
i ∈ last(β), j ∈ last(γ), andfollow(β, i) = ∅ = follow(γ, j). Therefore,

≡f,α= ((≡f,β ∪ ≡f,γ) ∩ pos(α)2)

∪{(i, j) ∈ last(β) × last(γ) | follow(β, i) = ∅ = follow(γ, j)}.
According to Algorithm 4 and Corollary 27,m−1

β (0f,α) is either{0} or empty (in the case of (a1)).

Similarly, using Lemma 28,m−1
β (qf,α) contains thosei ∈ pos(α) with follow(α, i) = ∅. Therefore,≡f,α

= ≡m,α.
(2) α = βγ . Sinceα is reduced, bothβ andγ are different fromε. Hence, fori /= 0, we havei ≡f,α 0

iff i ∈ pos(β), i ≡f,β 0. This implies≡f,α ∩({0} × pos(α)) =≡f,β ∩({0} × pos(α)).
Takei /= 0, j /= 0, such thati ≡f,α j . If both i andj are inpos(β) or pos(γ), theni ≡f,β j or i ≡f,γ

j , respectively. The converse holds as well. Ifi ∈ pos(β), j ∈ pos(γ), then it must be thati ∈ last(β),
follow(β, i) = ∅, andj ≡f,γ 0. The converse is also true. Therefore, we have

≡f,α = ≡f,β

∪ (≡f,γ ∩pos(γ)2)

∪ {(i, j) ∈ last(β) × pos(γ) | follow(β, i) = ∅, j ≡f,γ 0}.
Consider now≡m,α. The positions mapped to the same states bymβ or mγ will also be mapped

the same bymα. Also, the positions mapped bymα to 0f,α are precisely those mapped this way by
mβ . According to Algorithm 4 (and its improvement (a)) and Lemma 28, the positionsi in β with
follow(β, i) = ∅ and thosej in γ with mγ (j) = 0f,γ are mapped to the same state. Now the inductive
hypothesis shows that≡f,α = ≡m,α.

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 159

(3) α = β∗. Consider firsti /= 0, i ≡f,α 0. Lemma 29 gives thati ∈ pos(β) − last(β) is not possible.
Thus i ∈ last(β) with follow(β, i) ⊆ first(β). So, eitherfollow(β) = ∅ or, by Lemma 29, there is
0f,β

ε� m(i)
ε� qf,β in Aε

f (β). The converse holds true because of Lemma 26. Therefore
≡f,α ∩({0} × pos(α)) = {(0, i) | i ∈ last(β), 0f,β

ε� m(i)
ε� qf,β in Aε

f (β)}
∪{(0, i) | i ∈ last(β), follow(β, i) = ∅}.

It can be seen now that≡f,α ∩({0} × pos(α)) =≡m,α ∩({0} × pos(α)) because of the definition of
Aε

f in Algorithm 4.
Consider nexti /= 0, j /= 0 such thati ≡f,α j . If i, j ∈ pos(β) − last(β), then i ≡f,β j . If i, j ∈

last(β), thenfollow(β, i) ∪ first(β) = follow(β, j) ∪ first(β). If one of follow(β, i) andfollow(β, j) is
a subset offirst(β), then the other is also and, for anyk ∈ {i, j} we have that eitherfollow(β, k) = ∅
or follow(β, k) /= ∅; in the latter case, by Lemma 29, there is 0f,β

ε� m(k)
ε� qf,β in Aε

f (β). On the
other hand, if none offollow(β, i) and follow(β, j) is included infirst(β), then ∅ /= follow(β, i) −
first(β) = follow(β, j) − first(β), which gives, by Lemma 30 and the inductive hypothesis onβ, that
i ≡f,β j .

We have proved that
cl ≡f,α ∩ pos(α)2 = (≡f,β ∩pos(β)2)

∪{(i, j) ∈ last(β)2 | ∀k ∈ {i, j}, eitherfollow(β, k) = ∅
or there is 0f,β

ε� m(i)
ε� qf,β in Aε

f (β)}.
Now, again by the definition ofAε

f in Algorithm 4 and the improvement in (b), we have≡f,α

∩ pos(α)2 =≡m,α ∩ pos(α)2. Therefore,≡f,α = ≡m,α, and the proof of Theorem 23 is completed.
�

So, we have that both follow and partial derivative automata are quotients of the position automaton.
As it will be seen in Section 10, the two quotients are incomparable. Let us further remark that [16] in-
vestigates further such quotients and shows how to build the largest right-invariant equivalence w.r.t. the
position automaton, which gives the smallest quotient, therefore smaller than either of follow or partial
derivative automaton. However, it is an open problem how to compute that quotient fast; according to
[16], it can be computed in polynomial time.

9. Af uses optimally the positions

Finally, we show that the follow automatonAf(α) uses the whole information which comes from
positions ofα. Indeed, the follow automaton for marked expressions cannot be improved.Af(α) is a
deterministic automaton and let the minimal automaton equivalent to it bemin(Af(α)). Thenmin(Af(α))

is an NFA acceptingL(α) which can be computed in timeO(|α|2 log |α|) using the minimization algo-
rithm of Hopcroft [12]. This is, in fact, another way of using positions to compute NFAs for regular
expressions. However, it is interesting to see thatmin(Af(α)) brings no improvement overAf(α).

Theorem 31. min(Af(α)) � Af(α).

Proof. It is enough to show thatmin(Af(α)) � Af(α), that is,Af(α) is already minimal. We first com-
plete the automatonAf(α); we add a new non-final state, denoted∅, and all missing transitions will go
to it. Denote the completed automaton byA∅

f (α). Consider two positionsi andj which have different

160 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

follow sets and, with no loss of generality, takek ∈ follow(α, i) − follow(α, j). Then, there is a word
w ∈ A

∗
such thatakw takes the automatonA∅

f (α) from the statei to a final state. On the other hand,
akw takes the automatonA∅

f (α) from the statej to ∅. Therefore,i andj cannot be merged. Since they
have been arbitrarily chosen, the automatonAf(α) is minimal. �

Notice also that computingAf(α) by ε-elimination inAε
f (α) is faster than using Hopcroft’s algorithm

[12] plus unmarking.

10. Comparing Af with other constructions

We discuss in this section some examples to compare the follow automaton with the best constructions
to date. We shall include also comparison with the common follow sets automaton of [14], denoted
below byAcfs(α). We do not include here the very long description ofAcfs which can be found in [14]
or [11].

We start with some examples showing thatAf can be much smaller than either ofApos andApd and
thatAf is incomparable with either ofApd andAcfs.

Example 32. Considerαn from Example 3. The follow automaton is smaller than all the others:
|Apos(αn)| = |Apd(αn)| = �(|αn|2),
|Af(αn)| = �(|αn|),
|Acfs(αn)| = �(|αn|(log(|αn|))2).

Example 33. Consider the regular expression

αn = a1(b1 + · · · + bn)
∗ + a2(b1 + · · · + bn)

∗ + . . . + an(b1 + · · · + bn)
∗.

We have now that the partial derivative automaton is the smallest:
|Apos(αn)| = �(|αn|3/2),
|Af(αn)| = �(|αn|),
|Apd(αn)| = �(|αn|1/2), and
|Acfs(αn)| = �(|αn|(log(|αn|))2).

Example 34. Consider the regular expression of [14]

αn = (a1 + ε)(a2 + ε) · · · (an + ε).

In this case the common follow sets automaton is the smallest:
|Apos(αn)| = |Af(αn)| = |Apd(αn)| = �(|αn|2), and
|Acfs(αn)| = �(|αn|(log(|αn|))2).

Next, we give some real-life examples which have some interesting common properties. For all of
them, the follow automaton and the partial derivative automaton are isomorphic and smaller than the
other two. These examples are:
• C-comments:/*((A-{*}) + ***(A-{ *, /}))****/
• floating point numbers:

L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162 161

(0 + · · · + 9)(0 + · · · + 9)*.((0 + · · · + 9)(0 + · · · + 9)* + ε)(e + E)(+ + - + ε)

(0 + · · · + 9)(0 + · · · + 9)*
• programming languages identifiers:

(a + · · · z + A + · · · Z)(a + · · · z + A + · · · Z + 0 + · · · + 9)*
If these examples are generalized to some parametrized examples we still have thatAf andApd are

isomorphic and have linear size; the position automaton has quadratic size and the common follow
sets automaton has size linear times the square of the logarithm. We show it only for the last example.
Conclusions of these results are discussed in the next section.

Example 35. Consider the regular expression (generalized identifiers in programming languages)

αn,m = (a1 + a2 + · · · + an)(a1 + a2 + · · · + an + b1 + b2 + · · · + bm)∗.

We have
|Af(αn,m)| = |Apd(αn,m)| = �(|αn,m|),
|Apos(αn,m)| = �(|αn,m|2), and
|Acfs(αn,m)| = �(|αn,m|(log(|αn,m|))2).

We finally notice that we did not compare our construction with the one of Chang and Paige [8] since
we do not work with compressed automata.

11. Conclusions and further research

We gave two new algorithms to construct nondeterministic finite automata from regular expressions.
The first constructsεNFAs which are smaller than all other similar constructions and also very close to
optimal. The second constructs the follow NFAs which are conceptually by far the simplest compared to
all the others: we construct the followεNFA, which is elementary, and then eliminate theε-transitions,
which is again elementary. However, the resulting automata have interesting properties. The follow au-
tomaton is always a quotient of the position automaton, is very easy to compute, and is at least as small
as all the other similarly constructed automata in most cases. We believe that these features will make
these automata very attractive for practical purposes. Several problems should be investigated further.

First, it seems that the time required to build the follow automaton is linear in terms of its size. At
least we do not have examples to prove the converse. We remark that the assertion is not true in general.
There are examples ofεNFAs for which theε-elimination takes longer than both size of input and size
of output.

Second, the follow automaton seems to have linear size in most cases. It is of interest to see which are
those cases and when the size is far from linear. Also, the common follow sets automaton seems to have
size linear times the logarithm squared in most cases. Some lower bounds on its size might bring some
light here.

Third, a more rigorous comparison between the follow automaton and common follow sets or partial
derivative automaton should be done. This seems difficult because average case analysis is, very likely,
too complicated. Probably the only way to decide which one is better is by testing all of them in real-life
applications.

162 L. Ilie, S. Yu / Information and Computation 186 (2003) 140–162

References

[1] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, MA, 1988.
[2] V. Antimirov, Partial derivatives of regular expressions and finite automaton constructions, Theoret. Comput. Sci. 155

(1996) 291–319.
[3] G. Berry, R. Sethi, From regular expressions to deterministic automata, Theoret. Comput. Sci. 48 (1986) 117–126.
[4] A. Brüggemann-Klein, Regular expressions into finite automata, Theoret. Comput. Sci. 120 (1993) 197–213.
[5] J. Brzozowski, Derivatives of regular expressions, J. ACM 11 (1964) 481–494.
[6] J.-M. Champarnaud, D. Ziadi, New finite automaton constructions based on canonical derivatives, in: Proceedings of the

CIAA 2000, LNCS 2088, Springer, Berlin, 2001, pp. 94–104.
[7] J.-M. Champarnaud, D. Ziadi, Computing the equation automaton of a regular expression inO(s2) space and time, in:

Proceedings of the 12th Combinatorial Pattern Matching (CPM 2001), LNCS 2089, Springer, Berlin, 2001, pp. 157–168.
[8] C.-H. Chang, R. Paige, From regular expressions to DFA’s using compressed NFA’s, Theoret. Comput. Sci 178 (1997)

1–36.
[9] J. Friedl, Mastering Regular Expressions, O’Reilly, 1998.

[10] V.M. Glushkov, The abstract theory of automata, Russian Math. Surveys 16 (1961) 1–53.
[11] C. Hagenah, A. Muscholl, Computingε-free NFA from regular expressions inO(n log2(n)) time, Theor. Inform. Appl.

34 (4) (2000) 257–277.
[12] J. Hopcroft, Ann logn algorithm for minimizing states in a finite automaton, in: Proceedings of the International Sym-

posium on Theory of machines and computations, Technion, Haifa, Academic Press, New York, 1971, pp. 189–196.
[13] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading,

Mass, 1979.
[14] J. Hromkovic, S. Seibert, T. Wilke, Translating regular expressions into smallε-free nondeterministic finite automata, J.

Comput. System Sci. 62 (4) (2001) 565–588.
[15] L. Ilie, S. Yu, Constructing NFAs by optimal use of positions in regular expressions, in: A. Apostolico, M. Takeda (Eds.),

Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching (CPM) (Fukuoka, 2002), Lecture Notes
in Comput. Sci., 2373, Springer, Berlin, 2002, pp. 279–288.

[16] L. Ilie, S. Yu, Algorithms for computing small NFAs, in: K. Diks, W. Rytter (Eds.), Proceedings of the 27th International
Symposium on Mathematical Foundations of Computer Science (MFCS), (Warszawa, 2002), Lecture Notes in Comput.
Sci., 2420, Springer, Berlin, 2002, pp. 328–340.

[17] R. McNaughton, H. Yamada, Regular expressions and state graphs for automata, IEEE Trans. on Electronic Computers 9
(1) (1960) 39–47.

[18] S. Sippu, E. Soisalon-Soininen, Parsing Theory: I Languages and Parsing, EATCS Monographs on Theoretical Computer
Science, vol. 15, Springer-Verlag, New York, 1988.

[19] K. Thompson, Regular expression search algorithm, Comm. ACM 11 (6) (1968) 419–422.
[20] S. Yu, Regular Languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. I, Springer-Verlag,

Berlin, 1997, pp. 41–110.

