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Abstract

We give two new algorithms for constructing small nondeterministic finite automata (NFA) from regular expres-
sions. The first constructs NFAs withtransitions §NFA) which are smaller than all the othelXlFAs obtained by
similar constructions. Their size is at mcgswl + g wherex is the regular expression. This is very close to optimal
since we prove also the lower bouéqixl + g The second constructs NFAs. It ugeslimination in thesNFAs
we just introduced and builds a quotient of the well-known position automaton w.r.t. the equivalence given by the
follow relation; therefore giving the name fufllow automaton. The new automaton uses optimally the information
from the positions of a regular expression. We compare the follow automaton with the best constructions to date
and show that it has important advantages over those.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The importance of regular expressions for applications is well known. They describe lexical tokens for
syntactic specifications and textual patterns in text manipulation systems. Regular expressions have be-
come the basis of standard utilities such as scanner generators (lex), editors (emacs, vi), or programming
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languages (perl, awk), see [1,9]. While regular expressions provide an appropriate notation for regular
languages, their implementation is done using finite automata. The size of the automata is crucial for the
efficiency of the algorithms using them; e.qg., for regular expression matching. Since the deterministic
finite automata obtained from regular expressions can be exponentially larger in size, in many cases
nondeterministic finite automata are used instead. Minimization of NFAs is PSPACE-complete, see [20],
so other methods need to be used to obtain small NFAs. Probably the most famous such constructions
are the ones of Thompson [19] which builds a nondeterministic finite automatonevirmsitions
(eNFA) and the one of Glushkov and McNaughton-Yamada [10,17] which outputs a nondeterministic
finite automaton without-transitions (NFA), called position automaton. While Thompson’s automaton
has linear size (in terms of the size of the regular expression), the position automaton has size at most
guadratic and can be computed in quadratic time by the algorithm of Briiggemann-Klein [4]. We note
that throughout the paper the size of automata will include both transitions and states.

Antimirov [2] generalized Brozozowski's derivatives and built the partial derivative automata. Cham-
parnaud and Ziadi [6,7] improved very much Antimiro@$r°) algorithm for the construction of such
NFA; their algorithm runs in quadratic time. They proved also that the partial derivative automaton is a
guotient of the position automaton and so it is always smaller than or equal to the position automaton.

The best worst case comes with the construction of Hrontkewal. [14]; their NFA, called common
follow sets automaton, has size at mosi(logn)?) and, by the algorithm of Hagenah and Muscholl
[11], it can be computed in tim&(n(logn)?). This construction artificially increases the number of
states in order to reduce the number of transitions.

In this paper, we propose new algorithms to construct very small nondeterministic finite automata,
with or withoute-transitions, from regular expressions. Our first algorithm consteldERs which are
smaller than all the others obtained by similar constructions; e.g., the one of Thompson [19] or the one
of Sippu and Soisalon-Soininen [18] (which builds a smalldFA than Thompson’s). Given a regular
expressiomny, the size of oueNFA for « is at mosl%|oz| + 52’ This is very close to the optimal; we prove
a lower bound o || + 3.

We give then a method for constructing NFAs. It useslimination in thesNFA newly introduced.
The obtained NFAs have several remarkable properties. First, although the construction of this NFA
has, apparently, nothing to do with positions, it turns out, unexpectedly, that the NFA is a quotient of
the position automaton with respect to the equivalence given by the follow relation; therefore giving
the name offollow automaton Second, we show that the follow automaton uses optimally the infor-
mation from the positions of the regular expression and thus it cannot be improved this way. Third,
the follow automaton is, conceptually, the simplest compared to the best similar constructions. Finally,
the follow automaton seems to perform very well in practical applications. Even if the worst case is
guadratic in what concerns both the size of the automaton and the running time of the algorithm,
in practice it performs much better. For instance, it seems to outdo on most examples the common
follow sets automaton which, as we mentioned, has the best worst case size and running time. The
worst case seems to be quite irrelevant here. On the other hand, it seems very difficult to compute
the average case size and running time of such constructions. Therefore, we have to rely on exam-
ples to make comparisons. For most examples, the common follow sets automaton reaches its upper
bound of O(n(logn)?), while the follow automaton is linear. (Precisely, we consider parameterized
examples.)

The paper is organized as follows. Section 2 contains the basic definitions we need. In Section
3 we give an algorithm to reduce regular expressions such that many redundant elements are elim-
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inated. Section 4 gives our construction €MFAs. It also gives the proof that it is always smaller
than the well known constructions of [18,19] and the lower bound showing that it is very close to
optimal. Section 5 recalls the position and partial derivative automata. The fact that the partial deriv-
ative automaton is a quotient of the position automaton is given a simpler proof in Section 6. The
construction of our follow NFAs is given in Section 7. Section 8 contains the proof that our NFA is
a quotient of the position automaton. The optimal use of positions in the construction of the follow
NFA is shown in Section 9. Some examples are given in Section 10 to compare our constructions
with the position, partial derivative, and common follow sets automata. Finally, we discuss in Section
11 some of the most important problems which should be clarified about follow automata and related
constructions.

2. Regular expressions and automata

We recall here the basic definitions we need throughout the paper. For further details we refer to [13]
or [20].

Let A be an alphabet and* the set of all words oveA; ¢ denotes the empty word and the length
of a wordw is denotedw|. A languageover A is a subset ofA*. A regular expressiorover A is @,

g, 0ra € A, or is obtained from these applying the following rules finitely many times: for two regular
expressions and g, theunion « + 8, thecatenation« - g, and thestar, «*, are regular expressions.
The regular language denoted by a regular expressisii («). Also, we define («) to bee if ¢ € L(x)
andy otherwise. Thesizeof « is denoteda| and represents the number of symbolsiwhen written

in postfix (parentheses are not counted).

A finite automatons a quintupleM = (Q, A, 8, qo, F), whereQ is the set of states| is the input
alphabetgg € Q is the initial state ' C Q is the set of final states, ardd< Q x (A U {¢}) x Q is the
transition mapping; we shall denote, fpre Q,a € AU {e}, §(p,a) ={q € QO | (p,a, q) € 8}. The
automatonM is calleddeterministic(DFA) if § : O x A — Q is a (partial) functionnondeterministic
(NFA) if 8§ € Q0 x A x Q, andnondeterministic witla-transitions(sNFA) if there are no restrictions on
3. The language recognized by is denoted. (M). Thesizeof a finite automato is |[M| = | Q]| + |§];
we count both states and transitions.

Let=C Q x Q be an equivalence relation. Rgre Q, [¢]= denotes the equivalence class;jofi.r.t.
= and, for§S € Q, S/= denotes the quotient s8f— = {[¢]= | ¢ € S}.

We say that= is right invariantw.r.t. M iff
() =< (Q — F)2U F2 (final and non-final states are natequivalent) and
(i) foranyp,qe Q,ac A,if p=gq,thens(p,a)/= =6(g,a)/=.

If =isrightinvariant, thejuotient automato /— is constructed a&f /= = (Q/=, A, 8=, [qol=, F /=),
wheres= = {([pl=, a, [q]=) | (p,a, g) € §}; noticethat) /= = (Q — F)/= U F /=, sowe do not merge
final with non-final states. Notice that M /=) = L(M).

3. Reduced regular expressions

We give in this section an algorithm for reducing regular expressions. The intent is to reduce the
number of¢f’s ande’s, as well as the total size of the expression. Such reductions are often mentioned
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in literature, but we want to make things more precise here. The reduced form of regular expressions
is used later in the paper where precise assumptions about the structure of the regular expressions are
needed. As it will be seen, our results hold as well for expressions which are not reduced.

We first introduce several notations. For a regular expressiover A, we denote bya|4 and|«]|,
the number of occurrencesdnof letters fromA ande, respectively.

Given a regular expressi@nover A, assume we have the syntax tree for it; when building the tree we
assume+’ left associative (thatisy + b + ¢ = (a + b) + ¢), which will enable us to reduce further the
number|«|.. We also assume that each vertex in the tree is labelled by the corresponding symbol from
AU {e, +, -, x} and has associated with it the subexpression corresponding to the subtree rooted at the
vertex.

The regular expressions are reduced according to the algorithm below.

Algorithm 1.

(a) @-reduction: compute, for each vertgxwhether or not.(8) = ¥ and then modifyr such that, at
the end, eitheww = ¥ or o contains nd/.

(b) e-reduction: compute, for each vertgxwhether € L(8) and whethel(8) = {¢}; for each vertex
B with L(B8) = {¢}, replace the subtree rootedfby ¢ and then:
o ifthe parent ofg is labelled by -, then replace the parent by the other child,
o ifthe parentis labelled by’, then replace the parent by the child,
e if the parent ofg is labelled 4+ and ¢ is in the language of the other child, then replace the

parent by the other child.

(c) ‘x'-reduction: for any vertex labelled by, if its child is also labelled by#’, then replace it by its

child.

We shall calle obtained after applying Algorithm teduced We give next two observations concerning
the size of reduced regular expressions followed by some examples proving their optimality.

Proposition 2. For any reduced regular expressionsuch thatx ¢ {#, ¢}, we have
() lala = lale,
(ii) lo] < Blafa —2.

Proof.
(i) We prove by structural induction that, for any reducegk ¢, if ¢ ¢ L(«), then|a|s > |a|, + 1 and
if ¢ € L(a), thenja|s > |a]e.
The property is true fow = a, a € A. Whena has at least one operator, we assume the property
true for all subexpressions afdifferent frome and prove it for.
First, assumex = B8 + y. If both g andy are different frome, the property is shown true far
by the inductive hypothesis gfiandy. If 8 = ¢ (the casey = ¢ is symmetric), then, since is
reduced, we have ¢ L(y). The inductive hypothesis givég|4 = |v]a = |V]e + 1= |Ble + |¥]e
= |ale.
If « = B -y, then none o8 andy can bes, and the property follows from the inductive hypothe-
sis.
If « = B*, thenp + ¢ and, by the inductive hypothesig,|a = |B8la = |Ble = |-
(i) We prove the following assertions simultaneously by structural induction:
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o if ¢ & L(x),then|a| < 6lajs — 5,

e ifthe root ofa’s tree is labelled by, then |«| < 6la|s — 2,

e ifthe root ofa’s tree is labelled by+’ or * -, then|«| < 6|a|4 — 3.

Fora = a,a € A, the property is true. Assume the property true for all subexpressienditierent
from ¢ and prove it forx.

First, takea = B8 + y. If both 8 andy are different frome, then the property follows by the in-
ductive hypothesis o andy. If 8 = ¢ (similarly for y = ¢), then the inductive hypothesis gives
lal =1yl +2<6lyla —5+2=6|a|s — 3.

Assumea = B -y. If ¢ ¢ L(a), then at least one af (8) and L(y) does not contaim and the
inductive hypothesis givelgr| = |B] + |y| +1 < 6|8]a +6|yla —5—2+1 < 6la|]4 — 5. If ¢ €
L(a), thene must be in bothL(8) and L(y) and we have, by the inductive hypothedig| =
1Bl + 1yl +1<6|[a—2+6lyla —2+1=6lals — 3.

Finally, if « = g*,theng # ¢ and|e| = |B] + 1< 6|8]a —3+1=6Ja|s — 2. O

Example 3. Considera; = (a1 + ¢)* and define inductively, for all > 1, o; 11 = («; + B;)*, where
Bi is obtained fromy; by replacing each; by a;4,. For instance,

a3 = (((a1+&)* + (a2 + &))" + ((az + &)* + (as + &)")M)™.

Then, for any: > 1, o, is reduced andby, |4 = 2" 1, |aul, = 2" 1, and|e,| = 6- 2071 — 2.

We shall assume that all regular expressions throughout the paper are reduced. This will not affect
the complexity of our algorithms since reducing an expression takes only linear time and the size of the
reduced expression is less than or equal to the size of the initial expression. Also, Proposition 2 says
that all complexities can be expressed in terms of the number of letters in the regular expression, that is,

lofa.

4. Small eNFAsfrom regular expressions

We give in this section our new construction elIFAs from regular expressions. As in the pre-
vious constructions, we construct thdIFA by induction using the structure of the regular expres-
sion.

Algorithm 4. Given a regular expressian the algorithm constructs asNFA for « inductively, fol-
lowing the structure o, and is shown in Fig. 1. The steps should be clear from the figure but we bring
some further improvements at each step:

(a) After catenation (Fig. 1(v)): denote the state common to the two automata(ayl) if there is a
single transition outgoing from, sayp 5 g, then the transition is removed apdandg merged;
otherwise (a2) if there is a single transition incomingisayg 5 p, then the transition is removed
and p andg merged.
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v o VO D%

(OX] (i) € (iii) a
A 55
O Ve =oeE—=0  0SRFEO
(iv) union (v) catenation (vi) iteration

Fig. 1. The construction o&;.

a, b

Fig. 2. Af (7) for t = (a + b)(a™* + ba™ + b*)*.

(b) After iteration (Fig. 1(vi)), denote the middle state pylf there is a cycle containing such that
all its transitions are labelled by then all transitions in the cycle are removed and all states in the
cycle are merged.

(c) After the end of all steps in Fig. 1; if there is only one transition leaving the initial state and is
labellede, sayqo 5 p, then the transition is removed aggland p merged.

(d) In case of multiple transitions, that is, transitions with the same source, target, and label, only one
transition is kept, the others are removed.

Example5. An example of the construction in Algorithm 4 is given in Fig. 2. The regular expresgsion
used there will be our running example throughout the paper. The example was carefully contrived such
that any two constructions which are, in general, different will be different.on

We call the automaton returned by Algorithnfallow eNFA (the reason for this name will be clear
later) and denote it

Af () = (0%, A,8%,07,q7).
The next theorem proves the correctness and running time of the Algorithm 4.

Theorem 6. For any regular expressioa we have
(i) L(Af(«)) = L(«) and
(i) Af () can be computed in tim@(|a|).

Proof. (i) is clear by construction. For (i), we just point out how the improvements at (b) can be done
in linear time. Anytime a’ corresponding to a subexpressigh of « is processed, we attempt finding
g-cycles. Because all previouscycles have been removed, the only possible cycles are those containing
the state obtained by merging the initial and final state of the fodlWA for 8. We can do a complete
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(i)e (ii) € (i) a
£ .
'""lll..' YETS0-0E—=0 DEETOE-0
oE S
(iv) union (v) catenation (vn) iteration

Fig. 3. The construction of Thompson [19].

v o Vs 0%

(i) 0 (ii) € (iii) a
) e
) union (v) catenation (vi) iteration

Fig. 4. The construction of Sippu and Soisalon-Soininen [18].

search using backtracking on thdransitions ing’s automaton; when a cycle is found, it is removed and

the states are merged; when we backtrack op-transition, we mark that-transition such that it will

not be tried second time. This is correct because stichnsitions cannot be involved in othercycles

during the remaining of the construction. Consequently, all improvements at (b) can be done together in
time O(la|). O

The next theorem says that thidlFA is always smaller than the ones obtained by the construc-
tions of Thompson [19] and Sippu and Soisalon-Soininen [18]. We give also an example showing
that it can be much smaller. Notice that in the example we do not use the improvements (a)—(d) at
all since we want to emphasize the superiority of the core of our construction. (It is easy to
construct artificial expressions for which our construction, using (a)—(d), gives an arbitrarily smaller
automaton.)

Theorem 7. For any regular expressior, the size ofAf(«) is smaller than the size of theNFAs
obtained fromx using the constructions of Thompson or Sippu and Soisalon-Soininen

Proof. Recall first the other two constructions. They are inductive and should be clear from Figs. 3
and 4.

All three constructions start the same way and at each inductive step (according to the structure of the
regular expression), ours adds less transitions and less states. Precisely, the total number of states and
transitions added by each of the three constructions for an operatiph”, and ‘«’, respectively, is (a
negative number means that the size decreases):

e for our construction2, —1, 3;
e for Thompson’s construction: 6, 1, 6;
o for Sippu and Soisalon-Soininen’s construction=2,, 5. [
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Example 8. For the regular expressien= ai + az + - - - + a,, Af () has sizen + 2 (2 statesp tran-
sitions), Thompson'’s has siza 9- 6 (4n — 2 states, b — 4 transitions), and Sippu and Soisalon-Soini-
nen’s has size/b— 2 (2n states, 8 — 2 transitions).

We discuss next an upper bound on the size ofsOlFA.

A first remark concerns the following invariant of our construction. For any subexpressigrifod
automaton constructed by our algorithm has one starting state of indegree zero and one final state of
outdegree zero, except for the improvement at (c) which is done only at the very end of the construction.

A technical remark concerns the inductive proofs about the fadliwA. When using induction, we
shall tacitly work withA{ obtained without the improvement (c), as this is the way induction is done.

The improvements in the above steps (a)—(d) are actually very important since they can reduce signif-
icantly the size of thé\{; especially the one at (b). As a consequence, for any subexpression of the form
(B + -+ By, +ajas---an)*, the %'s for o;’s andp;’s do not increase the size of the automaton. For
instance, the constructed automata for the expressions b*)*, (a*b*)*, and(a + b)* are identical.

The same is true for anyin an expression likésy + --- + & + -+ - + Bu)™.

We see next a very general case whes in the regular expression do not change the size of the
automaton and we shall be able to make important assumptions on the structure of the expressions. We
say that a regular expressianis x-avoidableif there is a path inx’s tree from the root to a leaf such
that no vertex on this path (including the root and the leaf) is labelledbyOtherwise« is called
x-unavoidable.

Assumeg is x-unavoidable and construct a regular expressienpve(s), as follows. For any path
from the root ofg’s tree to a leaf, consider the’*which is closest to the root (there is at least or@."

We remove this#’ and change all-‘s on the path from the removee ' ‘to the root into “+'s. For in-
stance, if = a*b* + ¢*, thenremove(B) = a + b + c¢. Now, for any regular expressien we construct
another expressioavoid(«) as follows. As long as there are subexpressions of the f#rim « with
B *-unavoidable, we choose a minimal syghi.e., 8 has no subexpressigr with y x-unavoidable,
and replaces by remove(f). As an example, iftx = ((a*(bc)* + d*)* + (c(a + b))*b*)*a + b, then
avoid(a) = (a + bc +d + c(a + b) + b)*a + b.

The idea is to removex's from « such that the language afremains unchanged but the size de-
creases. As we shall see in a moment, the automa&iéi?\ remains the same but for an expression of
smaller size. This will help us when proving an upper bound on the si2g.of

Lemma9. Forany regular expressioa, A («*) andAg (avoid(x)*) are identical

Proof. Itis enough to show that, for amyunavoidable expressigh Af (8*) andAs (remove(B)*) are
the same. A$ is x-unavoidable, there arg, i <i < n, subexpressions ¢ such thatg is obtained
from g7, 1 <i < n, by using only 4" and *’. When building the followeNFA for g*, the initial and
final states of the followeNFA for 8; are merged to a single state, sgy Thisg; is on a path labelled
¢ from the initial to the final state of the folloeNFA for 8. Therefore, in the automaton gf, all ;s
will be merged. Clearly, the same happens in the follow automatesnafve(s)*. O

Before proving the upper bound on the size of the folldWA, we need several notations and a tech-
nical lemma. For a regular expressiover A, we denote byux|, |ale, |a|« the number of occurrences
ina of '+, ", ‘%', respectively. Thuse| = |a|a + |ale + ||+ + |ot]e + o]
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We partition the set of vertices w's tree that are labelled by* into four classes: the first contains
the root, if labelled by, and those whose parent is labelled Byand whose sibling is not labelled by
‘%’ — let their number be1; the second contains those whose parent is labelled agid whose sibling
is also labelled by’ — their number is 25; the third and fourth sets are defined as the previous two by
replacing the label* of the parent by 4’ — their numbers arg, and 2p,, respectively.

Lemma 10. Leta be a regular expression such that for any subexpresgioaf it, 8 is x-avoidable
Thenjal, + p2(@) < 3(la] + 1),

Proof. We prove the following properties, which imply the statement; it is assumedthatow has

the property in the statement, i.e., for any subexpressioor it, 8 is x-avoidable:

(1) if @ is x-unavoidable and the root afs tree is not labelled by, then ||, + p2(a) < %(Ial + 1),

(2) if the root ofa’s tree is labelled by, then|a |, + p2(a) < %|a|,

(3) if a is x-avoidable, thet|, + pa(a) < 3(lee| — 1).

We use structural induction. i € {#), e} U {a | a € A}, then|a|, + p2(e¢) =0 and (3) is satisfied.

Whena has at least one operator, we assume the properties true for all subexpressi@miqgirove

them fora.

(1) Consider first the case = 8 + y. If at least one of8 andy has the root of the syntax tree not
labelled by %’, then, by the inductive hypothesis;|. + p2(a) = |Bl« + |V |« + p2(B) + p2(y) <
1B+ D+ 3(yI+ 1 = 3(Jle| + 1). If both roots of the syntax trees ¢ and y are labelled
by ‘«’, then the inductive hypothesis gives|. + p2(a) = [Bl« + ||« + p2(B) + p2(y) + 1 <
%Iﬂl + %Iyl +1= %(l(xl +1). The casex = 8 - y is similar.

(2) Puta = B*. Then, by hypothesis3 is x-avoidable and we have, using the inductive hypothesis,
lrls + p2(e) = |Bls + 1+ p2(B) < 3(IBl — 1) + 1 = Jlal.

(3) In this case, eithett = -y or « = B+ y and at least one out 8 and y is x-avoidable. In
particular,p2(a) = p2(B) + p2(y). We have thef |« + p2(a) = |Blx + |71« + p2(B) + p2(y) <

B+ 3yl +3-3=3(e|-D. O

Theorem 11. For any reduced regular expression |Af (a)| < %|a| + %’ .

Proof. Using the notations introduced above, we have

IAf ()] < 3larla + 3larle — 2letl4 — |ele + €1+ 4c2 + 3p1 + 6p2.

Using the equalitye|4 + |o|e — 1 = |o|+ + |a]e, We can write

IAf(@)] < la| +2 = ||+ +2c2 +2p1 +4p2 = |a| + 2 — |a|+ + |elx — c1+ p1+ 2p2.
By Lemma 9, we may assumehas no subexpressigi with gx-unavoidable (as otherwise we have
the same automaton but for a longer expression) and may apply Lemma 10. Using also the inequality
p1+ p2 < loly, we get|Af ()] < |ar| + 2+ |ols + p2 < 3ler| + 3, which was to be proved.[]

We move next to proving a lower bound which is very close to the upper bound in Theorem 11.
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Theorem 12. Leta, = (a] + a5)(a3 +ay) - - - (a5, 4 + a3, ). EveryeNFA accepting. (e,,) has size at
least8n — 1 = §la| + 3.

Proof. Let A, be ansNFA acceptingL(«,,). For anyi, 1 < i < 2n, there must be a staig of A; and a

cycle containingy; and labelled by a nontrivial power af. Moreover, allg;s are different and all these
cycles are disjoint. Also, forany 1 <i < n — 1, there is a path from either g;_1 andgy; to either

of g2;11 andgo;+2. The first transitions on these paths belong to no others. So far we have shown that
|A,;| = 4n + 4(n — 1). The rest comes from the fact that we have only one initial staié.

Using Theorem 11 and Proposition 2(ii), we obtain tht(a)| < 9ol — % However, this result
does not seem to be close to optimal and investigating upper bounds for the sizexpin terms of
the number of letters in remains to be further investigated.

5. Positions and partial derivatives

We recall in this section two well-known constructions of NFAs from regular expressions. The first
is the position automatondiscovered independently by Glushkov [10] and McNaughton and Yamada
[17].

Letw be a regular expression. Ruds() = {1, 2, ... , |a|a} andposg(a) = pos(e) U {0}. All letters
in « are made different by marking each letter with its position;inlenote the obtained expressiore
A", whereA = {a; |a € A, 1< i < |a|a}). For instance, itx = a(baa + b*), thena = a1 (brazas +
bg). Notice thatpos(a) = pos(a). The same notation will also be used for removing indices, that is, for
unmarked expressions the operator adds indices, while for marked expressiarthe same operator
removes the indice& = «. We extend the notation for arbitrary structures, like automata, in the obvious
way. It will be clear from the context whetheadds or removes indices.

Three mapping$irst, last, andfollow are then defined as follows. For any regular expressiand
anyi € pos(x), we have:

first(w) = {i | a;w € L(a)},
last(a) = {i | wa; € L(@)}, D)
follow(a, i) = {j | ua;ajv € L(@)}.
The three mappings have also an inductive definition, which we shall give later, when needed in the
proofs. For future reasons, we extefullow(w, 0) = first(«). Also, let lastg(ew) stand forlast(w) if
¢(a) = ¢ andlast(a) U {0} otherwise.
Theposition automatoffor « is

Apos(ar) = (posp(a), A, dpos 0, lasto(a))

with 8pos = {(i, a, j) | j € follow(a, i), a = a;}. As shown by Glushkov [10] and McNaughton and Ya-
mada [17],L(Apos(ar)) = L(). Briggemann-Klein [4] gave an algorithm which computes the position
automaton in quadratic time.

Example 13. Consider the regular expression= (a + b)(a* + ba™* + b*)*. The marked version of
T IS T = (a1 + b2)(al + baai + bg)*. The values of the mappingdsst, last, andfollow for z and the
corresponding position automatédies(t) are given in Fig. 5.
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first(1) = {1,2}

last(7) = {1,2,3,4,5,6}

i | follow(T,?)
1| {3,4,6}
2| {3,4,6}
3 {3,4,6}
4| {3,4,5,6}
5| {3,4,5,6}
6| {3,4,6}

Fig. 5. Apos(t) for r = (a + b)(a™ + ba™ + b*)*.

The second construction we recall in this section is plagtial derivative automatonintroduced

by Antimirov [2]. Recall the notion of partial derivative introduced by him. For a regular expression
a and a lettera € A, the setd,(«x) of partial derivatives ofe w.r.t. a is defined inductively as
follows:

0a(e) = 04(¥) =0,

e} ifa=b,
Oa(b) = @ otherwise
Oq(a + B) = 0q(a) U0y (B), (2)
_ JOu(@)B if e(a) =0,
Oa(@f) = {aa(ooﬂ U0(p) if ela) = e.

Oq(a™) = 0y ()™,

The definition of partial derivatives is extended to wordsdbyr) = {a}, Oy (o) = 0,(0y (@), for
anyw € A*, a € A. The set of all partial derivatives of is denoted PQx) = {0,, () | w € A*}. An-
timirov [2] showed that the cardinality of this set is less than or equé&tlte + 1 and constructed the
partial derivative automaton

Apd(@) = (PD(a), A, dpd, @, {g € PD(e) | £(gq) = &}),

wheredpa(g, a) = 04(q), forg € PD(«), a € A; he provedL (Apg(a)) = L(a).

Champarnaud and Ziadi [6,7] proved that the partial derivative automaton is a quotient of the position
automaton and showed how the partial derivative automaton can be computed in quadratic time, improv-
ing very much Antimirov’s quintic time bound. We shall see in the next section a simplified presentation
of some of their results.

Example 14. Consider the regular expressiorirom Example 5. The partial derivatives ofare com-
puted in Fig. 6 where also its partial derivative automaiga(t) is shown.
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8a(T) ={m} 71 = (a* +ba* +b*)*
O (1) ={n}
aa(‘rl):{‘m} T2 = a*m

(1) = {m2, 73} T3=0b"7

da(r2) = {m2}

9(12) = {72,73}
8a(13) = {72}
Op(73) = {72,773}

Fig. 6. Apd(t) for © = (a + b)(a* + ba™ + b*)*.

6. Apg revisited

In this section we give a simplified proof of the fact, proved by Champarnaud and Ziadi, that the
partial derivative automatofipq is a quotient ofApos. Essentially, we rely only on the work of Berry and
Sethi [3]. We shall not use the notions of canonical derivative and c-continuation of [6] but show that,
under certain hypotheses, they are in fact the same as the continuations of Berry and Sethi.

We assume in the following that threlles for ande hold:a + =0+ o =a,a -0 =0 -a =
¢, anda - ¢ =¢-a = «a. Two regular expressiong and 8 which reduce to the same expression
using associativity, commutativity, and idempotence+ofare calledsimilar [5]; this is denotedx
~aci B-

We recall also the definition of thigotal) derivative due to Brzozowski [5]. The derivative afw.r.t.
alettera, a—1(«), is defined inductively as:

aYe)=a1W) =0,

—1 e ifa= b,
a (b)) = {V) otherwise ©)

aYa+p)=a ) +a"1(p),
a YaB) = a H@)B + e@a (B,

aYa*) = a Y ).

The definition of the total derivatives is extended to words b{(«) = «, (wa) (@) = a " L(w (),
foranyw € A*,a € A.

Consider the marked version af @ € A~ which has all letters different. Berry and Sethi proved,
for a fixeda; € A, that for all wordsw € A™, (wa;)"1(@) is eitherd or unique modulovgg;. It is clear
that, for any two disjoint subexpressiofis and 8, of @, at most one of the expressiofsa;) (1)
and (wa;)1(By) is different from@. Therefore, when computing total derivatives using (3), we get at
each moment at most one term different frgmHence, it is natural to require that we apply, whenever
possible, the rules fa¥ ande during the computation of the total derivatives. What we get is that the
derivative(wa;)~1(@) so computed is eithef or unique; we got rid of the-a¢i-similarity.
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classes of =c: {0}
{1,2}
{3}
{4,5}
{6}

Fig. 7. Apd(T) == Apos(@)/=, for t = (a + b)(a* + ba* + b*)*.

The same can be done for the computation of the partial derivatives: when using (2), we apply the
rules fory ande after each step. Since they are computed in the same way, w@have) = (wa;)~ 1
(@).

Recall next the notion of aontinuation also from Berry and Sethi. For a letter € A, the con-
tinuation ofq; in «, denotedc; (@), is any expressiokwa;)~1(@) # ¢. From the above, this notion is
well defined. Notice again that we are not talking abeyti-equivalent expressions because, by our
assumption, there is only one. Denote alg(x) = «. Berry and Sethi'sontinuation automatoiis
then Acon(@) = (Q, A, 8, qo0, F), where Q = {¢;(@) | i € posp(a)}, go =0, F ={q | ¢(q) = ¢}, and
§ ={(ci(@),aj,cj(@) | a; € first(c;(@))}. As Berry and Sethi proved.

The difference between the continuation or position automatom, to is that the labels on transi-
tions are unmarked or marked, respectively. Obviously, if two automata with marked letters are isomor-
phic, so are the unmarked versions.

It is worth mentioning that the language accepted by the two automataifor. (@). Also, L(a) =
L(a). Notice that for the continuation and position automata, it makes no difference whether we work
first with @ and unmark the obtained automaton or we work withtHowever, as we shall see in a
moment, the same is not valid for the partial derivative automaton.

Now, from the definition ofApq(@), the difference w.r.tAcon() is that whenever two continuations
of @ (includinga) are the same, they represent different statégga(a) but the same ipg(@). Define
then the equivalence.C (pos(a))2 byi =. j iff ¢;(@) = cj(@); = is right-invariant w.r.t. the position
automaton. What we have so far is that

Proposition 16.
(i) Apd(a) >~ Acon(@) /=, > Apos(@)/=,
(i) Apd(a) >~ Acon(@) /=, = Apos(a)/zf-

Example17. For the regular expression from Example 5, we construct in Fig. 7 the automaton
Apd(T); the classes of the equivaleneg are also shown.

We have worked so far in this section only with regular expressions which have all letters different. We
shall now remove the marking and see what happens. Define another equivalgaic@os(«))? by
i =, jiff ¢;(@) = cj(@); = is also right-invariant w.r.t. the position automaton and-=...
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classes of =.: {0}
{1,2}
{3,4,5}
{6}

Fig. 8. Apd(t) = Apos(t)/=, for t = (a + b)(a™ + ba™ + b*)*.

For any lettera and regular expressiof, it is clear thatd, (o) = {04, (@) | a; = a}. Therefore, the
partial derivative automaton is obtained by merging those states in the continuation automaton which
have the same continuation when indices are removed. We therefore have the result of Champarnaud
and Ziadi [6]

Notice that we gave also a proof for the result of Antimirov [2] thaD («)| < |a|a + 1.

Example 19. For the regular expression from Example 5, we construct in Fig. 8 the automaton
Apd(7); the classes of the equivaleneg are also shown. According to Theorem 18, we hayg(t) ~
Apos(t)/=, as it can be seen by comparing with Fig. 5, wh&pgs() is shown.

7. Follow automata

In this section we give our new algorithm for constructing NFAs from regular expressions. The idea is
very simple: just eliminate (in a certain way, to be made precise below)trsitions from thé\{ (c).

Essentially, for any path labelled p ~~ ¢, and any transitiog — r, we add a transitiop —> r. The
obtained automaton is calléollow NFA, denoted

Ar(a) =(Qyr, A, 87,04, Fp).

We give below the precise details of the eliminatiorsdfansitions fromAs («). We notice that, due to
improvement (b) in Algorithm 4, there are aecycles inAf (o).

Algorithm 20. GivenA¢ («), the algorithm construct&s(a).

Fr < {qyr}

2. sort topologicalIyQ‘} w.r.t. the orderp < ¢ iff p 5 q € 8%;
3. denote the ordere@®, = (q1,92, .- ,qr)

4. for i fromr downto 1 do

5.  for each transitioy; — p do

6 for each transitionp - ¢ do

7. if i = g ¢ 8 then addg; = g t0 5%
8

9

=

if p € Fythen addg; to Fy
remove the transitiog, — p
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10. for eachg € Q’} — {0y} such that there is np 5 gin 8? do
11. eliminatey from Q*} and all transitions involving from 8?
12. Qf(—Q‘;;(Sf <—5§c

13. return As(a) = (Qr, A,87,0¢, Fy)

Theorem 21. For any regular expression, At («) is an NFA acceptind. (o) which can be constructed
in time and spac® (|« |2).

Proof. For the first assertion, it should be clear from Algorithm 20 thét(«)) = L(Af (). We then
use Theorem 6(i).

The complexity is given by the number of pais — ¢, ¢ — r) which are considered in the algo-
rithm. There ardd(|a|) e-transitions andd(J«|) transitions labelled by the same letter which leave a
certain state. Assuming is fixed, we obtain the result.[]

Example 22. We give an example of an application of Algorithm 20. For the same regular expression
T = (a + b)(a* + ba™ + b*)* from Example 5, we build in Fig. 9 the automat&n(t); compare with
Example 5 to see theelimination.

We conclude this section with some very important comments concerning both the Sige: pand
the running time of Algorithm 20 which builds it. The worst case in Theorem 21 is reached for instance
for the regular expression of [14], thatis = (a1 + ¢)(az + ¢) - - - (a, + €). However, in most examples
(see also the examples at the end) both the siZe @f) and the running time of Algorithm 20 are linear.
Also, we do not have examples where thelimination requires essentially more time than the size of
Ai(a). This remains an open problem. We finally notice that ew@limination algorithm is different
from, and faster than, the classical one of [13]. The difference is that we do not cosmglotires.

8. Ar isaquotient of Apgs

We prove in this section tha(«) introduced above is a quotient 8fs(). This is unexpected
because the construction Af(«) does not have, apparently, anything to do with positions. However,
the consequences of this result are very important.

We start by defining the equivaleneg, C posg(a)? by

i =y j Iiff (i) both i, j or none belong téast(«) and
(ii) follow(ct, i) = follow(e, j)

Notice that we restrict the equivalence so that we do not make equivalent final and non-final states in
Apos(a). The maim result of this section follows.

a,b

C_J
a,b b
O] s
a, 0

Fig. 9. A¢(t) for T = (a + b)(a* + ba* + b*)*.



L. llie, S. Yu/ Information and Computation 186 (2003) 140-162 155

classes of =¢: {0} ab

{1 2’36} b - b

{4,5}
Fig. 10. A¢(7) ~ Apos(t)/=; for t = (a + b)(a™ + ba™ + b™)*.

Theorem 23. Af(a) > Apos(@)/=;-

We notice first that the restriction we imposed 2n so that final and non-final states psg(c)
cannot be= ;-equivalent is essential, as shown by the expressien(a*b)*. Herefollow(c, i) = {1, 2},
for any 0< i < 2. However, merging all three statesAfos(«) is an error as the resulting automaton
would accept the language + b)*.

Example 24. Here is an example of an application of Theorem 23. For the same regular expression
(a + b)(a* + ba™ + b*)* from Example 5, we build in Fig. 10 th&¢ (r) and then give the equivalence
classes o& ; and the automatoAs (7).

We move next to the proof of Theorem 23. First of all we need to see that we are allowed to make the
quotient of the position automaton by the equivaleage

Lemma25. The equivalence: is right invariant wr.t. Apes(ar).

Proof. The first condition, compatibility with the set of final statesto(«), is verified by the definition
of =,. For the second condition, considee lasto(a), a € A. We havedpog(i, a) = {k € pos(a) | k €
follow(a, i), axy = a} and so, ifi =¢ j, thené(i, a) = §(j, a) and the claim follows. [J

The following well-known properties of these mappings will be used in the sequel:

first(B +y) = first(B) U first(y),
first(By) = first(B) U e(B)first(y),
first(B*) = first(B),

last(B + y) = last(B) Ulast(y),
last(By) = last(y) Ue(y)last(B),

last(B*) = last(B),
. follow(B, i) if i € pos(B), (4)
follow(g +y.1) = {follow(y, i)if i € pos(y),
follow(B, i) if i € pos(B) — last(B),
follow(By, i) = { follow(B, i) Ufirst(y) if i € last(B),
follow(y, i) if i € pos(y),
follow(B, i) if i € pos(8) — last(8),

follow(B*, i) = {fouow(ﬁ,i)uﬁrst(ﬂ) if i € last(B).
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Also, we shall need several results before proving Theorem 23. First, it is cleéttagtis obtained
from Af (@) by eliminating multiple transitions, if any. Therefou; () is obtained fromAt(@) in the
same way. AlSOApos(@) = Apos(@), Which implies thaApos(a)/Ef is obtained by eliminating multiple
transitions fromApos(@) /=, . Consequently, it is enough to prove tha{a) ~ Apos(@) /=, . Notice that
= is right invariant w.r.t Apos(@).

We define the function
m : posg(at) —> st m(0) = 0y and
m(i) = p, if i #0andg = p, for someg € Q.

There is a single transition labelledin Af (), som(i) is well defined as its target. Because the initial
states ofA¢(ar) andAg (@) are the same and all transitions labeligih Af(@) have the same target state,
m can be equivalently defined as: posg(a) — O by m(0) = O and, fori # 0, m(i) = p, for any
p € Q such that there is an transition labellgdwhich is incoming top. Notice thatm is onto Q y as
the states oA{ («) which have all incoming transitions labelledvere removed by Algorithm 20. The
functionm will be the isomorphism we look for.

We prove next several results concerning the funatiofror two stateg andg, we denote the fact that
there is a path labellesiform p to g by p ~ ¢; this path can also empty, that js,= q.

Lemma26. Foranyi, j € pos(x), we have
(i) i € first(a) iff there isO; < p % m(i) in AZ@).
(i) i € last(a) iff there ism(i) ~ g7 in A? @).
(iii) j € follow(a, i) iff there ism(i) < p =3 m(j) in AL (@).

Proof. The assertions follow from the definitionsffst, last, andfollow in (1) and the equality. (o) =
L(Af (@)) in Theorem 6(i). O

Lemma 26 implies that, to show the isomorphigiia) >~ Apos(@)/=,, it is enough to prove that,
for anyi, j € posg(a), i =5 j iff m(@) = m(j). If we define the equivalence,, = {(i, j) | m(i) =
m(j)}, then we have to show:,, = =,. Indeed, assume this holds. Lemma 26(ii) assures that final

states ofApos(@) /=, are mapped to final states Af(«). Then, we have a transitidin], 4 [jl=, in
Apos(@) /=, iff j € follow(a, i) iff (by Lemma 26(i)(iii)) m(i) % p 4 m(j) in Af (@) iff m(i) 4 m(j)
in A¢(). The isomorphism follows.

The next result concerning initial states follows from Lemma 26.

Corollary 27. We have thatn_l(Of) = {0} iff there is no incoming transition labelled by someto
0y in Af (o) (or, equivalently in A¢(er)). Also, if i € m*l(Of), thenfollow(a, i) = first(a).

We make an observation concerning notations, such;ag Q m, =, etc. They depend om but we
omit« when it is understood; when it is not clear from the context, we add it as a further subscript, e.g.,

0f» 4 f.cr Mars =f.a, €LC.
We shall need several further lemmata to prove our goal.
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Lemma?28. The final statey; € Qjc remains as a state i) y after Algorithm20iff there isi € last(«)
such thaffollow(a, i) = ; moreover in this casefor anyi e last(a), m(i) = g iff follow(c, i) = ¢.

Proof. The stateg; is not eliminated by Algorithm 20 if and only if there is a transitiqn@ qf

follow(a, i) = . Conversely, assumee last(«) with follow(w, i) = @. By Lemma 26(ii), there is a

pathm(i) ~- g7 in Af (o). Assume this path is not empty and consider the last transitionq)f—ék, qf-
According to the construction & (@) in Algorithm 4, thise-transition may appear in two ways: from
aneg initial y in « or from a ¥’ in «. In the former case, there must be (becausereduced) a path from
g to gy which has at least one transition labelled by semeThus, by Lemma 26(iii)follow(c, i) # ¥,

a contradiction. In the latter case, we obtain a similar contradictiom;sseduced, there must be a path
as before frony to g. Therefore, it must be that(i) = gy and saz y remains inA¢(). Notice that we
proved also the second statementl

Lemma29. For anyi € last(er) such that¥ # follow(a, i) C first(a), there isO; < m(i) ~» g in
AL (@).

Proof. By induction ona. Denote the property to be proveéd(e, i).

If @ € {0, ¢, a}, then the property is true. Whenhas at least one operator, assumerue for all

subexpressions ef and let us prove it for. We shall use (4).

(1) « = B+ y.Assume € last(B). The caseé < last(y) is similar. Thery # follow(, i) C first(8) U
first(y) and hence =+ follow(B, i) C first(8). Therefore, by the inductive hypothesi,(8, i) is
true and so iP1(«, i).

(2) a = By. If e(y) =0, theni € last(y) with ¢ # follow(y, i) C first(8) U e(B) first(y) and so it
must be thak(8) = ¢ and ¥ + follow(y, i) C first(y). Now, the inductive hypothesis gives that
P1(y, i) holds, in particulae(y) = ¢, a contradiction. Thus, we hag€¢y) = ¢.

Now, if i € last(y), then, as above, we gets) = ¢ and the inductive hypothesis givés(y, i).
Together, these imply1(«, i).

Wheni e last(B), we haved # follow(8, i) U first(y) C first(8) U e(B) first(y) ande(B) = ¢, as
y # ¢ (a is reduced). Iffollow(B, i) = @, then Lemma 28 gives tha(i) = g/ (the final state
of Af(B)). Hence,P1(a, i) holds. Iffollow(B, i) # ¥, then the inductive hypothesis givés(B, i)
which will give againPy («, i).

(3) « = B*. Theni € last(8) and @ =+ follow(B, i) U first(B) C first(8) which impliesfollow(B, i) C
first(B). If follow(B, i) # @, thenP1(«, i) follows from the inductive hypothesis ¢h If follow (S, i)
= ¢}, we use again Lemma 28 and obta&if(«, i). O

Lemma30. For anyi, j € last(a) with @ # follow(a, i) — first(a) = follow(c, j) —first(x), we have
eitheri =¢ j or m(i) = m(j).

Proof. By induction ona. Denote the property to be proved By(«, i, j). Fora € {#, ¢, a} there is

nothing to prove. We assume nexhas at least one operator afglis true for all subexpressions @f

(1) « = B+ y. Theni and; are both in eithelast(8) orlast(y) and the property follows from (4) and
the inductive hypothesis.
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(2) o = By. We use (4). Assume firgt j e last(y). If e(8) = ¢, then the inductive hypothesis gives
Po(y, i, j) which, in turn, impliesPa(c, i, j). If e(B) =0, theni =7, j. If i, f € last(B), then
e(y) = e.If e(B) = &, we can use inductive hypothesis@rAssume: (8) = @. Thenfollow(8, i) —
first(B) = follow(B, j) — first(B). If both members of the last equality are non-empty, then we can
again use the inductive hypothesis gnOtherwise, for anyk € {i, j}, follow(8, k) = @; if non-
empty, then Lemma 29 would givEy (8, k), implying €(8) = ¢, a contradiction. Therefore, by
Lemma 28, we get (i) = m(}j).

The remaining possibility i$ € last(B), j € last(y); we have als@(y)=¢. The equalityfollow
(o, i) — first(a) = follow(c, j) — first(«) is possible only ife(B8) = @, follow(B, i) < first(8), and
follow(y, j) = first(y). Also, it must be thafollow(B, i) = ¢, as otherwise Lemma 29 would give
e(B) = ¢, a contradiction. Thereforé,= j.
(3) « = B*. ThenPy(«, i, j) follows from the inductive hypothesis gh [

Proof of Theorem 23We can start now the proof of the equalitys==,, which, as argued before, is
enough to prove the statement of Theorem 23. We do this again by inductiorifom € {@, ¢, a}, then
=ra = =m,o= . Assumex has at least one operator and that the property holds for all subexpressions
of . We shall tacitly use (4). Also, recall that all expressions are assumed to be reduced.
(1) « = B + y. Corollary 27 givesn‘l(of,o,) = {0}. Consider first the case whgn= ¢; the cases = ¢
is symmetric. Ifi # 0 andi =y, 0, thenfollow(y, i) = first(y) # ¥, and so, by Lemma 29, €
L(y), contradiction witha reduced. Therefores;, = =¢,, Npos(a)2. Since alse=, 0 = =py
Npos(a)?, the inductive hypothesis implies;, = = 4.
Assume nows # ¢, y # ¢. We know that na # 0 can have =, 0. Takei # 0, j # 0 such that
i =fq j. If i andj are both inpos(B) or pos(y), theni =g j ori =¢, j, respectively. If not, then
i €last(B), j € last(y), andfollow(B, i) = ¥ = follow(y, j). Therefore,
=fg= ((Eﬁlg U Ef’y) N pOS(Ol)Z)
U{(@, J) € last(B) x last(y) | follow(B, i) = @ = follow(y, j)}.
According to Algorithm 4 and Corollary 27n/gl(0f,o,) is either{0} or empty (in the case of (al)).

Similarly, using Lemma 28’]’1;1(61]5’“) contains those € pos(x) with follow(e, i) = #. Therefore=
— =m,x-
(2) a = By. Sincex is reduced, botl$ andy are different frome. Hence, fori # 0, we have =¢, 0
iff i € pos(B),i =y, 0. Thisimplies=;, N({0} x pos(a)) == N({0} x pos(x)).
Takei # 0, # 0, suchthat =, j. If bothi and;j are inpos(B) or pos(y), theni =4 jori =4,
Jj, respectively. The converse holds as well.  pos(83), j € pos(y), then it must be that € last(B),
follow(B, i) = ¥, andj =y, 0. The converse is also true. Therefore, we have

Sfa==fp
U (=1, Npos(y)?)
U{(, j) € last(B) x pos(y) | follow(B,7) =90, j =y, 0}.
Consider now=,, ,. The positions mapped to the same statesngyor m,, will also be mapped
the same byn,. Also, the positions mapped by, to Or, are precisely those mapped this way by
mg. According to Algorithm 4 (and its improvement (a)) and Lemma 28, the positiansg with

follow(B, i) = ¥ and thosej in y with m,, (j) = O, are mapped to the same state. Now the inductive
hypothesis shows that, = =, «.
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(3) a = B*. Consider first # 0,i =7, 0. Lemma 29 gives thate pos(8) — last(B) is not possible.
Thusi € last(B) with follow(8, i) C first(8). So, eitherfollow(8) = @ or, by Lemma 29, there is
075 ~ m(i) <~ g7 in AZ(B). The converse holds true because of Lemma 26. Therefore
=« N0} x pos(@)) ={(0, i) | i € last(B), Oy,p ~~ m(i) ~ qy.5 IN A7 (B))
U{(0, i) | i € last(B), follow(B, i) = ¥}.
It can be seen now that ;, N({0} x pos(a)) ==, « N({0} x pos(x)) because of the definition of
Ag in Algorithm 4.
Consider next # 0, j # 0 such that =, j. If i, j € pos(B) — last(B), theni =;g j. If i, j €
last(B), thenfollow(B, i) U first(B) = follow (B, j) U first(B). If one of follow(B, i) andfollow(B, j) is
a subset ofirst(B), then the other is also and, for akye {i, j} we have that eithefollow(B, k) = ¢
or follow(B, k) # @; in the latter case, by Lemma 29, there i,sﬁof» m(k) ~> qrpin Af(B). On the
other hand, if none ofollow(8, i) and follow(B, j) is included infirst(8), then @ =+ follow(B, i) —
first(B) = follow(B, j) — first(B), which gives, by Lemma 30 and the inductive hypothesigothat
I =fp ]
We have proved that
cl =54 Npos(@)?= (=4 Npos(B)?)
U{(, j) € last(B)? | Vk € {i, j}, eitherfollow(B, k) = ¥
orthereis Q g <~ m(@i) < qr.p in Af(B)}.
Now, again by the definition oA; in Algorithm 4 and the improvement in (b), we hawey,,
N pos(«)?2 ==,.q N pos(a)2. Therefore, =7, = =, and the proof of Theorem 23 is completed.
O
So, we have that both follow and partial derivative automata are quotients of the position automaton.
As it will be seen in Section 10, the two quotients are incomparable. Let us further remark that [16] in-
vestigates further such quotients and shows how to build the largest right-invariant equivalence w.r.t. the
position automaton, which gives the smallest quotient, therefore smaller than either of follow or partial
derivative automaton. However, it is an open problem how to compute that quotient fast; according to
[16], it can be computed in polynomial time.

9. Af uses optimally the positions

Finally, we show that the follow automato¥ (o) uses the whole information which comes from
positions ofa. Indeed, the follow automaton for marked expressions cannot be imprAyed. is a
deterministic automaton and let the minimal automaton equivalent tanid@s ()). Thenmin(As(a))
is an NFA acceptind.(«) which can be computed in tim@(|«|?log|«|) using the minimization algo-
rithm of Hopcroft [12]. This is, in fact, another way of using positions to compute NFAs for regular
expressions. However, it is interesting to see that(As()) brings no improvement oveX; («).

Theorem 31. min(Af(@)) >~ Af(x).

Proof. Itis enough to show thahin(Af(@)) >~ As(@), that is,A¢ () is already minimal. We first com-
plete the automatoA;(«); we add a new non-final state, deno#dand all missing transitions will go
to it. Denote the completed automatonlag’/(a). Consider two positions and j which have different
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foIIovisets and, with no loss of generality, take follow(«, i) — follow(«, j). Then, there is a word
w e A" such thaty,w takes the automatoh?(&) from the state to a final state. On the other hand,

axw takes the automatoﬁ?(&) from the statej to . Therefore;j andj cannot be merged. Since they
have been arbitrarily chosen, the automatg(w) is minimal. [

Notice also that computinds(a) by e-elimination inAf (@) is faster than using Hopcroft’s algorithm
[12] plus unmarking.

10. Comparing As with other constructions

We discuss in this section some examples to compare the follow automaton with the best constructions
to date. We shall include also comparison with the common follow sets automaton of [14], denoted
below byAcis(ar). We do not include here the very long descriptiorAgfs which can be found in [14]
or [11].

We start with some examples showing tiatcan be much smaller than either ®f,s andApg and
thatAy is incomparable with either &fpg andAcss.

Example 32. Considery, from Example 3. The follow automaton is smaller than all the others:
Apos@n)| = [Apd(@n)| = O(lanl?),
|At(an) | = O(an)),
|Acts(etn)| = O(las | (I0g(lets [))?).

Example 33. Consider the regular expression
ap =ar(by+---+by)* +ax(br+ -+ b))+ ...+ an(br 4+ by

We have now that the partial derivative automaton is the smallest:
|Apos(an)| = O(|a,[¥/?),

|At(en)| = O(an),

/Apd(@n)| = O(la,|Y?), and

Acts(an)| = Ol | (10g(Jet ))?).

Example 34. Consider the regular expression of [14]
ap = (a1 +¢)(azg+¢€) - (a, +¢).

In this case the common follow sets automaton is the smallest:
|Apos(@n)| = |Af(an)| = |Apd(an)| = O(Jay|?), and
|Acts(etn)| = O (lats | (l0g(Jat]))?).

Next, we give some real-life examples which have some interesting common properties. For all of
them, the follow automaton and the partial derivative automaton are isomorphic and smaller than the
other two. These examples are:

o C-commentsyx((A-{+}) +xx* (4-{*, /1)) *+x*/
e floating point numbers:
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O+ +9) (04 - +)¥ ((O+ -+ +9)(0+ -+ +9) ¥ +&) (e +E) (++-+¢)
(O+ +9)(0+ . +9)*
e programming languages identifiers:

(a+ R I ST Z)(a+ oo Z+A+ - Z4+0+- - +9)*

If these examples are generalized to some parametrized examples we still hakeahd®pq are
isomorphic and have linear size; the position automaton has quadratic size and the common follow
sets automaton has size linear times the square of the logarithm. We show it only for the last example.
Conclusions of these results are discussed in the next section.

Example 35. Consider the regular expression (generalized identifiers in programming languages)

Opm = (@ +az+ - +a)(ar+az+---+an+b1+ba+ - +bn)"

We have
|Af(an,m)| = |Apd(an,m)| = @(|an,m|)|
|Apos(@n,m)| = O(ay,m|?), and
|Acis(@nm)| = O(lotn,m|10g(lotn,m)?).

We finally notice that we did not compare our construction with the one of Chang and Paige [8] since
we do not work with compressed automata.

11. Conclusions and further research

We gave two new algorithms to construct nondeterministic finite automata from regular expressions.
The first constructsNFAs which are smaller than all other similar constructions and also very close to
optimal. The second constructs the follow NFAs which are conceptually by far the simplest compared to
all the others: we construct the follawiNFA, which is elementary, and then eliminate th&ansitions,
which is again elementary. However, the resulting automata have interesting properties. The follow au-
tomaton is always a quotient of the position automaton, is very easy to compute, and is at least as small
as all the other similarly constructed automata in most cases. We believe that these features will make
these automata very attractive for practical purposes. Several problems should be investigated further.

First, it seems that the time required to build the follow automaton is linear in terms of its size. At
least we do not have examples to prove the converse. We remark that the assertion is not true in general.
There are examples eNFAs for which thes-elimination takes longer than both size of input and size
of output.

Second, the follow automaton seems to have linear size in most cases. It is of interest to see which are
those cases and when the size is far from linear. Also, the common follow sets automaton seems to have
size linear times the logarithm squared in most cases. Some lower bounds on its size might bring some
light here.

Third, a more rigorous comparison between the follow automaton and common follow sets or partial
derivative automaton should be done. This seems difficult because average case analysis is, very likely,
too complicated. Probably the only way to decide which one is better is by testing all of them in real-life
applications.
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