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Abstract

Selman and Kautz proposed a method, caltmin approximation for speeding up inference
in propositional Knowledge Bases. Their technique is based ondhmpilationof a propositional
formula into a pair of Horn formulae: a Horn Greatest Lower Bound (GLB) and a Horn Least
Upper Bound (LUB). In this paper we focus on GLBs and address two questions that have been
only marginally addressed so far:

(1) what is the semantics of the Horn GLBs?

(2) what is the exact complexity of finding them?
We obtain semantical as well as computational results. The major semantical result is: The set of
minimal models of a propositional formula and the set of minimum models of its Horn GLBs are the
same. The major computational result is: Finding a Horn GLB of a propositional formula in CNF is
NP-equivalent 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Selman and Kautz proposed a method [15,23,24], calledh approximation for
speeding up inference in propositional Knowledge Bases. Propositional inference is the
problem of checking whethel = « holds, whereX anda are propositional formulae.
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The starting point of their technique stems from the fact that inference for general
propositional formulae is co-NP-complete—hence polynomially unfeasible—while it is
doable in polynomial time wherX' is a Horn formula. The fascinating question they
address is the following: is it possible tmmpilea propositional formula~ into a Horn
one XY’ so that a significant amount of the inferences that are performed undan be
performed undeZ’ in polynomial time?

Selman and Kautz notice that there exist two different ways of doing such a compilation.
In the first case the compiled formula satisfies the relatldn= X, or equivalently
M(X') € M(X)—where M(®) denotes the set of models of the formuia For
this reasonX’ is called aHorn lower bound—or LB—of X¥. As an example—taken
from [23]—let @ be the formula

(man— person A (woman— person A (manv womar).

The formula®), = manA womana personis a Horn LB of®.

The second form of compilation is dual. The compiled versiot’aé a Horn formula
X’ that satisfies the relatio = X/, or equivalently M(X) € M(X"). X’ is called
a Horn upper boundg-or UB—of X. Returning to the previous example, the formula
®yp = (Man— person A (woman— person is a Horn UB of®.

The importance of having compiled forms of a Knowledge Base is in that sometimes we
can use them for providing a quick answer to an inference problem. As an example, if we
are faced with the problem of checkildg = o, we may benefit from the fact that for any
Horn LB X, of X', X ¥ « implies X ¥ «. X, is therefore acomplete approximatioof
Y. Dually, a Horn UBXp is asound approximationf X', since X, F o implies X' F «.

Selman and Kautz notice that some complete approximations are better than others. In
the previous example, both;,1 = manA womana personand @2 = manA personare
Horn LBs of @. &2 seems to be a better approximation th&pg;, since M (®Pp1) C
M(Dp2) € M(D), hence the former is in a precise sense “closer®dtohan the latter.

This consideration leads to the notion oHarn greatest lower bound-or GLB—of a
formula (cf. forthcoming Definition 1).

The same argument can be done for Horn upper bounds: in our example hath
(man— person A (woman— person and &y = personare Horn UBs of®, but
M(D) C M(Dyp2) C M(Dyn1), hencedp is a better approximation @ . The definition
of Horn least upper bound-or LUB—of a formula can be found in [23,24].

Selman and Kautz’s proposal is to approximate inference with respect to a propositional
formula ¥ by using its Horn GLBs and (the provably unique) LUB. Inference from
approximations could be either unsound or incomplete. In other words, it is possible
to give fast answers exploiting the approximations, or, in the worst case, give “don’t
know” answers. In the latter case, it is possible to spend more time and use a general
inference procedure to determine the answer directly from the original formula. However,
the general inference procedure could still use the approximations to prune its search
space (see [23, p. 905]). It is also important to notice that Horn GLBs and LUBs can
be computed off-line, hence this form of approximate reasoning is actuaetiynpilation
An empirical evaluation of the reliability of the conclusions reached with the bounds, and
of the computational savings they offer, is provided in [16].
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As noted in [23,24], the search problem of finding a GLB is NP-hard. Anyway, as noted
by Selman and Kautz, since approximations could be computed off-line, the computational
cost of finding them will be amortized over the total set of subsequent queries to the
Knowledge Base. In their work they propose an algorithm for finding a Horn GLB which
runs in exponential time, thus leaving open the question of what is the exact complexity of
the problem.

Apart from the already cited papers [15,16,23,24], the technique of Horn compilation has
attracted notable interest among researchers [2,7,10,12,13,17,18,22]. A brief overview of
some of their work follows. In [13] the problem of finding small-size Horn approximations
of both kinds is addressed. Using learning techniques, the authors study how the knowledge
of a sequence of queries 8 may help in the design of a Horn UB and a Horn LB—
not the LUB and a GLB—with a low probability of giving indefinite answers. In [22]
the author performs an analysis of the computational cost of calculating the number of
models of Horn approximations. In [12] the focus is on complexity of the problem of
recomputing Horn approximations after the addition of a clause. In [18] an alternative
approach to reasoning, based on characteristic models, is defined and compared to Horn
approximations. In [14], an algorithm to produce Horn approximations out of a set of truth
assignments is shown. Algorithms for computing the Horn LUB have been proposed in [7,
17]. In [2] an algorithm based on the Davis—Putnam procedure is proposed for computing
a GLB. Finally, in [10], the complexity of finding a GLB is addressed for the special case
in which X is a disjunction of Horn formulae.

Knowledge compilation is an interesting area in automated theorem proving and
knowledge representation (cf. [5]), which is based on the idea of shifting the burden of
intractability of logical reasoning to off-line computation. Most of the work done in this
area is empirical: The quality of compiled Knowledge Bases is measured in terms of the
percentage of true formulae they infer, and in the time savings thus obtained. Theoretical
analysis is—in our opinion—as important as the empirical perspective. In particular, it
is especially important to equip an approximate reasoner with the semantics of what its
conclusions are.

In this paper we focus on GLBsand address two important questions that have not
been addressed so far:

(i) is it possible to describe Horn GLBs with a semantics that does not rely on the
syntactic notion of Horn clause?

(ii) what is the exact complexity of finding a Horn GLB?

An answer to the first question shows the exact meaning of the approximate answers. An
answer to the second question tells in which cases it is reasonable—from the computational
point of view—to use Horn approximations.

We obtain two different kinds of results:

(1) Semantical

— Horn GLBs of X are closely related to models of the circumscriptiorzgf
— reasoning with respect to Horn GLBs is the same as reasoning by counterexam-
ples using only minimal models;

2 Similar aspects of the LUB are partially addressed in [4].
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— while skepticalreasoning with respect to the Horn GLBs of a formilas the
same as ordinary reasoning with respectipbravereasoning with respect to
the Horn GLBs ofX is the same as reasoning with respect to the circumscription
of X;

— compiling more knowledge does not always give better Horn GLBs.

(2) Computational

— finding a Horn GLB is not intrinsically exponential, but it is “mildly” harder than
solving the original inference problem. In particular:

o (lower bound) the problem is\BIC(°9m]1_hard, and
e (upper bound) the problem is ifVP.

The structure of the paper is as follows. Section 2 contains preliminary notions
about complexity classes and Horn GLBs. In Section 3 we focus on semantical aspects,
showing relations existing between GLBs and minimal models. In Section 4 we focus on
computational aspects, showing lower bounds and the algorithm which gives the upper
bound. We give some concluding remarks in Section 5.

2. Preliminaries
2.1. Complexity theory

In this subsection we give a brief overview of complexity concepts that are used
throughout the paper. We refer the reader to [21] for a thorough introduction to the field of
complexity.

A decision problenis a problem that admits a Boolean answer. For decision problems
the class P is the set of problems that can be answered by a Turing machine in polynomial
time. Often we refer to computations done by non-deterministic Turing machines. The
class of decision problems that can be solved by a non-deterministic Turing machine in
polynomial time—where it is understood that the answereisprovidedat least oneof
the computations done in parallel by the machine ends in an accepting state—is denoted
by NP. The class of problems whose answer is always the complement of those in NP, is
denoted by co-NP. Also problems in co-NP can be solved by a non-deterministic Turing
machine in polynomial time, but it is understood that the answgesprovidedall the
computations done in parallel by the machine end in an accepting state. The class P is
obviously contained both in NP and in co-NP.

An example of a problem in NP is testing satisfiability of a propositional formula:

a formulaT is satisfiable iffat least onetruth assignmenf/ such thatM E T exists.

An example of a problem in co-NP is testing if a propositional formiileentails a
propositional formulay: T E y iff for all truth assignmenta/ it holds that(M E T) =

(M E y). In fact propositional satisfiability (entailment) is an M&rd (co-NPhard)
problem, i.e., “as tough as"—with respect to many-one polynomial reducibility—any
problem in the class NP (co-NP). Problems in NP (co-NP) which are also NP-hard (co-
NP-hard) are called NBemplete(co-NPcomplet¢. We recall that the best algorithms
known for solving either NP-complete or co-NP-complete problems require exponential
time in the worst case, and that the following relations are conjecturedNPN co-NP,

NP = co-NP.
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Throughout the paper we refer to a particular type of computation called computation
with oracles Intuitively, oracles are subroutines with unary cost. Given a complexity class
C, the class P is the class of decision problems that can be solved in polynomial time by
a deterministic machine that uses an oracle for the problei@isiie., a subroutine for any
problem inC that can be called several times, spending just one time-unit for each call.
In particular, P'P is the class of decision problems that can be computed by a polynomial-
time deterministic machine which can use at unary cost an oracle that answers a set of
NP-complete queries (e.g., satisfiability checks). Note that, since the machine itself is
polynomial-time, the cardinality of the set of queries is bound by a polynomial function. If
the cardinality of the set is bound by a logarithmic function, we have the ch&S(e9m1,

Note that both NP-complete and co-NP-complete problems can be solvea witigle

call to an oracle in NP. In fact, it is conjectured that NBo-NP c PNPIOUogn)] — pNP.

From the practical point of view, it is reasonable to think th&tfomplete problems will

be always harder to compute than NP-complete ones: Even if we have a good heuristic for
an NP-complete problem and we can implement an oracle that gives a quick answer to it,
we still have to use the oracle a polynomial number of times for solving thecBmplete
problem. As for PPIOUI0gm]_complete problems, they will be “mildly” harder to compute
than NP-complete or co-NP-complete ones.

Some of the problems addressed in the papersaegchproblems, i.e., their answer
is more complex than just a Boolean value. As an example, finding a satisfying truth
assignment for a propositional formula or finding a Horn GLB are search problems.
Formally, complexity classes for search problems are different from classes cited above,
that refer to decision problems. To simplify notation, we use the same complexity classes
for denoting both decision and search problems. In particular, if we say that a search
problem is in ¥, or C-easy we mean that its output can be delivered in polynomial time
by a deterministic machine that uses an oracle for the proble@slfrwe say that a search
problemX is P¢-hard, or simplyC-hard, we mean that any problem irf Ran be solved
in polynomial time by a deterministic machine that uses an oracl® féx search problem
which is bothC-easy and”-hard is said to b&-equivalent

2.2. Horn GLBs

In this subsection we give the formal definitions, some examples, and basic properties
of Horn lower bound and greatest lower bound of propositional theories, following [24].

All the propositional formulae we consider in this paper are assumed to be in conjunctive
normal form (CNF henceforth). Formulae will be considered either as sets of clauses, or
as conjunctions of clauses. The following notation is used: given a clause-b1 v

«+V =b, VaiV---Vay, the symbolB(y) denotesh; A --- A by, While H(y) denotes
a1 Vv ---V ay,. With such a notationy can be written asB(y) — H(y), therefore the
notation “reminds us” that a clause can be seen as aBustainds for “body” andd stands
for “head”). The notation is useful, because in most of the transformations considered in
the following sections, the “body” of a clause remains unchanged. We remineh Biat)
is the disjunction-b1 Vv - - - v =b,. SometimesB(y) and H (y) will be used to denote the
corresponding sets of literals. A clause with no negative literals is said to be positive.
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Models of a propositional formula will be denoted as the set of atoms occurring in the
formula they map into 1. For a formuta, M (&) denotes the set of models &f. Two
formulae X and T having the same models are said to be equivalent, and this is denoted
as ¥ = I1. Minimal models of a propositional formula have the property that the set of
atoms that they map into 1 is minimal. More formally (see [19]), given two moltiela/
of a formula, we writeM C N iff {x| M(x) =1} C {x|] N(x) = 1}, and we writeM C N
iff the containment is strict. The models of a formathat are minimal in this preorder
are called the minimal models df.

Definition 1 (LB and GLB of a theorj24]). Let > be a CNF formula.
— A Horn formula Xy, is a Horn LB (lower bound) of” if M (X)) € M(X) (i.e.,
XpEX).
— A Horn formula g, is a Horn GLB (greatest lower bound) &f if there exists no
Horn LB X, of X such thatM (Xgip) C M(Zjp) € M(X).

Example 1. Consider the formulaZ = (master studentv phd student A (master stu-
dent— student A (phd_student— studeny (cf. [23]). Then:

— (master studenta phd studenta studeny is a Horn LB of 3;

— (master studenta student is a Horn GLB of X,

In this sectionX’ denotes a propositional formula in CNF ad, denotes one of its
Horn GLBs.

In [23,24] aHorn strengtheningf a clausey is a Horn clause/s such thatys € y
and there is no Horn clausg such thatys C y; € y (here a clause is considered as a
set of literals). Note that a Horn strengthening of a claude either B(y) — h, where
he H(y),or=B(y),if H(y)=40.

As noticed by Selman and Kautz [23,24], we can always find a Horn GLB of a formula
by choosing its clauses among its Horn-strengthenings.

Proposition 1 (Selman and Kautz [24])et Xqn be a Horn GLB of a CNF formula
Y =C1 A---ACy. Then, there exists a formul®’ = C; A --- A C,, where eaclC] is
a Horn strengthening of; and such thatig, = 2.

If a Horn GLB Xyp of X' is composed only of Horn strengthenings of clauseF i(as
in the proposition above), we say thay, is in normal form By Proposition 1, it thus
follows that, for any Horn GLBY g, for X, there exists a Horn GLB in normal forta’
for X such that¥y, = X’. For this reason, henceforth we assume all GLBs are in such a
form, unless explicitly stated otherwise.

Example 2. Consider again the formul® = (master studentv phd student A (mas
ter_student— student A (phd student— student of Example 1. Then:
— (master studenta student is a Horn GLB ofX’, but is not in normal form;
— (master student A (master student— student A (phd student— student is a
Horn GLB of X' in normal form.
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3. Horn GLBs and minimal models

In this section we prove that Horn GLBs of a formuta are closely related to the
minimal models of . Recall that Horn formulae have a unique minimal model (the
minimummodel). We will show that the minimum model of any Horn greatest lower
bound Xy, is minimal for X. This has both semantical and computational importance.
Minimal models are important in the theory of non-monotonic reasoning, since they are
the semantical counterpart of circumscription [19,20]: the mode®RIC(Y) are exactly
the minimal models of.

Lemma 2. Let X' be a propositional formula and’g, a Horn GLB of . The minimum
model ofXyp is minimal for X,

Proof. First of all we notice that the minimum mod#f of X, is also a model ofz.
Now, let’'s assume thaf is not minimal, and letv be a model o such thatv ¢ M. We
prove that we can build a Horn formuta such thatM (Xgp) C M(U) € M(X), thus
contradicting the assumption thay, is a Horn GLB ofX.

The Horn formulal is built as follows:

begin
unmark all the clauses df;
U :=true ;
foreachclausey = —-b1v---v=b,VvaiVv---Vva,of X do
for i :=1tom do
if a; € N
then begin
(* add a Horn-strengthening of *)
U:=UAB(y)— a;
marky
end;
for eachunmarked clausg of X~
do begin
y’:= an arbitrary Horn-strengthening efin Xgp;
U:=UAny'
end,
end.

SinceU is a collection of Horn-strengthenings af, M(U) € M (X)) holds. Moreover,
N is a model ofU: Indeed,
(1) N clearly satisfies all the clausestnthat come from marked clauses bf and
(2) N must satisfy at least one negative literal, ibkg.¢ N for atleast one (1 < 1< n),
of each clause’ in U that comes from an unmarked claysef X, otherwisey
would have been marked.
Now we prove thatM (Xqp) C M(U) holds. SinceV € M(U) andN ¢ M(Xgb), it
is sufficient to prove thatM(Xgp) € M(U). Let’s take a generic modet of Xy, we
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prove that it is also a model d@f. Since P is a model of¥yn, M C P must hold, hence
N C P holdstoo. As a consequendesatisfies all the clauses ththat come from marked
clauses of¥. As far as the other clauses bfare concerned, they are clausesiiyfy, as
well, thereforeP satisfies all of them. O

Theorem 3. The set of minimal models of a propositional form@aand the set of
minimum models of the Horn GLBs bfare the same.

Proof. From Lemma 2, it follows that, for any Horn GLB, of X', the minimum model
of Xgib is a minimal model of2.

We next prove that any minimal model &f is the minimum model of some GLB of
Y. Let M be a minimal model of. DefineX’ ={l |l € M}U{=l |l ¢ M}. This set of
clauses is a Horn formula and/} = M(X") holds. HenceM(X') € M(X), andX’ is
a Horn LB of X. Therefore, there exists a Horn GLBy|, of X' such thaty’ F Xgp F ¥
and thusM € M(Xgp). Assume by contradiction that the minimum modelXy,, say
M’ is not equal taVf. Then,M’ C M holds, becaus#/ is a model ofXgp. Since every
model of Xyp is a model of2, M’ € M(X). However, this is a contradiction, because we
assumedV is a minimal model ofY. O

We now address some interesting semantical consequences of the above results.

As noticed in [23] a traditional Al approach reasoning by counterexamplashich
consists in refuting a possible consequence of a formula by means of a suitable model that
contradicts it (an example of this technique is in the early work [11]). This approach is
based on the well-known property ¥ o« = X ¥ «, that holds for any pair of formulae
«, X and any modeM of ¥'. Selman and Kautz indicate that reasoning under a specific
Horn GLB is an improved version of such a reasoning schema, since a single Horn GLB
captures aetof models of the original formula. They also briefly address the issue of what
reasoning with respect to a set of Horn GLBs looks like, proving [23, Theorem 3] that a
formula is equivalent to the disjunction of all its Horn GLBs.

We move further in this direction exploring some properties of reasoning with Horn
GLBs. In particular, we consider the two relevant notionskapticalandbravereasoning,
which are frequently used in the Al literature: LBtandw be two formulae.

— « skeptically followsrom the Horn GLBs of¥, denoted byskepglb(X) - «, if for

each Horn GLBXyp of X it holds thatXy F «;

— « bravely followsfrom the Horn GLBs of¥, denoted byoraveglb(X) - «, if there

exists a Horn GLBX g, of X' such that¥y, F o holds.

From the above mentioned result by Selman and Kautz, Theorem 3, and results of [19]
relating minimal models and circumscription, the following result follows.

Corollary 4. Let X be aformula.
(i) Forany formulac, skep-gltX) -« iff X' F «.
(i) For any positive clausg, brave-glli X)) I~ y iff there exists a minimal moda¥ of
X such thatM F y, i.e., iff CIRQX) ¥ —y.

Thus, a formular skeptically follows from the Horn GLBs af’ if and only if it follows
from X. Moreover—as far as positive clauses are concerned—brave reasoning with respect
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to Horn GLBs is the same as brave reasoning with respect to minimal models. Equivalently,
since the minimum model of a Horn formula completely characterizes the set of its positive
consequences, we can also say that reasoning under Horn GLBs is the same as reasoning
by counterexamples using only minimal models. This does not hold for negative theorems.

By exploiting the relationships with classical and circumscriptive reasoning, we get the
computational complexity of reasoning with Horn GLBs.

Proposition 5. Let X anda be two formulae. Then,
() deciding whether skep-gI®) I « is co-NP-complete
(i) deciding whether brave-gity) - « is £h-complete.

Proof. Point (i) trivially holds, becausskepglb(X) - « iff X F «, and the classical
inference problem is co-NP-complete.

(i) From the Eg-hardness of brave reasoning under circumscription [9] and Corol-
lary 4(ii), it follows that brave reasoning with respect to Horn GLBEEehard.

We next show that deciding whetheraveglb(X) - « isin Eg. Consider the following
“guess-and-check” algorithm:

() guess a formuld’ such thakizg X’) < sizg X);

(b) verify thatX’ is a Horn GLB of ¥ and thaty’  «.
This algorithm correctly decides whetheraveglb(X) + «. Indeed, the size limitation
in step (a) is sound because we can consider just Horn GLBs in normal form, whose
size is bounded by the size &. Moreover, the algorithm can be implemented on a
nondeterministic Turing machine with an oracle in co-NP, because checking whgther
is a Horn GLB ofX is in co-NP, and checking wheth&t = « is polynomial, becausg’
is Horn if the first check is successful

Let us see how the relation with non-monotonicity just shown affects approximate
inference under Horn GLBs.

We recall that reasoning using a generic Horn GLB is complete and unsound with
respect to reasoning using the original formula. Detand « be two formulae, and
assume thabraveglb(X) ¥ «. Then, for each Horn GLE’ of ¥, X’ ¥ « holds. This
means that whatever Horn GLB we compute, we can dispmové&low, assume we
get “more knowledge”, in form of a set of clause€sy, ..., C, to be added ta¥. Let
Xt =X AC1A---AC, be the resulting “bigger” knowledge base. Cleady' F X.
Suppose that is not a consequence af ™, i.e., ¥ ¥ « holds for X+, too. A desirable
property of Horn GLBs would be to preserve the possibility of disprovitgth any Horn
GLB of X *. The following example shows that

braveglb(X) ¥ o andX T Ea #  braveglb(Z ™) K a.
Thus, the above property does not hold for Horn GLBs. This means that, in general,
compiling more knowledge does not always give “better” complete approximations.

Example 3. Consider the formulae® = —a v —=b and « = a. Moreover, letX+ =
X A (a Vv b) be anew, “bigger”, knowledge base. Cleady' ¥ a andbraveglb(X) ¥ a.
However,braveglb(X ™) - a. Indeed,~* has two different Horn GLBs(a A —b) and
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(—a A b). The former,(a A —b), entailsa and thus is not able to disprove this atomic
formula.

Note that this observation reflects the relationships between brave reasoning with
Horn GLBs and circumscription. In fact it is well known that, since circumscription is
a non-monotonic formalism, for a generic formula CIRC(X) F —a does not imply
CIRC(XT) E —«a, even if X1 # « holds.

For the sake of completeness, we notice theaveglb(X) + « does not imply
braveglb(X ™) - «: the implication does not hold when, e.C,=a Vv b, X" = X A b,
anda = a.

4. The complexity of finding Horn GLBs

In this section we analyze the computational complexity of finding a Horn GLB of a
CNF formula. We find a lower bound and an upper bound of this search problem, and
we give a precise characterization of its complexity in terms of polynomial-time Turing
reductions, by showing the problem to be NP-equivalent.

Lemma 2 implies that if we have a Horn GLBy, of X', then we can obtain in time
linear in the size o’y )p a minimal model of2: just compute the minimum model &fgp
using the well known algorithm of Dowling and Gallier (see [8]). More technically, the
theorem shows a polynomial-time (Turing) reduction from the search problem of finding a
minimal model ofX to the search problem of finding a Horn GLBbf The computational
complexity of the search problem of finding a minimal model of a propositional formula
has been analyzed in [3,6]. One of the results in these papers is that finding a minimal
model of a formulaX is hard (using many-one reductions) with respect to the class
pNPIO(ogn)]

As mentioned in Section 2.1,NEOUogmI_hard problems are in a precise sense
computationally harder both than NP-complete problems and co-NP-complete problems.
We recall that the problem of deciding whethet= « holds, i.e., the original problem we
want to solve, is co-NP-complete.

As shown in [3], PFIOIogm]_hardness of finding a minimal model holds even if a
model of ¥ is known. This fact can be compared with a consideration in [23, Theorem
1]: Xy is satisfiable iff ¥ is satisfiable, hence finding a Horn GLB is NP-hard. By
Lemma 2, it follows that even if we know tha is satisfiable and have one of its models
in hand, finding a Horn GLB is still ®¥1C(09m1_hard. We recall that finding a model (not
necessarily minimal) of a propositional formulgaiser sean NP-hard task.

Corollary 6. Finding a Horn GLB of a propositional formul& is PNPLO109mI_hard. This
holds even if a model of is already known.

Corollary 6 gives a lower bound that holds even for the case when a modEl of
is known. One may wonder whether the problem becomes easier if we have more
information, e.g., aninimalmodel of X' (in the sequel the importance of having minimal
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models in order to find GLBs is highlighted). The following theorem shows that this is not
the case.

Theorem 7. Finding a Horn GLB of a propositional formula is PNFIO109m]_hard. This
holds even if

(1) a minimal model o is already knownor

(2) a Horn LB of ¥ whose minimum model is a minimal modebbfs already known.

Proof. (1) We reduce—by means of a polynomial-time transformation—the problem of
finding a Horn GLB of a propositional formul® to the problem of finding a Horn GLB

of a propositional formulaX,, with a minimal model of¥, given. ¥, is defined as

{y v—-plyisaclause in¥} = (¥ v —p), wherep is a new propositional variable,
not occurring inX. The only minimal model fo&), is @.

We prove that, given any Horn GLBjp of X', we can determine in linear time (in the
size of Xyip) a Horn GLB ofX'. Here, we do not make any assumption about the syntactic
form of Zgp. In particular, we do not requir&y, to contain only Horn-strengthenings
of X. Next, we show tha&, = {(B — {p} — h) | B — his aclause in¥q, andh # p} is
aHorn GLB of ¥'. Note thatp does not occur irE,. Now, we need three useful properties
of Xg.

Facta. M(X,) ={M —{p}|pe M andM € M(Zgp)}.

Let M, denote the set of models fafyp which contain the atonp, i.e., M, =
{M € M(Xgb) | p € M}. Now, consider the formul&gn A p. It can be verified that
M(Xgib A p) = M. Furthermore, we hav&qgp A p = X, A p. Indeed, clauses ofgp
havingp in their head are subsumed by the clapselauses ofq, in which p occurs in
a negative literal, i.e., of the form v —p can be clearly resolved with the claugsdo get
¥, which belongs ta”,, by definition. ThenM (X, A p) = M,,. Sincep does not appear
in the formulaX,, this entailsM(X,) = {M — {p} | M € M,}.

Factb. ¥, F X.

Assume there exists a mod# € M(X,) such thatM ¢ M(X). Then, from Fact a,
M U{p} belongs toM (Xgp), butM U{p} ¢ M(X v —p). This contradicts the hypothesis
that):g|b EX,.

Factc. XgnF (X, vV —=p).

Models of Xy, which mapp into 0 are models ofp. Models of Xy, which mapp
into 1 are models of, (cf. Fact a, plus the fact that does not occur ir¥y).

Now, observe that Fact b implies thay, is a Horn LB of ¥'. To conclude, assumg,
is not a Horn GLB ofX, i.e., there exists some Horn formut such that¥, F ¥ F ¥
and X’ ¥ X,. Then, sincep occurs neither in¥” nor in Xy, (X' vV —p) ¥ (X V —p)
holds, and, as a consequence of FactX, v —p) ¥ Xqp. Furthermore, by applying
Fact ¢, we geBigp = (X, vV —p) E (X' v —p) E (¥ Vv —p). SinceX’ is Horn, the formula
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obtained by adding the atomto the body of each clause belongingX6 (i.e., the formula
{BAp— h|B— hec X'}),whichis equivalenttd®’ v —p, is a Horn formula too. Thus,
we contradict the hypothesis thay, is a Horn GLB forX,.

(2) Note that-p is aHorn LB of ¥}, and that its minimum model is a minimal model of
% ,. Therefore the problem of finding a Horn GLB af reduces to the problem of finding
aHorn GLB of X, givenits Horn LB—p. O

Theorem 7 shows that even having a “good approximation” of a GLB, i.e., a minimal
model of X, or even a LB that has as its minimum model a minimal model of the original
formula, does not make the problem of finding a GLB any easier.

We notice that Corollary 6 and Theorem 7 give us just a lower bound. It is reasonable to
askhow easyt is to find a Horn GLB, i.e., to give an upper bound to the complexity of the
problem. In [23] an algorithm for computing a Horn GLB of a formwWais shown. The
algorithm performs an exponential number of polynomial steps.

We next show that a Horn GLB can be found in polynomial time by a deterministic
Turing machine with access to an NP oracle, i.e., we prove that the problem is in the class
PNP. This means that we only need a polynomial number of queries to the GLB in order
to “pay off” the overhead of the knowledge compilation. In particular, we prove that it is
possible to build a Horn GLB of by using a linear number of times a subroutine that
returns a minimal model of an arbitrary formula. This result allows us to obtain a precise
upper bound on the complexity of finding a Horn GLB.

We propose an algorithm that is based on the idea of transforming each glafise
into one of its Horn-strengthenings. In this case, each non-Horn rule is treated separately,
using a different minimal model of a formula related Xa The transformation uses a
function which is defined here. Given a formuaand a set of atoma/, we denote by
Str(X, M) the following set of clauses

{B(y) > (H(y)N"M) |y € £ andB(y) € M}.

Str(X, M) returns strengthenings (not necessarily Horn) of some of the clausesAs
an example, if

Y={a—>bvevd),(brc—>aVvd),(d—a)}
andM = {a, b, ¢}, then
St(Z, M)={(a—bVvo),(brc—a)l.

The following lemma shows that, ¥ is appropriately chosen, we can transfoErby
replacing some of its clauses with the corresponding on&irii’, M), thus being sure
that we do not miss all Horn GLBs df.

Lemma 8. Let X be a formula,y a non-Horn clause of’, M a minimal model of2 A
B(y),andh anatominH (y) M. Then, each Horn GLB of A Str(X, M) A (B(y) — h)
is a Horn GLB ofX.

Proof. Let X’ be the formula obtained fror¥ A Str(X, M) A (B(y) — h) by removing
subsumed clauses, afnfla Horn GLB of £’ in normal form. We remind that each clause
of IT is a Horn-strengthening of some clauselih
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First of all, note that'T is a Horn LB of . Assume now/7 is not a Horn GLB ofX.
Then, there exists a Horn GLB &, sayI1’, such thatf7 = [T’ E X andIT’ # IT. From
hypothesis and assumptions above, the following facts follow.

Facta. M € M(II A B(y)).

By definition, M € M(B(y)). AssumeM ¢ M(II). Then, there exists a Horn-
strengthening of some clauges X', sayo’, such that'’ € I7, ando’ is violated byM, i.e.,
B(a') € M andH (a') N M = . SinceB(a) = B(a') is a subset o/, and no subsumed
clause occursirE’, thena € Str(X, M), by construction otr(X, M). Moreover,M is a
model for X, thenH («) # @. Now, recall thatr’ is a Horn-strengthening of. Therefore,
we haveH (') # ¥ and H (o) € H (o) € M, which contradicts the hypothesis thdtis
violated byM.

Fact b. M is the minimum model of the Horn formul& A B(y).

Consider the conjunction aoff, IT’, and X with the same formulas(y). Then the
following relation holds(IT A B(y)) E (IT" A B(y)) E (X A B(y)). Fact a and the above
relation entail that/ is a model off7’ A B(y). Moreover, sincéll’ A B(y)) E (X AB(y)),
M is the minimal model fofT’ A B(y), otherwise the minimality o#/ for X A B(y) would
be contradicted.

Factc. IT' = B(y) — h.

From Fact b we know thafl’ A B(y) E /\,,cy m- Hence, we getll’ E B(y) —
N men m and, in particular/1’ = B(y) — h.

Factd. [T’ is aHorn LB of X’.

We proceed by contradiction. fiI’ # X’, then there exists a mod@&f’ for IT" which
is not a model forX’. SincelT’ & X' (by definition), andl7’ E B(y) — h (cf. Fact c), the
violated clauses must belong to the set of clagesy, M). Lety’ = B’ — H’ be one of
such violated clauses. By definition 8tr(X, M), it holds thatB” C M; furthermorey’ is
violated byM’, henceH’ N M’ = and B’ € M’ hold. Note that, since’ € St(X, M),
y’ corresponds to some claug®’ — H) € X suchthatd’ = HN M, i.e., H' contains all
the atoms in the head belonging toM. Now, sincelT’ is in normal form, it contains at
least one Horn-strengthening of the clauBé— H) € X. LetB’ — h' (k' € H) be such a
Horn-strengthening. We have € M’, becausé/’ is a model forlI’ andB’ € M’. On the
other hand, sinc®’ € M andIT’ A B(y) E \,,cprm, We getil’ A B(y) E N\, epym AR
This entailsh’ € M, because from Fact b we kna is the minimal model of 7’ A B(y).
Then,h’ € HN M and, as a consequenéée H', i.e.,n’ belongs to the head of and to
M’, contradicting the hypothesis that is violated byM’.

To conclude, remember we assumAdE 7' and I7' ¥ IT. From Fact d, we know
IT' = X’. Then, the Horn formuld cannot be a Horn GLB foE’, a contradiction. O
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Algorithm MinimalModel2GLB
Input a CNF formulax
Output a Horn GLB of ¥
begin
while ¥ is not a Horn formula
do begin
y := an arbitrary non-Horn clause af;
if X A B(y) is satisfiable
then begin
M := an arbitrary minimal model of A B(y);
h := an arbitrary atom irH (y) N M;
X=X ASt(E, M)A (B(y)— h)
end
else
X=X A-B(y);
remove subsumed clauses frdin
end,
return X
end.

Fig. 1. The algorithmMinimalModel2GLB

Fig. 1 shows the algorithnMinimalModel2GLBthat finds a Horn GLB of a for-
mula. X' is a variable initialized with the input (non-Horn) formula. At the enduihi-
malModel2GLB X will contain a Horn GLB of the input formula. At each step of thikile
loop, a non-Horn clause o is selected and replaced by one of its Horn-strengthenings.
We exploit the fact that each Horn-strengthenii@f a clausey contains all the atoms in
the body, i.e.B(y) € y’. Thus, to get the Horn clausé we just determine its head atom
(if any), performing a suitable choice among the atom#ify). To this end, we look at
the formulaX A B(y). If this formula is unsatisfiable, no head atom can be “derived” from
the selected clause, and we can simply replad®y the Horn clause containing only its
body, i.e.,—B(y). Otherwise, we have to select an atom from the heagd. dthe idea is
to choose an atorh which also belongs to a minimal mod# of X A B(y). Intuitively,
in the Horn GLB which coverd1, if B(y) is true thenk should be necessarily derived.
Thus, choosing gives a clause’ = (B(y) — h) which is less restrictive than any other
Horn-strengthening of, and hence leads to a formula covering one of the largest sets of
models of¥.

M is also used to perform further simplificationsf Indeed, the clauses belonging to
Str(X, M) will replace the clauses af’ they subsume. This step is fundamental for the
soundness dflinimalModel2GLB It guarantees tha/ will continue to be a model of the
(current) formula¥’—and of X A B(y)—also in the following iterations of the algorithm.

Eventually, the variableX will contain only Horn clauses and the algorithm ends
returningX’ as a Horn GLB of the input formula.

Example 4. Consider the following formula

X={(a—>bVe),(aVvh).
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We find a Horn GLB forX by applying the algorithm of Fig. 1¥' contains two non-
Horn clauses. We arbitrarily select the clayse= a — b v ¢. Now, we have to look
for a minimal model of the formul& A a. For instance, we could compute the model
M ={a, b}. SinceH (y) N{a, b} = {b}, the only possible head for the Horn-strengthening
of y is the atonb. MoreoverStr(X, M) = {(a — b), (a Vv b)}. By removing the subsumed
clausesinX A (a — b) A Str(X, M), we get the new formul®’ = {(a — b), (a v b)}.

Now we have only one non-Horn clause, namgly=a Vv b. Since the body of’ is
true, we look for a minimal model of the formul®’, without any additional clausex’
has just one minimal model, namdly}, hence we geE” = X’ A b = {b}. {b} is clearly
a Horn formula, and it is also a Horn GLB of the input formwa

Another Horn GLB ofX, i.e., the formulda, a — ¢}, could be obtained by selecting the
other minimal model o~ A a, i.e.,{a, c¢}. Both GLBs could be also computed by initially
choosing clause Vv b instead ofu — b Vv c.

Theorem 9. Algorithm MinimalModel2GLB is correct.

Proof. The variableX initially contains the input formula (lets name £°). Mini-
malModel2GLBmodifies X until it becomes a Horn formula. We show by induction that,
at each step, every Horn GLB of the formuais a Horn GLB of £°. This clearly holds
when the algorithm starts, because= °.

Assume this property holds at the beginning of some execution ofliie loop. We
select a non-Horn claugeof X', and look for a minimal model of the formuld A B(y),
i.e., the formulaX’ with the additional constraint that the “body” of clauges true.

If such a model does not exist (i.€-, A B(y) is unsatisfiable), the F —=B(y), and
we can get a formula equivalent tt—and hence with the same set of Horn GLBs—
by replacing the non-Horn clauseby the (Horn) clause-B(y). Otherwise, letM be a
minimal model forX A B(y). We select an atorte H () N M. Note thatH (y) "M # @,
becauseB(y) € M andM is a model forX.

Let X’ be the formula obtained by adding #0 all the clauses irstr(X, M) plus the
additional clauseB(y) — h, and by removing subsumed clauses. From Lemma 8, it
follows that every Horn GLB of2’ is a Horn GLB of X, and hence, by the induction
hypothesis, is a Horn GLB o£?, too. This concludes the induction proof. Note ttzt
will contain fewer non-Horn clauses than, since at leasy will be deleted, because it is
subsumed by (y) — h.

Let n be the number of non-Horn clausesii?. After at most: iteration of thewhile
loop, we get a Horn formul& whose unique Horn GLB (up to logical equivalence}is
itself. From the above induction property, it follows thatis a Horn GLB of the input
formula £©, and thusMinimalModel2GLBis correct. O

The method described by algorithvtinimalModel2GLBgives an upper bound on the
complexity of the problem of finding a Horn GLB, as specified by the next theorem.

Theorem 10. Finding a Horn GLB of a propositional formul& in CNF is in PN,



16 M.Cadoli, F. Scarcello / Artificial Intelligence 119 (2000) 1-17

Proof. Let |X¥| and || X'|| denote the number of clauses and the number of propositional
variables inX, respectively. Referring to the algorithm in Fig. 1, thvkile cycle can be
executed at mogtY| times, because at the end of each iteration, at least the selected non-
Horn clausey will be subsumed and removed from. All the performed operations are
polynomial-time computable, except the problem of finding a minimal modelfarB(y)
(which subsumes the satisfiability test 6rA B(y)).

A minimal model of a formulax' can be determined with@X'||) calls to an NP oracle,
cf. [1]. Then, the whole execution of the algorithm requires at mag$td - | X'|) calls to
an NP oracle, i.e., a number of calls polynomial in the size of the input fortaulao

Theorem 10 and Corollary 6 immediately give a complete characterization of the
computational complexity of this problem in terms of NP-equivalence, as described in
Section 2.

Corollary 11. Finding a Horn GLB of a propositional formul& in CNF is NP-equi-
valent.

5. Conclusions

Research on GLBs has so far focused on algorithms for computing them and on
empirical evaluation of the quality of the approximation. In this paper we have addressed
some formal issues about GLBs. In particular, we have investigated their semantics and the
intrinsic complexity of finding them.

From the semantical point of view, we have discovered an interesting relation between
GLBs and a popular form of non-monotonic reasoning, i.e., circumscription. This relation
essentially tells that reasoning with respect to Horn GLBs is the same as reasoning by
counterexamples using only minimal models, and also explains why compiling more
knowledge does not always give better approximations. Moreover, the relation gave us
the basis for the subsequent computational analysis.

From the computational point of view, we showed that the problem of finding a GLB
is not intrinsically exponential, and gave an upper and a lower bound to its complexity.
The upper bound is reasonably close to the lower bound: finding a Horn GLB requires to
solve a number of propositional satisfiability problems which is at least logarithmic and
at most polynomial in the size of the input. The upper bound was obtained by means of
an algorithm which uses as oracle a procedure for finding a minimal model. Empirical
evaluation of the performance of the algorithm deserves future research.
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