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Abstract

Selman and Kautz proposed a method, calledHorn approximation, for speeding up inference
in propositional Knowledge Bases. Their technique is based on thecompilationof a propositional
formula into a pair of Horn formulae: a Horn Greatest Lower Bound (GLB) and a Horn Least
Upper Bound (LUB). In this paper we focus on GLBs and address two questions that have been
only marginally addressed so far:

(1) what is the semantics of the Horn GLBs?
(2) what is the exact complexity of finding them?

We obtain semantical as well as computational results. The major semantical result is: The set of
minimal models of a propositional formula and the set of minimum models of its Horn GLBs are the
same. The major computational result is: Finding a Horn GLB of a propositional formula in CNF is
NP-equivalent. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Selman and Kautz proposed a method [15,23,24], calledHorn approximation, for
speeding up inference in propositional Knowledge Bases. Propositional inference is the
problem of checking whetherΣ � α holds, whereΣ andα are propositional formulae.
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The starting point of their technique stems from the fact that inference for general
propositional formulae is co-NP-complete—hence polynomially unfeasible—while it is
doable in polynomial time whenΣ is a Horn formula. The fascinating question they
address is the following: is it possible tocompilea propositional formulaΣ into a Horn
oneΣ ′ so that a significant amount of the inferences that are performed underΣ can be
performed underΣ ′ in polynomial time?

Selman and Kautz notice that there exist two different ways of doing such a compilation.
In the first case the compiled formula satisfies the relationΣ ′ � Σ , or equivalently
M(Σ ′) ⊆M(Σ)—whereM(Φ) denotes the set of models of the formulaΦ. For
this reasonΣ ′ is called aHorn lower bound—or LB—of Σ . As an example—taken
from [23]—letΦ be the formula

(man→ person)∧ (woman→ person)∧ (man∨woman).

The formulaΦlb =man∧woman∧ personis a Horn LB ofΦ.
The second form of compilation is dual. The compiled version ofΣ is a Horn formula

Σ ′ that satisfies the relationΣ � Σ ′, or equivalentlyM(Σ) ⊆M(Σ ′). Σ ′ is called
a Horn upper bound—or UB—of Σ . Returning to the previous example, the formula
Φub= (man→ person)∧ (woman→ person) is a Horn UB ofΦ.

The importance of having compiled forms of a Knowledge Base is in that sometimes we
can use them for providing a quick answer to an inference problem. As an example, if we
are faced with the problem of checkingΣ |= α, we may benefit from the fact that for any
Horn LBΣlb of Σ , Σlb 2 α impliesΣ 2 α. Σlb is therefore acomplete approximationof
Σ . Dually, a Horn UBΣub is asound approximationof Σ , sinceΣub� α impliesΣ � α.

Selman and Kautz notice that some complete approximations are better than others. In
the previous example, bothΦlb1 =man∧woman∧ personandΦlb2 =man∧ personare
Horn LBs ofΦ. Φlb2 seems to be a better approximation thanΦlb1, sinceM(Φlb1) ⊂
M(Φlb2) ⊂M(Φ), hence the former is in a precise sense “closer” toΦ than the latter.
This consideration leads to the notion of aHorn greatest lower bound—or GLB—of a
formula (cf. forthcoming Definition 1).

The same argument can be done for Horn upper bounds: in our example bothΦub1 =
(man→ person) ∧ (woman→ person) and Φub2 = personare Horn UBs ofΦ, but
M(Φ)⊂M(Φub2)⊂M(Φub1), henceΦub2 is a better approximation ofΦ. The definition
of Horn least upper bound—or LUB—of a formula can be found in [23,24].

Selman and Kautz’s proposal is to approximate inference with respect to a propositional
formula Σ by using its Horn GLBs and (the provably unique) LUB. Inference from
approximations could be either unsound or incomplete. In other words, it is possible
to give fast answers exploiting the approximations, or, in the worst case, give “don’t
know” answers. In the latter case, it is possible to spend more time and use a general
inference procedure to determine the answer directly from the original formula. However,
the general inference procedure could still use the approximations to prune its search
space (see [23, p. 905]). It is also important to notice that Horn GLBs and LUBs can
be computed off-line, hence this form of approximate reasoning is actually acompilation.
An empirical evaluation of the reliability of the conclusions reached with the bounds, and
of the computational savings they offer, is provided in [16].



M.Cadoli, F. Scarcello / Artificial Intelligence 119 (2000) 1–17 3

As noted in [23,24], the search problem of finding a GLB is NP-hard. Anyway, as noted
by Selman and Kautz, since approximations could be computed off-line, the computational
cost of finding them will be amortized over the total set of subsequent queries to the
Knowledge Base. In their work they propose an algorithm for finding a Horn GLB which
runs in exponential time, thus leaving open the question of what is the exact complexity of
the problem.

Apart from the already cited papers [15,16,23,24], the technique of Horn compilation has
attracted notable interest among researchers [2,7,10,12,13,17,18,22]. A brief overview of
some of their work follows. In [13] the problem of finding small-size Horn approximations
of both kinds is addressed. Using learning techniques, the authors study how the knowledge
of a sequence of queries toΣ may help in the design of a Horn UB and a Horn LB—
not the LUB and a GLB—with a low probability of giving indefinite answers. In [22]
the author performs an analysis of the computational cost of calculating the number of
models of Horn approximations. In [12] the focus is on complexity of the problem of
recomputing Horn approximations after the addition of a clause. In [18] an alternative
approach to reasoning, based on characteristic models, is defined and compared to Horn
approximations. In [14], an algorithm to produce Horn approximations out of a set of truth
assignments is shown. Algorithms for computing the Horn LUB have been proposed in [7,
17]. In [2] an algorithm based on the Davis–Putnam procedure is proposed for computing
a GLB. Finally, in [10], the complexity of finding a GLB is addressed for the special case
in whichΣ is a disjunction of Horn formulae.

Knowledge compilation is an interesting area in automated theorem proving and
knowledge representation (cf. [5]), which is based on the idea of shifting the burden of
intractability of logical reasoning to off-line computation. Most of the work done in this
area is empirical: The quality of compiled Knowledge Bases is measured in terms of the
percentage of true formulae they infer, and in the time savings thus obtained. Theoretical
analysis is—in our opinion—as important as the empirical perspective. In particular, it
is especially important to equip an approximate reasoner with the semantics of what its
conclusions are.

In this paper we focus on GLBs2 and address two important questions that have not
been addressed so far:

(i) is it possible to describe Horn GLBs with a semantics that does not rely on the
syntactic notion of Horn clause?

(ii) what is the exact complexity of finding a Horn GLB?
An answer to the first question shows the exact meaning of the approximate answers. An

answer to the second question tells in which cases it is reasonable—from the computational
point of view—to use Horn approximations.

We obtain two different kinds of results:
(1) Semantical:
− Horn GLBs ofΣ are closely related to models of the circumscription ofΣ ;
− reasoning with respect to Horn GLBs is the same as reasoning by counterexam-

ples using only minimal models;

2 Similar aspects of the LUB are partially addressed in [4].
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− while skepticalreasoning with respect to the Horn GLBs of a formulaΣ is the
same as ordinary reasoning with respect toΣ , bravereasoning with respect to
the Horn GLBs ofΣ is the same as reasoning with respect to the circumscription
of Σ ;

− compiling more knowledge does not always give better Horn GLBs.
(2) Computational:
− finding a Horn GLB is not intrinsically exponential, but it is “mildly” harder than

solving the original inference problem. In particular:
• (lower bound) the problem is PNP[O(logn)]-hard, and
• (upper bound) the problem is in PNP.

The structure of the paper is as follows. Section 2 contains preliminary notions
about complexity classes and Horn GLBs. In Section 3 we focus on semantical aspects,
showing relations existing between GLBs and minimal models. In Section 4 we focus on
computational aspects, showing lower bounds and the algorithm which gives the upper
bound. We give some concluding remarks in Section 5.

2. Preliminaries

2.1. Complexity theory

In this subsection we give a brief overview of complexity concepts that are used
throughout the paper. We refer the reader to [21] for a thorough introduction to the field of
complexity.

A decision problemis a problem that admits a Boolean answer. For decision problems
the class P is the set of problems that can be answered by a Turing machine in polynomial
time. Often we refer to computations done by non-deterministic Turing machines. The
class of decision problems that can be solved by a non-deterministic Turing machine in
polynomial time—where it is understood that the answer isyesprovidedat least oneof
the computations done in parallel by the machine ends in an accepting state—is denoted
by NP. The class of problems whose answer is always the complement of those in NP, is
denoted by co-NP. Also problems in co-NP can be solved by a non-deterministic Turing
machine in polynomial time, but it is understood that the answer isyesprovidedall the
computations done in parallel by the machine end in an accepting state. The class P is
obviously contained both in NP and in co-NP.

An example of a problem in NP is testing satisfiability of a propositional formula:
a formulaT is satisfiable iffat least onetruth assignmentM such thatM � T exists.
An example of a problem in co-NP is testing if a propositional formulaT entails a
propositional formulaγ : T � γ iff for all truth assignmentsM it holds that(M � T )⇒
(M � γ ). In fact propositional satisfiability (entailment) is an NP-hard (co-NP-hard)
problem, i.e., “as tough as”—with respect to many-one polynomial reducibility—any
problem in the class NP (co-NP). Problems in NP (co-NP) which are also NP-hard (co-
NP-hard) are called NP-complete(co-NP-complete). We recall that the best algorithms
known for solving either NP-complete or co-NP-complete problems require exponential
time in the worst case, and that the following relations are conjectured: P⊂ NP∩ co-NP,
NP 6= co-NP.
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Throughout the paper we refer to a particular type of computation called computation
with oracles. Intuitively, oracles are subroutines with unary cost. Given a complexity class
C, the class PC is the class of decision problems that can be solved in polynomial time by
a deterministic machine that uses an oracle for the problems inC, i.e., a subroutine for any
problem inC that can be called several times, spending just one time-unit for each call.
In particular, PNP is the class of decision problems that can be computed by a polynomial-
time deterministic machine which can use at unary cost an oracle that answers a set of
NP-complete queries (e.g., satisfiability checks). Note that, since the machine itself is
polynomial-time, the cardinality of the set of queries is bound by a polynomial function. If
the cardinality of the set is bound by a logarithmic function, we have the class PNP[O(logn)].
Note that both NP-complete and co-NP-complete problems can be solved witha single
call to an oracle in NP. In fact, it is conjectured that NP∪ co-NP⊂ PNP[O(logn)] ⊂ PNP.
From the practical point of view, it is reasonable to think that PNP-complete problems will
be always harder to compute than NP-complete ones: Even if we have a good heuristic for
an NP-complete problem and we can implement an oracle that gives a quick answer to it,
we still have to use the oracle a polynomial number of times for solving the PNP-complete
problem. As for PNP[O(logn)]-complete problems, they will be “mildly” harder to compute
than NP-complete or co-NP-complete ones.

Some of the problems addressed in the paper aresearchproblems, i.e., their answer
is more complex than just a Boolean value. As an example, finding a satisfying truth
assignment for a propositional formula or finding a Horn GLB are search problems.
Formally, complexity classes for search problems are different from classes cited above,
that refer to decision problems. To simplify notation, we use the same complexity classes
for denoting both decision and search problems. In particular, if we say that a search
problem is in PC , orC-easy, we mean that its output can be delivered in polynomial time
by a deterministic machine that uses an oracle for the problems inC. If we say that a search
problemX is PC -hard, or simplyC-hard, we mean that any problem in PC can be solved
in polynomial time by a deterministic machine that uses an oracle forX. A search problem
which is bothC-easy andC-hard is said to beC-equivalent.

2.2. Horn GLBs

In this subsection we give the formal definitions, some examples, and basic properties
of Horn lower bound and greatest lower bound of propositional theories, following [24].

All the propositional formulae we consider in this paper are assumed to be in conjunctive
normal form (CNF henceforth). Formulae will be considered either as sets of clauses, or
as conjunctions of clauses. The following notation is used: given a clauseγ = ¬b1 ∨
· · · ∨ ¬bn ∨ a1 ∨ · · · ∨ am, the symbolB(γ ) denotesb1 ∧ · · · ∧ bn, while H(γ ) denotes
a1 ∨ · · · ∨ am. With such a notation,γ can be written asB(γ )→ H(γ ), therefore the
notation “reminds us” that a clause can be seen as a rule (B stands for “body” andH stands
for “head”). The notation is useful, because in most of the transformations considered in
the following sections, the “body” of a clause remains unchanged. We remind that¬B(γ )
is the disjunction¬b1∨ · · · ∨¬bn. Sometimes,B(γ ) andH(γ ) will be used to denote the
corresponding sets of literals. A clause with no negative literals is said to be positive.
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Models of a propositional formula will be denoted as the set of atoms occurring in the
formula they map into 1. For a formulaΦ,M(Φ) denotes the set of models ofΦ. Two
formulaeΣ andΠ having the same models are said to be equivalent, and this is denoted
asΣ ≡Π . Minimal models of a propositional formula have the property that the set of
atoms that they map into 1 is minimal. More formally (see [19]), given two modelsM,N

of a formula, we writeM ⊆ N iff {x| M(x)= 1} ⊆ {x| N(x)= 1}, and we writeM ⊂ N
iff the containment is strict. The models of a formulaΦ that are minimal in this preorder
are called the minimal models ofΦ.

Definition 1 (LB and GLB of a theory[24]). LetΣ be a CNF formula.
− A Horn formulaΣlb is a Horn LB (lower bound) ofΣ if M(Σlb) ⊆M(Σ) (i.e.,
Σlb �Σ).

− A Horn formulaΣglb is a Horn GLB (greatest lower bound) ofΣ if there exists no
Horn LBΣlb of Σ such thatM(Σglb)⊂M(Σlb)⊆M(Σ).

Example 1. Consider the formulaΣ = (master_student∨ phd_student) ∧ (master_stu-
dent→ student)∧ (phd_student→ student) (cf. [23]). Then:
− (master_student∧ phd_student∧ student) is a Horn LB ofΣ ;
− (master_student∧ student) is a Horn GLB ofΣ .

In this sectionΣ denotes a propositional formula in CNF andΣglb denotes one of its
Horn GLBs.

In [23,24] aHorn strengtheningof a clauseγ is a Horn clauseγS such thatγS ⊆ γ
and there is no Horn clauseγ ′S such thatγS ⊂ γ ′S ⊆ γ (here a clause is considered as a
set of literals). Note that a Horn strengthening of a clauseγ is eitherB(γ )→ h, where
h ∈H(γ ), or¬B(γ ), if H(γ )= ∅.

As noticed by Selman and Kautz [23,24], we can always find a Horn GLB of a formula
by choosing its clauses among its Horn-strengthenings.

Proposition 1 (Selman and Kautz [24]).Let Σglb be a Horn GLB of a CNF formula
Σ = C1 ∧ · · · ∧ Cn. Then, there exists a formulaΣ ′ = C′1 ∧ · · · ∧ C′n where eachC′i is
a Horn strengthening ofCi and such thatΣglb≡Σ ′.

If a Horn GLBΣglb of Σ is composed only of Horn strengthenings of clauses inΣ (as
in the proposition above), we say thatΣglb is in normal form. By Proposition 1, it thus
follows that, for any Horn GLBΣglb for Σ , there exists a Horn GLB in normal formΣ ′
for Σ such thatΣglb≡Σ ′. For this reason, henceforth we assume all GLBs are in such a
form, unless explicitly stated otherwise.

Example 2. Consider again the formulaΣ = (master_student∨ phd_student) ∧ (mas-
ter_student→ student)∧ (phd_student→ student) of Example 1. Then:
− (master_student∧ student) is a Horn GLB ofΣ , but is not in normal form;
− (master_student) ∧ (master_student→ student) ∧ (phd_student→ student) is a

Horn GLB ofΣ in normal form.
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3. Horn GLBs and minimal models

In this section we prove that Horn GLBs of a formulaΣ are closely related to the
minimal models ofΣ . Recall that Horn formulae have a unique minimal model (the
minimummodel). We will show that the minimum model of any Horn greatest lower
boundΣglb is minimal forΣ . This has both semantical and computational importance.
Minimal models are important in the theory of non-monotonic reasoning, since they are
the semantical counterpart of circumscription [19,20]: the models ofCIRC(Σ) are exactly
the minimal models ofΣ .

Lemma 2. LetΣ be a propositional formula andΣglb a Horn GLB ofΣ . The minimum
model ofΣglb is minimal forΣ .

Proof. First of all we notice that the minimum modelM of Σglb is also a model ofΣ .
Now, let’s assume thatM is not minimal, and letN be a model ofΣ such thatN ⊂M. We
prove that we can build a Horn formulaU such thatM(Σglb) ⊂M(U) ⊆M(Σ), thus
contradicting the assumption thatΣglb is a Horn GLB ofΣ .

The Horn formulaU is built as follows:

begin
unmark all the clauses ofΣ ;
U := true ;
for eachclauseγ =¬b1∨ · · · ∨ ¬bn ∨ a1∨ · · · ∨ am of Σ do

for i := 1 tom do
if ai ∈N
then begin

(* add a Horn-strengthening ofγ *)
U :=U ∧B(γ )→ ai ;
markγ

end;
for eachunmarked clauseγ of Σ
do begin

γ ′:= an arbitrary Horn-strengthening ofγ in Σglb;
U :=U ∧ γ ′;

end;
end.

SinceU is a collection of Horn-strengthenings ofΣ ,M(U)⊆M(Σ) holds. Moreover,
N is a model ofU : Indeed,

(1) N clearly satisfies all the clauses inU that come from marked clauses ofΣ ; and
(2) N must satisfy at least one negative literal, i.e.,bi /∈N for at least onei (16 16 n),

of each clauseγ ′ in U that comes from an unmarked clauseγ of Σ , otherwiseγ
would have been marked.

Now we prove thatM(Σglb)⊂M(U) holds. SinceN ∈M(U) andN /∈M(Σglb), it
is sufficient to prove thatM(Σglb) ⊆M(U). Let’s take a generic modelP of Σglb; we
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prove that it is also a model ofU . SinceP is a model ofΣglb, M ⊂ P must hold, hence
N ⊂ P holds too. As a consequence,P satisfies all the clauses inU that come from marked
clauses ofΣ . As far as the other clauses ofU are concerned, they are clauses ofΣglb as
well, thereforeP satisfies all of them. 2
Theorem 3. The set of minimal models of a propositional formulaΣ and the set of
minimum models of the Horn GLBs ofΣ are the same.

Proof. From Lemma 2, it follows that, for any Horn GLBΣglb ofΣ , the minimum model
of Σglb is a minimal model ofΣ .

We next prove that any minimal model ofΣ is the minimum model of some GLB of
Σ . LetM be a minimal model ofΣ . DefineΣ ′ = {l | l ∈M} ∪ {¬l | l /∈M}. This set of
clauses is a Horn formula and{M} =M(Σ ′) holds. Hence,M(Σ ′)⊆M(Σ), andΣ ′ is
a Horn LB ofΣ . Therefore, there exists a Horn GLBΣglb of Σ such thatΣ ′ �Σglb �Σ
and thusM ∈M(Σglb). Assume by contradiction that the minimum model ofΣglb, say
M ′, is not equal toM. Then,M ′ ⊂M holds, becauseM is a model ofΣglb. Since every
model ofΣglb is a model ofΣ ,M ′ ∈M(Σ). However, this is a contradiction, because we
assumedM is a minimal model ofΣ . 2

We now address some interesting semantical consequences of the above results.
As noticed in [23] a traditional AI approach isreasoning by counterexamples, which

consists in refuting a possible consequence of a formula by means of a suitable model that
contradicts it (an example of this technique is in the early work [11]). This approach is
based on the well-known propertyM 2 α⇒ Σ 2 α, that holds for any pair of formulae
α, Σ and any modelM of Σ . Selman and Kautz indicate that reasoning under a specific
Horn GLB is an improved version of such a reasoning schema, since a single Horn GLB
captures asetof models of the original formula. They also briefly address the issue of what
reasoning with respect to a set of Horn GLBs looks like, proving [23, Theorem 3] that a
formula is equivalent to the disjunction of all its Horn GLBs.

We move further in this direction exploring some properties of reasoning with Horn
GLBs. In particular, we consider the two relevant notions ofskepticalandbravereasoning,
which are frequently used in the AI literature: LetΣ andα be two formulae.
− α skeptically followsfrom the Horn GLBs ofΣ , denoted byskep-glb(Σ) ` α, if for

each Horn GLBΣglb of Σ it holds thatΣglb � α;
− α bravely followsfrom the Horn GLBs ofΣ , denoted bybrave-glb(Σ) ` α, if there

exists a Horn GLBΣglb of Σ such thatΣglb � α holds.
From the above mentioned result by Selman and Kautz, Theorem 3, and results of [19]

relating minimal models and circumscription, the following result follows.

Corollary 4. LetΣ be a formula.
(i) For any formulaα, skep-glb(Σ) ` α iff Σ � α.
(ii) For any positive clauseγ , brave-glb(Σ) ` γ iff there exists a minimal modelM of

Σ such thatM � γ , i.e., iff CIRC(Σ) 2¬γ .

Thus, a formulaα skeptically follows from the Horn GLBs ofΣ if and only if it follows
fromΣ . Moreover—as far as positive clauses are concerned—brave reasoning with respect
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to Horn GLBs is the same as brave reasoning with respect to minimal models. Equivalently,
since the minimum model of a Horn formula completely characterizes the set of its positive
consequences, we can also say that reasoning under Horn GLBs is the same as reasoning
by counterexamples using only minimal models. This does not hold for negative theorems.

By exploiting the relationships with classical and circumscriptive reasoning, we get the
computational complexity of reasoning with Horn GLBs.

Proposition 5. LetΣ andα be two formulae. Then,
(i) deciding whether skep-glb(Σ) ` α is co-NP-complete;
(ii) deciding whether brave-glb(Σ) ` α is6p

2-complete.

Proof. Point (i) trivially holds, becauseskep-glb(Σ) ` α iff Σ � α, and the classical
inference problem is co-NP-complete.

(ii) From the6p
2-hardness of brave reasoning under circumscription [9] and Corol-

lary 4(ii), it follows that brave reasoning with respect to Horn GLBs is6
p
2-hard.

We next show that deciding whetherbrave-glb(Σ) ` α is in6p
2. Consider the following

“guess-and-check” algorithm:
(a) guess a formulaΣ ′ such thatsize(Σ ′)6 size(Σ);
(b) verify thatΣ ′ is a Horn GLB ofΣ and thatΣ ′ � α.

This algorithm correctly decides whetherbrave-glb(Σ) ` α. Indeed, the size limitation
in step (a) is sound because we can consider just Horn GLBs in normal form, whose
size is bounded by the size ofΣ . Moreover, the algorithm can be implemented on a
nondeterministic Turing machine with an oracle in co-NP, because checking whetherΣ ′
is a Horn GLB ofΣ is in co-NP, and checking whetherΣ ′ � α is polynomial, becauseΣ ′
is Horn if the first check is successful.2

Let us see how the relation with non-monotonicity just shown affects approximate
inference under Horn GLBs.

We recall that reasoning using a generic Horn GLB is complete and unsound with
respect to reasoning using the original formula. LetΣ and α be two formulae, and
assume thatbrave-glb(Σ) 0 α. Then, for each Horn GLBΣ ′ of Σ , Σ ′ 2 α holds. This
means that whatever Horn GLB we compute, we can disproveα. Now, assume we
get “more knowledge”, in form of a set of clausesC1, . . . ,Cn to be added toΣ . Let
Σ+ = Σ ∧ C1 ∧ · · · ∧ Cn be the resulting “bigger” knowledge base. Clearly,Σ+ � Σ .
Suppose thatα is not a consequence ofΣ+, i.e.,Σ+ 2 α holds forΣ+, too. A desirable
property of Horn GLBs would be to preserve the possibility of disprovingα with any Horn
GLB of Σ+. The following example shows that

brave-glb(Σ) 0 α andΣ+ 2 α 6⇒ brave-glb(Σ+) 0 α.

Thus, the above property does not hold for Horn GLBs. This means that, in general,
compiling more knowledge does not always give “better” complete approximations.

Example 3. Consider the formulaeΣ = ¬a ∨ ¬b and α = a. Moreover, letΣ+ =
Σ ∧ (a ∨ b) be a new, “bigger”, knowledge base. Clearly,Σ+ 2 a andbrave-glb(Σ) 0 a.
However,brave-glb(Σ+) ` a. Indeed,Σ+ has two different Horn GLBs:(a ∧ ¬b) and
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(¬a ∧ b). The former,(a ∧ ¬b), entailsa and thus is not able to disprove this atomic
formula.

Note that this observation reflects the relationships between brave reasoning with
Horn GLBs and circumscription. In fact it is well known that, since circumscription is
a non-monotonic formalism, for a generic formulaα, CIRC(Σ) � ¬α does not imply
CIRC(Σ+) �¬α, even ifΣ+ 2 α holds.

For the sake of completeness, we notice thatbrave-glb(Σ) ` α does not imply
brave-glb(Σ+) ` α: the implication does not hold when, e.g.,Σ = a ∨ b, Σ+ = Σ ∧ b,
andα = a.

4. The complexity of finding Horn GLBs

In this section we analyze the computational complexity of finding a Horn GLB of a
CNF formula. We find a lower bound and an upper bound of this search problem, and
we give a precise characterization of its complexity in terms of polynomial-time Turing
reductions, by showing the problem to be NP-equivalent.

Lemma 2 implies that if we have a Horn GLBΣglb of Σ , then we can obtain in time
linear in the size ofΣglb a minimal model ofΣ : just compute the minimum model ofΣglb

using the well known algorithm of Dowling and Gallier (see [8]). More technically, the
theorem shows a polynomial-time (Turing) reduction from the search problem of finding a
minimal model ofΣ to the search problem of finding a Horn GLB ofΣ . The computational
complexity of the search problem of finding a minimal model of a propositional formula
has been analyzed in [3,6]. One of the results in these papers is that finding a minimal
model of a formulaΣ is hard (using many-one reductions) with respect to the class
PNP[O(logn)].

As mentioned in Section 2.1, PNP[O(logn)]-hard problems are in a precise sense
computationally harder both than NP-complete problems and co-NP-complete problems.
We recall that the problem of deciding whetherΣ � α holds, i.e., the original problem we
want to solve, is co-NP-complete.

As shown in [3], PNP[O(logn)]-hardness of finding a minimal model holds even if a
model ofΣ is known. This fact can be compared with a consideration in [23, Theorem
1]: Σglb is satisfiable iffΣ is satisfiable, hence finding a Horn GLB is NP-hard. By
Lemma 2, it follows that even if we know thatΣ is satisfiable and have one of its models
in hand, finding a Horn GLB is still PNP[O(logn)]-hard. We recall that finding a model (not
necessarily minimal) of a propositional formula isper sean NP-hard task.

Corollary 6. Finding a Horn GLB of a propositional formulaΣ is PNP[O(logn)]-hard. This
holds even if a model ofΣ is already known.

Corollary 6 gives a lower bound that holds even for the case when a model ofΣ

is known. One may wonder whether the problem becomes easier if we have more
information, e.g., aminimalmodel ofΣ (in the sequel the importance of having minimal
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models in order to find GLBs is highlighted). The following theorem shows that this is not
the case.

Theorem 7. Finding a Horn GLB of a propositional formulaΣ is PNP[O(logn)]-hard. This
holds even if

(1) a minimal model ofΣ is already known; or
(2) a Horn LB ofΣ whose minimum model is a minimal model ofΣ is already known.

Proof. (1) We reduce—by means of a polynomial-time transformation—the problem of
finding a Horn GLB of a propositional formulaΣ to the problem of finding a Horn GLB
of a propositional formulaΣp , with a minimal model ofΣp given.Σp is defined as
{γ ∨ ¬p | γ is a clause inΣ} ≡ (Σ ∨ ¬p), wherep is a new propositional variable,
not occurring inΣ . The only minimal model forΣp is ∅.

We prove that, given any Horn GLBΣglb ofΣp , we can determine in linear time (in the
size ofΣglb) a Horn GLB ofΣ . Here, we do not make any assumption about the syntactic
form of Σglb. In particular, we do not requireΣglb to contain only Horn-strengthenings
ofΣ . Next, we show thatΣg = {(B−{p}→ h) | B→ h is a clause inΣglb, andh 6= p} is
a Horn GLB ofΣ . Note thatp does not occur inΣg . Now, we need three useful properties
of Σg .

Fact a. M(Σg)= {M − {p} | p ∈M andM ∈M(Σglb)}.

Let Mp denote the set of models forΣglb which contain the atomp, i.e.,Mp =
{M ∈M(Σglb) | p ∈ M}. Now, consider the formulaΣglb ∧ p. It can be verified that
M(Σglb∧ p) =Mp . Furthermore, we haveΣglb ∧ p ≡Σg ∧ p. Indeed, clauses ofΣglb

havingp in their head are subsumed by the clausep; clauses ofΣglb in whichp occurs in
a negative literal, i.e., of the formγ ∨¬p can be clearly resolved with the clausep to get
γ , which belongs toΣg , by definition. Then,M(Σg ∧p)=Mp. Sincep does not appear
in the formulaΣg , this entailsM(Σg)= {M − {p} |M ∈Mp}.

Fact b. Σg �Σ .

Assume there exists a modelM ∈M(Σg) such thatM /∈M(Σ). Then, from Fact a,
M ∪{p} belongs toM(Σglb), butM ∪{p} /∈M(Σ ∨¬p). This contradicts the hypothesis
thatΣglb �Σp .

Fact c. Σglb � (Σg ∨¬p).

Models ofΣglb which mapp into 0 are models of¬p. Models ofΣglb which mapp
into 1 are models ofΣg (cf. Fact a, plus the fact thatp does not occur inΣg).

Now, observe that Fact b implies thatΣg is a Horn LB ofΣ . To conclude, assumeΣg
is not a Horn GLB ofΣ , i.e., there exists some Horn formulaΣ ′ such thatΣg �Σ ′ �Σ
andΣ ′ 2 Σg . Then, sincep occurs neither inΣ ′ nor in Σg , (Σ ′ ∨ ¬p) 2 (Σg ∨ ¬p)
holds, and, as a consequence of Fact c,(Σ ′ ∨ ¬p) 2 Σglb. Furthermore, by applying
Fact c, we getΣglb � (Σg ∨¬p) � (Σ ′ ∨ ¬p) � (Σ ∨¬p). SinceΣ ′ is Horn, the formula
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obtained by adding the atomp to the body of each clause belonging toΣ ′ (i.e., the formula
{B ∧p→ h | B→ h ∈Σ ′}), which is equivalent toΣ ′ ∨¬p, is a Horn formula too. Thus,
we contradict the hypothesis thatΣglb is a Horn GLB forΣp .

(2) Note that¬p is a Horn LB ofΣp , and that its minimum model is a minimal model of
Σp . Therefore the problem of finding a Horn GLB ofΣ reduces to the problem of finding
a Horn GLB ofΣp given its Horn LB¬p. 2

Theorem 7 shows that even having a “good approximation” of a GLB, i.e., a minimal
model ofΣ , or even a LB that has as its minimum model a minimal model of the original
formula, does not make the problem of finding a GLB any easier.

We notice that Corollary 6 and Theorem 7 give us just a lower bound. It is reasonable to
askhow easyit is to find a Horn GLB, i.e., to give an upper bound to the complexity of the
problem. In [23] an algorithm for computing a Horn GLB of a formulaΣ is shown. The
algorithm performs an exponential number of polynomial steps.

We next show that a Horn GLB can be found in polynomial time by a deterministic
Turing machine with access to an NP oracle, i.e., we prove that the problem is in the class
PNP. This means that we only need a polynomial number of queries to the GLB in order
to “pay off” the overhead of the knowledge compilation. In particular, we prove that it is
possible to build a Horn GLB ofΣ by using a linear number of times a subroutine that
returns a minimal model of an arbitrary formula. This result allows us to obtain a precise
upper bound on the complexity of finding a Horn GLB.

We propose an algorithm that is based on the idea of transforming each clauseγ of Σ
into one of its Horn-strengthenings. In this case, each non-Horn rule is treated separately,
using a different minimal model of a formula related toΣ . The transformation uses a
function which is defined here. Given a formulaΣ and a set of atomsM, we denote by
Str(Σ,M) the following set of clauses{

B(γ )→ (H(γ )∩M) | γ ∈Σ andB(γ )⊆M}.
Str(Σ,M) returns strengthenings (not necessarily Horn) of some of the clauses inΣ . As
an example, if

Σ = {(a→ b ∨ c ∨ d), (b ∧ c→ a ∨ d), (d→ a)
}

andM = {a, b, c}, then

Str(Σ,M)= {(a→ b ∨ c), (b ∧ c→ a)
}
.

The following lemma shows that, ifM is appropriately chosen, we can transformΣ by
replacing some of its clauses with the corresponding ones inStr(Σ,M), thus being sure
that we do not miss all Horn GLBs ofΣ .

Lemma 8. LetΣ be a formula,γ a non-Horn clause ofΣ , M a minimal model ofΣ ∧
B(γ ), andh an atom inH(γ )∩M. Then, each Horn GLB ofΣ∧Str(Σ,M)∧(B(γ )→ h)

is a Horn GLB ofΣ .

Proof. LetΣ ′ be the formula obtained fromΣ ∧ Str(Σ,M) ∧ (B(γ )→ h) by removing
subsumed clauses, andΠ a Horn GLB ofΣ ′ in normal form. We remind that each clause
ofΠ is a Horn-strengthening of some clause inΣ ′.
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First of all, note thatΠ is a Horn LB ofΣ . Assume nowΠ is not a Horn GLB ofΣ .
Then, there exists a Horn GLB ofΣ , sayΠ ′, such thatΠ �Π ′ �Σ andΠ ′ 2Π . From
hypothesis and assumptions above, the following facts follow.

Fact a. M ∈M(Π ∧B(γ )).

By definition, M ∈ M(B(γ )). AssumeM /∈ M(Π). Then, there exists a Horn-
strengthening of some clauseα ∈Σ ′, sayα′, such thatα′ ∈Π , andα′ is violated byM, i.e.,
B(α′)⊆M andH(α′) ∩M = ∅. SinceB(α) = B(α′) is a subset ofM, and no subsumed
clause occurs inΣ ′, thenα ∈ Str(Σ,M), by construction ofStr(Σ,M). Moreover,M is a
model forΣ , thenH(α) 6= ∅. Now, recall thatα′ is a Horn-strengthening ofα. Therefore,
we haveH(α′) 6= ∅ andH(α′)⊆H(α) ⊆M, which contradicts the hypothesis thatα′ is
violated byM.

Fact b. M is the minimum model of the Horn formulaΠ ′ ∧B(γ ).

Consider the conjunction ofΠ , Π ′, andΣ with the same formulaB(γ ). Then the
following relation holds:(Π ∧B(γ )) � (Π ′ ∧B(γ )) � (Σ ∧B(γ )). Fact a and the above
relation entail thatM is a model ofΠ ′ ∧B(γ ). Moreover, since(Π ′ ∧B(γ )) � (Σ∧B(γ )),
M is the minimal model forΠ ′ ∧B(γ ), otherwise the minimality ofM forΣ∧B(γ ) would
be contradicted.

Fact c. Π ′ � B(γ )→ h.

From Fact b we know thatΠ ′ ∧ B(γ ) � ∧m∈M m. Hence, we getΠ ′ � B(γ ) →∧
m∈M m and, in particular,Π ′ � B(γ )→ h.

Fact d. Π ′ is a Horn LB ofΣ ′.

We proceed by contradiction. IfΠ ′ 2 Σ ′, then there exists a modelM ′ for Π ′ which
is not a model forΣ ′. SinceΠ ′ �Σ (by definition), andΠ ′ � B(γ )→ h (cf. Fact c), the
violated clauses must belong to the set of clausesStr(Σ,M). Let γ ′ = B ′ →H ′ be one of
such violated clauses. By definition ofStr(Σ,M), it holds thatB ′ ⊆M; furthermore,γ ′ is
violated byM ′, henceH ′ ∩M ′ = ∅ andB ′ ⊆M ′ hold. Note that, sinceγ ′ ∈ Str(Σ,M),
γ ′ corresponds to some clause(B ′ → H̄ ) ∈Σ such thatH ′ = H̄ ∩M, i.e.,H ′ contains all
the atoms in the head̄H belonging toM. Now, sinceΠ ′ is in normal form, it contains at
least one Horn-strengthening of the clause(B ′ → H̄ ) ∈Σ . LetB ′ → h′ (h′ ∈ H̄ ) be such a
Horn-strengthening. We haveh′ ∈M ′, becauseM ′ is a model forΠ ′ andB ′ ⊆M ′. On the
other hand, sinceB ′ ⊆M andΠ ′ ∧B(γ ) �∧m∈M m, we getΠ ′ ∧B(γ ) �∧m∈M m∧ h′.
This entailsh′ ∈M, because from Fact b we knowM is the minimal model ofΠ ′ ∧B(γ ).
Then,h′ ∈ H̄ ∩M and, as a consequence,h′ ∈H ′, i.e.,h′ belongs to the head ofγ ′ and to
M ′, contradicting the hypothesis thatγ ′ is violated byM ′.

To conclude, remember we assumedΠ � Π ′ andΠ ′ 2 Π . From Fact d, we know
Π ′ �Σ ′. Then, the Horn formulaΠ cannot be a Horn GLB forΣ ′, a contradiction. 2
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Algorithm MinimalModel2GLB
Input a CNF formulaΣ
Output a Horn GLB ofΣ
begin

while Σ is not a Horn formula
do begin

γ := an arbitrary non-Horn clause ofΣ ;
if Σ ∧B(γ ) is satisfiable
then begin

M := an arbitrary minimal model ofΣ ∧B(γ );
h := an arbitrary atom inH(γ )∩M ;
Σ :=Σ ∧Str(Σ,M)∧ (B(γ )→ h)

end
else

Σ :=Σ ∧¬B(γ );
remove subsumed clauses fromΣ

end;
return Σ

end.

Fig. 1. The algorithmMinimalModel2GLB.

Fig. 1 shows the algorithmMinimalModel2GLBthat finds a Horn GLB of a for-
mula.Σ is a variable initialized with the input (non-Horn) formula. At the end ofMini-
malModel2GLB,Σ will contain a Horn GLB of the input formula. At each step of thewhile
loop, a non-Horn clause ofΣ is selected and replaced by one of its Horn-strengthenings.
We exploit the fact that each Horn-strengtheningγ ′ of a clauseγ contains all the atoms in
the body, i.e.,B(γ )⊆ γ ′. Thus, to get the Horn clauseγ ′ we just determine its head atom
(if any), performing a suitable choice among the atoms inH(γ ). To this end, we look at
the formulaΣ ∧B(γ ). If this formula is unsatisfiable, no head atom can be “derived” from
the selected clause, and we can simply replaceγ by the Horn clause containing only its
body, i.e.,¬B(γ ). Otherwise, we have to select an atom from the head ofγ . The idea is
to choose an atomh which also belongs to a minimal modelM of Σ ∧B(γ ). Intuitively,
in the Horn GLB which coversM, if B(γ ) is true thenh should be necessarily derived.
Thus, choosingh gives a clauseγ ′ = (B(γ )→ h) which is less restrictive than any other
Horn-strengthening ofγ , and hence leads to a formula covering one of the largest sets of
models ofΣ .
M is also used to perform further simplifications ofΣ . Indeed, the clauses belonging to

Str(Σ,M) will replace the clauses ofΣ they subsume. This step is fundamental for the
soundness ofMinimalModel2GLB. It guarantees thatM will continue to be a model of the
(current) formulaΣ—and ofΣ ∧B(γ )—also in the following iterations of the algorithm.

Eventually, the variableΣ will contain only Horn clauses and the algorithm ends
returningΣ as a Horn GLB of the input formula.

Example 4. Consider the following formula

Σ = {(a→ b ∨ c), (a ∨ b)}.
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We find a Horn GLB forΣ by applying the algorithm of Fig. 1.Σ contains two non-
Horn clauses. We arbitrarily select the clauseγ = a → b ∨ c. Now, we have to look
for a minimal model of the formulaΣ ∧ a. For instance, we could compute the model
M = {a, b}. SinceH(γ )∩ {a, b} = {b}, the only possible head for the Horn-strengthening
of γ is the atomb. Moreover,Str(Σ,M)= {(a→ b), (a∨b)}. By removing the subsumed
clauses inΣ ∧ (a→ b)∧Str(Σ,M), we get the new formulaΣ ′ = {(a→ b), (a ∨ b)}.

Now we have only one non-Horn clause, namelyγ ′ = a ∨ b. Since the body ofγ ′ is
true, we look for a minimal model of the formulaΣ ′, without any additional clause.Σ ′
has just one minimal model, namely{b}, hence we getΣ ′′ =Σ ′ ∧ b ≡ {b}. {b} is clearly
a Horn formula, and it is also a Horn GLB of the input formulaΣ .

Another Horn GLB ofΣ , i.e., the formula{a, a→ c}, could be obtained by selecting the
other minimal model ofΣ ∧ a, i.e.,{a, c}. Both GLBs could be also computed by initially
choosing clausea ∨ b instead ofa→ b ∨ c.

Theorem 9. Algorithm MinimalModel2GLB is correct.

Proof. The variableΣ initially contains the input formula (let’s name itΣ0). Mini-
malModel2GLBmodifiesΣ until it becomes a Horn formula. We show by induction that,
at each step, every Horn GLB of the formulaΣ is a Horn GLB ofΣ0. This clearly holds
when the algorithm starts, becauseΣ =Σ0.

Assume this property holds at the beginning of some execution of thewhile loop. We
select a non-Horn clauseγ of Σ , and look for a minimal model of the formulaΣ ∧B(γ ),
i.e., the formulaΣ with the additional constraint that the “body” of clauseγ is true.

If such a model does not exist (i.e.,Σ ∧ B(γ ) is unsatisfiable), thenΣ � ¬B(γ ), and
we can get a formula equivalent toΣ—and hence with the same set of Horn GLBs—
by replacing the non-Horn clauseγ by the (Horn) clause¬B(γ ). Otherwise, letM be a
minimal model forΣ ∧B(γ ). We select an atomh ∈H(γ )∩M. Note thatH(γ )∩M 6= ∅,
becauseB(γ )⊆M andM is a model forΣ .

Let Σ ′ be the formula obtained by adding toΣ all the clauses inStr(Σ,M) plus the
additional clauseB(γ )→ h, and by removing subsumed clauses. From Lemma 8, it
follows that every Horn GLB ofΣ ′ is a Horn GLB ofΣ , and hence, by the induction
hypothesis, is a Horn GLB ofΣ0, too. This concludes the induction proof. Note thatΣ ′
will contain fewer non-Horn clauses thanΣ , since at leastγ will be deleted, because it is
subsumed byB(γ )→ h.

Let n be the number of non-Horn clauses inΣ0. After at mostn iteration of thewhile
loop, we get a Horn formulaΣ whose unique Horn GLB (up to logical equivalence) isΣ
itself. From the above induction property, it follows thatΣ is a Horn GLB of the input
formulaΣ0, and thusMinimalModel2GLBis correct. 2

The method described by algorithmMinimalModel2GLBgives an upper bound on the
complexity of the problem of finding a Horn GLB, as specified by the next theorem.

Theorem 10. Finding a Horn GLB of a propositional formulaΣ in CNF is inPNP.
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Proof. Let |Σ| and‖Σ‖ denote the number of clauses and the number of propositional
variables inΣ , respectively. Referring to the algorithm in Fig. 1, thewhile cycle can be
executed at most|Σ| times, because at the end of each iteration, at least the selected non-
Horn clauseγ will be subsumed and removed fromΣ . All the performed operations are
polynomial-time computable, except the problem of finding a minimal model forΣ∧B(γ )
(which subsumes the satisfiability test forΣ ∧B(γ )).

A minimal model of a formulaΣ can be determined with O(‖Σ‖) calls to an NP oracle,
cf. [1]. Then, the whole execution of the algorithm requires at most O(‖Σ‖ · |Σ|) calls to
an NP oracle, i.e., a number of calls polynomial in the size of the input formulaΣ . 2

Theorem 10 and Corollary 6 immediately give a complete characterization of the
computational complexity of this problem in terms of NP-equivalence, as described in
Section 2.

Corollary 11. Finding a Horn GLB of a propositional formulaΣ in CNF is NP-equi-
valent.

5. Conclusions

Research on GLBs has so far focused on algorithms for computing them and on
empirical evaluation of the quality of the approximation. In this paper we have addressed
some formal issues about GLBs. In particular, we have investigated their semantics and the
intrinsic complexity of finding them.

From the semantical point of view, we have discovered an interesting relation between
GLBs and a popular form of non-monotonic reasoning, i.e., circumscription. This relation
essentially tells that reasoning with respect to Horn GLBs is the same as reasoning by
counterexamples using only minimal models, and also explains why compiling more
knowledge does not always give better approximations. Moreover, the relation gave us
the basis for the subsequent computational analysis.

From the computational point of view, we showed that the problem of finding a GLB
is not intrinsically exponential, and gave an upper and a lower bound to its complexity.
The upper bound is reasonably close to the lower bound: finding a Horn GLB requires to
solve a number of propositional satisfiability problems which is at least logarithmic and
at most polynomial in the size of the input. The upper bound was obtained by means of
an algorithm which uses as oracle a procedure for finding a minimal model. Empirical
evaluation of the performance of the algorithm deserves future research.

Acknowledgements

Anonymous referees’ comments and suggestions led to substantial improvements in the
quality of this paper. We are grateful to H. Kautz and B. Selman for fruitful discussions
on their method. We also thank L.C. Aiello, M. Lenzerini, E. Omodeo and M. Schaerf
for reading previous versions of the paper. We also had interesting discussions with



M.Cadoli, F. Scarcello / Artificial Intelligence 119 (2000) 1–17 17

L. Palopoli. This work has been supported by ASI (Italian Space Agency), MURST (Italian
Ministry for University and Scientific and Technological Research) and CNR (Italian
Research Council).

References

[1] R. Ben-Eliyahu, R. Dechter, On computing minimal models, Ann. Math. Artificial Intelligence (1996) 3–27.
[2] Y. Boufkhad, Algorithms for propositional KB approximation, in: Proc. AAAI-98, Madison, WI, 1998,

pp. 280–285.
[3] M. Cadoli, On the complexity of model finding for nonmonotonic propositional logics, in: A. Marchetti

Spaccamela, P. Mentrasti, M. Venturini Zilli (Eds.), Proc. 4th Italian Conference on Theoretical Computer
Science, World Scientific, Singapore, October 1992, pp. 125–139.

[4] M. Cadoli, Semantical and computational aspects of Horn approximations, in: Proc. IJCAI-93, Chambéry,
France, 1993, pp. 39–44.

[5] M. Cadoli, F.M. Donini, A survey on knowledge compilation, AI Communications—The European Journal
on Artificial Intelligence 10 (1997) 137–150.

[6] Z. Chen, S. Toda, The complexity of selecting maximal solutions, Inform. and Comput. 119 (1995) 231–239.
[7] A. del Val, An analysis of approximate knowledge compilation, in: Proc. IJCAI-95, Montreal, Quebec, 1995,

pp. 830–836.
[8] W.P. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn

formulae, J. Logic Programming 1 (1984) 267–284.
[9] T. Eiter, G. Gottlob, Propositional circumscription and extended closed world reasoning are5

p
2 -complete,

Theoret. Comput. Sci. 114 (1993) 231–245.
[10] T. Eiter, T. Ibaraki, K. Makino, Disjunctions of Horn theories and their cores, in: Proc. 9th Annual

Symposium on Algorithms and Computation (ISAAC-98), 1998, pp. 49–58.
[11] H. Gelernter, Realization of a geometry theorem-proving machine, in: Proc. International Conference on

Information Processing, UNESCO House, Paris, 1959, pp. 273–282.
[12] G. Gogic, C. Papadimitriou, M. Sideri, Incremental recompilation of knowledge, J. Artificial Intelligence

Res. 8 (1998) 23–37.
[13] R. Greiner, D. Schuurmans, Learning useful Horn approximations, in: Proc. Third International Conference

on the Principles of Knowledge Representation and Reasoning (KR-92), Cambridge, MA, 1992, pp. 383–
392.

[14] H.A. Kautz, M.J. Kearns, B. Selman, Horn approximations of empirical data, Artificial Intelligence 74
(1995) 129–145.

[15] H.A. Kautz, B. Selman, Forming concepts for fast inference, in: Proc. AAAI-92, San Jose, CA, 1992,
pp. 786–793.

[16] H.A. Kautz, B. Selman, An empirical evaluation of knowledge compilation by theory approximation, in:
Proc. AAAI-94, Seattle, WA, 1994, pp. 155–161.

[17] D. Kavvadias, C.H. Papadimitriou, M. Sideri, On Horn envelopes and hypergraph transversals, in: Proc. 4th
Annual Symposium on Algorithms and Computation (ISAAC-93), 1993, pp. 399–405.

[18] R. Khardon, D. Roth, Reasoning with models, Artificial Intelligence 87 (1996) 187–213.
[19] V. Lifschitz, Computing circumscription, in: Proc. IJCAI-85, Los Angeles, CA, 1985, pp. 121–127.
[20] J. McCarthy, Circumscription—A form of non-monotonic reasoning, Artificial Intelligence 13 (1980) 27–

39.
[21] C.H. Papadimitriou, Computational Complexity, Addison Wesley, Reading, MA, 1994.
[22] D. Roth, On the hardness of approximate reasoning, in: Proc. IJCAI-93, Chambéry, France, 1993, pp. 613–

618.
[23] B. Selman, H.A. Kautz, Knowledge compilation using Horn approximations, in: Proc. AAAI-91, Anaheim,

CA, 1991, pp. 904–909.
[24] B. Selman, H.A. Kautz, Knowledge compilation and theory approximation, J. ACM 43 (1996) 193–224.


