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Abstract

We present a survey of the most recent results and inequalities for the gamma function and the ratio of the
gamma functions and study, among other things, the relation between these results and known inequalities for
ultraspherical polynomials. In particular, we discuss the inequality

(sin �)�|P(�)
n (cos �)|¡ 21−�

�(�)
�(n+ 3=2�)

�(n+ 1 + 1=2�)
; 06 �6 	;

where P(�)
n (cos �) denotes the ultraspherical polynomial of degree n, established by Alzer (Arch. Math. 69

(1997) 487) and the one established by Durand (In: R.A. Askey (Ed.), Theory and Application of Special
Functions, Proceedings of the Advanced Seminar on Mathematical Research Center, University of Wisconsin,
Madison, Vol. 35, Academic Press, New York, 1975, p. 353)

(sin �)�|P(�)
n (cos �)|6 �(n=2 + �)

�(�)�(n=2 + 1)
; 06 �6 	:
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1. Introduction

The importance of the function

yn(�) = (sin �)�P(�)
n (cos �);
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is well known where P(�)
n (cos �) are the ultraspherical polynomials of degree n=0; 1; : : : and parameter

�, in diEerent Felds of analysis and physics and to Fnd related inequalities. Especially in the case
of the Legendre polynomials the role of this function and the need to improve the known bounds
to get physically interesting results were pointed out, for example, in [15] in the study of scattering
problems.

This function is solution of the diEerential equation

d2y(x)
d� 2 +

[
(n+ �)2 +

�(1 − �)
sin2 �

]
y = 0

and classical inequalities were obtained by using Sonin–Polya Theorem.
Let us consider the case 0¡�¡ 1. Then we have [16, Theorem 7.33.2], if n is even

(sin �)�|P(�)
n (cos �)|6 �(n=2 + �)

�(n=2 + 1)�(�)
(1.1)

or if n is odd

(sin �)�|P(�)
n (cos �)|¡ [�(1 − �) + (n+ �)2]−1=2(n+ 1)

�((n+ 1)=2 + �)
�((n+ 1)=2 + 1)�(�)

: (1.2)

The sign of equality holds only for even n and �= 	=2 because in this case we have

|P(�)
n (0)| =

�(n=2 + �)
�(�)�(n=2 + 1)

and as a consequence of [16, Theorem 7.33.2], only for even n,

max
06�6	

(sin �)�|P(�)
n (cos �)| =

�(n=2 + �)
�(�)�(n=2 + 1)

:

From inequalities (1.1) and (1.2) the remarkable inequality follows [16], 0¡�¡ 1,

(sin �)�|P(�)
n (cos �)|¡ 21−�[�(�)]−1n�−1; 06 �6 	 (1.3)

for both the cases n even and n odd. The special case �= 1
2 leads to the well-known inequality for

the Legendre polynomials Pn

(sin �)1=2|Pn(cos �)|¡ (2=	)1=2n−1=2: (1.4)

The proof of (1.4) is due to Bernstein [4] and it was the Frst leading to the constant (2=	)1=2. The
constant 21−��(�)−1 in (1.3) and the constant (2=	)1=2 in (1.4) cannot be replaced by a smaller one,
taking into account that

lim
n→∞

[
max

06�6	
(sin �)�|P(�)

n (cos �)|
]

= 21−�[�(�)]−1; 06 �6 	:

In this paper, we present our investigation about the improvements of the classical Bernstein in-
equality recently obtained as consequences of the results for the ratio of gamma functions [9,10] and
we give a comparison of the reFnements due to Durand, Lorch, Laforgia, Alzer and other authors.
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2. Comparison of some Bernstein-type inequalities

Several authors presented reFnements of (1.3) and (1.4) replacing the factor n�−1 and the fac-
tor n−1=2, respectively, with a smaller one. By using complex variable methods, Antonov and
HolKsevnikov [3] deduced that the factor n−1=2 in (1.4) can be replaced by (n+ 1=2)−1=2.

More generally Lorch [14] reFned (1.3) replacing the factor n�−1 by (n+ �)�−1

(sin �)�|P(�)
n (cos �)|¡ 21−�[�(�)]−1(n+ �)�−1; 06 �6 	 (2.1)

by using the inequality, n= 0; 1 : : : ;

1
(n+ �)1−� ¡

�(n+ �)
�(n+ 1)

¡
1

(n+
1
2
�)1−�

; 0¡�¡ 1: (2.2)

Earlier, Durand derived a Nicholson-type formula [7] for Gegenbauer functions of the Frst and
second kind, C(�)

� (x) and D(�)
� (x), that is, he expressed the sum of two squares [C(�)

� (x)]2 +[D(�)
� (x)]2

as an integral over a Gegenbauer function of the second kind. As a consequence, he obtained the
set of bounds [7, (24), p. 362]

|aC(�)
� (x) + bD(�)

� (x)|6 (1 − x2)−�=2L0

√
a2 + b2; 0¡�6 1;

where

L0 =
�(�=2 + �)

�(�)�(�=2 + 1)
;

which implies separate inequalities for C and D. For instance, with a= 1 and b= 0,

|C(�)
� (x)|6 (1 − x2)−�=2L0; 0¡�6 1:

Hence for integer �= n¿ 0 and �= �, x= cos �, there follows the inequality for the corresponding
ultraspherical polynomials |P(�)

n (cos �)|, 0¡�¡ 1,

(sin �)�|P(�)
n (cos �)|6 �(n=2 + �)

�(�)�(n=2 + 1)
; 06 �6 	: (2.3)

Bound (2.3) holds for both even n and odd n and the Lorch’s bound is implicit in it [14]. It suMces
to apply the upper bound in (2.2), valid for n¿ 0 [12], not only integer-valued, to obtain

�(n=2 + �)
�(�)�(n=2 + 1)

¡ 21−�[�(�)]−1(n+ �)�−1; 06 �6 	: (2.4)

In the case even n= 2r, we have that the Durand upper bound (2.3) is equal to (1.1) which gives
the maximum value of the function (sin �)�|P(�)

n (cos �)|, for 06 �6 	 and 0¡�¡ 1.
In the case odd n= 2r + 1, Durand inequality is an upper bound of (1.2).
Now we compare Durand inequality with others that some authors have given in the recent past.
Laforgia [13] in 1992 supplied a very simple proof of the Bernstein inequality (1.1),which leads

to replace the term n�−1 with the ratio of two gamma functions �(n+ �)=�(n+ 1),

(sin �)�|P(�)
n (cos �)|¡ 21−�

�(�)
�(n+ �)
�(n+ 1)

; 06 �6 	;
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but although this inequality provides another reFnement of the Bernstein inequality, does not improve
Lorch’s result because from (2.2) we have

(n+ �)�−1¡�(n+ �)=�(n+ 1):

Recently, Alzer [2] established a new upper bound for |P(�)
n (cos �)|, for 0¡�¡ 1,

(sin �)�|P(�)
n (cos �)|¡ 21−�

�(�)
�(n+ 3

2 �)

�(n+ 1 + 1
2 �)

; 06 �6 	; (2.5)

which reFnes the inequalities given by Bernstein, Lorch and Laforgia. Now we compare Durand and
Alzer upper bounds. In the case even n= 2r, it is easily seen that Durand inequality is sharper than
Alzer’s because it assumes exactly the value |P(�)

n (0)|. In the case odd n, we have to show that

�(n=2 + �)
�(�)�(n=2 + 1)

¡
21−�

�(�)
�(n+ 3

2�)

�(n+ 1 + 1
2�)
: (2.6)

For n= 2r + 1 and the duplication formula of the gamma function, we have

21−�

�(�)
�(2r+1+ 3

2 �)

�(2r+2+ 1
2 �)

=
21−�

�(�)
�[2(r+ 1

2 + 3
4 �)]

�[2(r+1+ 1
4 �)]

=
1
�(�)

�(r+ 3
4 �+ 1

2 )

�(r+ 1
4 �+1)

�(r + 3
4�+ 1)

�(r + 1
4�+ 3

2 )

and it suMcies to show that for 0¡�¡ 1,

�(r + 1
2 + �)

�(r + 3
2 )

¡
�(r + 3

4�+ 1
2 )�(r + 3

4�+ 1)

�(r + 1
4�+ 1)�(r + 1

4�+ 3
2 )
:

that is, the function

f(r; �) =
�(r + 3

4�+ 1
2 )�(r + 3

4�+ 1)�(r + 3
2 )

�(r + 1
4�+ 1)�(r + 1

4�+ 3
2 )�(r + �+ 1

2 )
¿ 1:

Recalling the limit relation [8]

lim
x→∞

�(x + a)
�(x + b)

xb−a = 1; (2.7)

we can easily deduce that

lim
r→∞f(r; �) = 1; 0¡�¡ 1:

We use a generalization of some results of [5,11] given in [1] to prove that the function f(r; �) is
greater than its limit 1.

Theorem. Let ai and bi (i=1; 2 : : : ; n) be real numbers such that 06 a16 · · ·6 an, 06 b16 · · ·6 bn,
and

∑k
i=1 ai6

∑k
i=1 bi, k = 1; : : : ; n. Then,

x →
n∏
i=1

�(x + ai)
�(x + bi)

is completely monotonic on (0;∞).
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Remark. Since (2.7), from the theorem it follows that the inequality
n∏
i=1

�(x + ai)
�(x + bi)

¿ 1; x¿ 0

holds for all real numbers 06 a16 · · ·6 an, 06 b16 · · ·6 bn, and
∑k

i=1 ai6
∑k

i=1 bi, k = 1; : : : ;
n− 1 and

∑n
i=1 ai =

∑n
i=1 bi.

The function f(r; �) which satisFes the conditions of the Remark,
∑n

i=1 ai =
∑n

i=1 bi = 3 + 3
2�, is

greater than 1. This proves that the Durand inequality is sharper than the Alzer one. In the case of
the Legendre polynomials, �= 1=2, Durand bound gives for n= 2r,

(sin �)1=2|P2r(cos �)|6 (2r − 1)(2r − 3) : : : 1
2rr!

and for n= 2r + 1,

(sin �)1=2|P2r+1(cos �)|6 22r+1(r!)2

	(2r + 1)!
:

We have graphically and numerically compared (2.3) and (2.5) for some Fxed values of n and
0¡�¡ 1. The diEerence increases on 0¡�¡ 1=2 until about �¡ 1=2 and then decreases.

In 1994, Chow et al. [6] proved a Bernstein-type inequality for the Jacobi polynomials P(�;�)
n (x)

for −1=26 �; �6 1=2 and 06 �6 	,(
sin
�
2

)�+1=2(
cos

�
2

)�+1=2

|P(�;�)
n (cos �)|6 �(q+ 1)

�( 1
2 )

(
n+ q

n

)
N−q−1=2; (2.8)

where q=max(�; �) and N =n+ 1
2 (�+�+1). In the case of ultraspherical polynomials, �=�=�− 1

2
(2.8) gives

(sin �)�|P(�)
n (cos �)|6 21−�

�(�)
�(n+ 2�)
�(n+ 1)

(n+ �)−�; 06 �6 	; (2.9)

which sharpens Lorch’s result (2.1) only for 0¡�¡ 1=2. If 1
2 ¡�¡ 1, their result reduces to one

which is weaker than (2.1). Alzer has proved that the inequality

�(n+ 3
2�)

�(n+ 1 + 1
2�)

¡
�(n+ 2�)
�(n+ 1)

(n+ �)−�

holds for values of 0¡�¡ 1 which are suMciently close to 1, whereas the reverse inequality holds
for all suMciently small �.
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