
Journal of Combinatorial Theory, Series A 105 (2004) 1–13

Countable, 1-transitive, coloured linear
orderings I

G. Campero-Arena and J.K. Truss1

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK

Received 20 May 2003

Abstract

We give a classification of all the countable, 1-transitive, coloured linear orderings for

countable colour sets. This is a generalization of Morel’s classification of the countable,

1-transitive linear orderings. For finite colour sets, there are @1 examples and for countably

infinite colour sets, there are 2@0 (discussed in more detail in a subsequent paper (countable,

1-transitive, coloured linear orderings II, submitted)). We also include a classification of the

countable homogeneous coloured linear orders.
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1. Introduction

In this paper, we tackle a classification problem for coloured linear orderings, that
is, linear orderings ðX ;oÞ in which each point is assigned a unique member of a set
C; thought of as ‘colours’. If F is this ‘colouring function’, we write the coloured
linear ordering as ðX ;o;FÞ: We restrict here to the countable case (so that also C

may be taken to have cardinality at most @0), and, so that we have some chance of
classification, impose a suitable homogeneity assumption. Now, if we require full
homogeneity (sometimes called ‘ultrahomogeneity’ [4]), meaning that any isomorph-
ism between finite substructures extends to an automorphism, then the classification
consists of just the so-called ‘C-coloured rationals’ QC or structures built up from
these and isolated points by concatenation, as we shall see in Section 4. (Gregory
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Cherlin has remarked that, for finite C; a homogeneous C-coloured linear order is
also a jCj-tournament, in the sense defined in [2], so the results of Section 4 are also
covered by his work.) Our main task however is to adapt Morel’s classification [3] of
the countable 1-transitive linear orders to the coloured case, where now ‘1-transitive’
means that the automorphism group acts singly transitively on the set of points
coloured by any fixed colour. In this paper, we concentrate on the case in which C is
finite. In a sequel [1] we study the case of infinitely many colours.

The general definition (which applies in fact to any structure) is that a coloured
linear ordering is n-transitive if for any two isomorphic n-element substructures,
there is an automorphism taking the first to the second. It is homogeneous if any
isomorphism between finite substructures can be extended to an automorphism.
As for linear orders, an argument involving ‘patching’ readily shows that any
2-transitive coloured linear order is homogeneous, hence n-transitive for every n; so
the only cases of interest are 1-transitivity, and homogeneity (¼ 2-transitivity).

Now in [6], a class of partial orders was studied, suitably related to linear orders,
but with some branching allowed, called ‘cycle-free’ partial orders. Though some
general remarks were made, the thrust of that work was the classification of
countable cycle-free partial orders of a particular kind under a suitable transitivity
assumption (called ‘k-CS-transitivity’). It turned out that the structure of these
partial orders could be ‘encoded’ by information about the order-type of a maximal
chain in the completion, together with specifying how the elements ramified;
moreover, these chains obeyed precisely the kind of 1-transitivity for linear orders we
have just described, with however up to at most four orbits in all. That is, they were
not actually 1-transitive, but 1-transitive provided the orbits were coloured by
distinct colours. The classification of these cycle-free partial orders therefore
required classification of certain (rather special) 1-transitive coloured linear orders.
Arising out of this, it was natural to consider whether it would be possible to classify
all countable 1-transitive coloured linear orders. As we shall see, this is certainly
possible in the case where there are just finitely many colours; for infinitely many
colours we can also give a ‘classification’, though it is considerably less explicit.

We may also wish to consider certain order-preserving permutations of a coloured
linear order which may not preserve the colours, but permute them coherently. We
say that a permutation f of a coloured set ðX ;FÞ is a colour shuffle if for some
permutation y of the set of colours C; Fðf ðzÞÞ ¼ yFðzÞ; for every zAX ; and for a
coloured linear ordering ðX ;o;FÞ; the group of order-preserving permutations
which are colour shuffles is called the shuffle group, AutshðX ;o;FÞ:

In the analysis of possible coloured linear orders, a key point will be to examine
intervals on which only certain colours appear. In this paper, we do not need to
distinguish between ‘intervals’ and ‘convex sets’; by either we understand a subset I

of X such that xoyoz and x; zAI implies yAI : These then have the form ða; bÞ;
½a; bÞ; ða; b�; or ½a; b�; where a and b lie in the Dedekind-completion of X (or are
7N). An interval I of a coloured linear ordering ðX ;o;FÞ is monochromatic if
there is cAC such that for all zAI ; FðzÞ ¼ c:

Given any partition of the set of colours C; p; we can define an equivalence
relation over X by aBpb if apb and all colours appearing in ½a; b� lie in the same
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member of p; or bpa and all colours appearing in ½b; a� lie in the same member of p:
Clearly, all Bp-classes are convex, and hence o induces a linear ordering on the
family X=Bp of equivalence classes.

Lemma 1.1. If ðX ;o;FÞ is a 1-transitive, coloured linear ordering, and p is a partition

of C; then all Bp-classes are 1-transitive, and any two Bp-classes that share a common

colour are isomorphic.

Proof. Let %x ¼ fzAX : zBpxg; and suppose that aA %x and bA %y have the same colour.
Then, since ðX ;o;FÞ is 1-transitive, there is an automorphism f of X such that
f ðaÞ ¼ b: We show that the restriction f j %x of f to %x is an isomorphism from %x to %y:
Given zA %x; suppose zoa; and let C0 be the member of p such that FðaÞ ¼ FðbÞAC0:
If f ðzÞe %y; then there is tA½f ðzÞ; b� such that FðtÞeC0: As f ðzÞotof ðaÞ and f is an
automorphism, there is wA½z; a� such that FðwÞeC0; contrary to zBpa: We deduce
that f ðzÞA %y: Similarly, f maps any z4a in %x into %y; so f ð %xÞD %y: Applying a similar

argument to f 
1; we find that f 
1ð %yÞD %x; giving f j %x an isomorphism from %x to %y:
Hence, if two Bp-classes share a common colour, they are isomorphic.

Now in the case that %x ¼ %y; it follows that f j %x is actually an automorphism of %x

taking a to b; so the argument also shows that %x is a 1-transitive coloured linear
order. &

Note that if p is the trivial partition of C; then all Bp-classes are monochromatic
(and convex). Therefore F induces a natural colouring function, also denoted by F ;
on X=Bp; so that ðX=Bp;o;FÞ itself becomes a coloured linear ordering. Also,
ðX=Bp;o;FÞ has the property that between any two points with the same colour
there is another point with a different colour, so it has no non-trivial monochromatic
intervals.

A consequence of the previous lemma is that if two Bp-classes share a common
colour, then all the colours in one appear in the other. Hence, for any partition p of
C and for any x; yAX ; FpðxÞ ¼ fFðzÞ : xBpzg and FpðyÞ ¼ fFðzÞ : yBpzg are either
identical or disjoint. Also, for all xAX ; FpðxÞ is contained in a member of p: This
leads us to define a refinement p0 of p by p0 ¼ fFpðxÞ : xAXg:Now, we intend to view
the elements of p0 themselves as colours. The role of p0 is to colour points of X=Bp

differently when their colour-sets are disjoint, but, even if pap0; it is easy to prove
that Bp-classes and Bp0-classes are equal, as we now see.

Lemma 1.2. For any partition p of C; p0 refines p; and Bp ¼ Bp0 :

Proof. To see that p0 refines p; let c1 and c2 lie in the same member FpðxÞ of p0: Then
c1 ¼ FðyÞ; c2 ¼ FðzÞ with xBpy; xBpz: Thus, yBpz; so c1 ¼ FðyÞ and c2 ¼ FðzÞ lie
in the same member of p:

Now take any ypz in X : If yBp0z then all members of ½y; z� are coloured by the
same member of p0; hence also by the same member of p; so yBpz: Conversely, if
ypz and yBpz; then for all tA½y; z�; yBpt; so FðtÞAFpðyÞ: Hence all members of
½y; z� have colours lying in the same member of p0; and so yBp0z: &
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We write F 0 for the colouring function going from X=Bp to p0:

Lemma 1.3. Let ðX ;o;FÞ be a coloured linear order. Let p be any partition of C and

let p0 be the refinement of p as described above. Then ðX ;o;FÞ is 1-transitive if and

only if ðX=Bp;o;F 0Þ is 1-transitive and all Bp-classes that share a common colour

are isomorphic and 1-transitive.

Proof. First suppose that ðX ;o;FÞ is 1-transitive. By Lemma 1.1, all Bp-classes
that share a common colour are isomorphic and 1-transitive, so it remains to show
that ðX=Bp;o;F 0Þ is 1-transitive. Let %x; %yAX=Bp be such that F 0ð %xÞ ¼ F 0ð %yÞ; and
let x0A %x and y0A %y be such that Fðx0Þ ¼ Fðy0Þ: (It is at this point, to guarantee the
existence of x0 and y0; that the fact that the F 0-colours lie in p0 is used.) Since
ðX ;o;FÞ is 1-transitive, f ðx0Þ ¼ y0 for some automorphism f of X : Define

g : X=Bp-X=Bp by gð%zÞ ¼ f ðzÞ: Since gð %xÞ ¼ gðx0Þ ¼ f ðx0Þ ¼ y0 ¼ %y; G takes %x to

%y; so we just have to show that g is well defined and is an automorphism. Let
z0; z1AX be such that z0Bpz1: Then every point between z0 and z1 has colour in the
same member of p0: Since f preserves colour, the same applies to f ðz0Þ and f ðz1Þ; so
f ðz0ÞBpf ðz1Þ: Applying the same argument to f 
1 demonstrates that g is 1–1, and g

is order-preserving since f is. To see that g preserves colour, we have

F 0ðgð%zÞÞ ¼F 0ðf ðzÞÞ

¼ fFðtÞ : tBpf ðzÞg

¼ fFðf ðtÞÞ : f ðtÞBpf ðzÞg

¼ fFðtÞ : tBpzg since f preserves F ; and Bp;

¼F 0ð%zÞ:

For the converse, assume the given condition, and let x; yAX be such that FðxÞ ¼
FðyÞ: Since %x and %y share a common colour, F 0ð %xÞ ¼ F 0ð %yÞ: So there is an
automorphism f of X=Bp such that f ð %xÞ ¼ %y and there is an isomorphism g from %x

onto %y: Also, as %x is 1-transitive and FðxÞ ¼ FðyÞ; there is an automorphism h of %x

such that hðxÞ ¼ g
1ðyÞA %x: If g %x ¼ g3h; then g %x is an isomorphism from %x onto %y

such that g %xðxÞ ¼ y: Now, for every %zAX=Bp; %za %x; we choose an isomorphism g%z

from %z onto f ð%zÞ; and let GðzÞ ¼ g%zðzÞ: Since there is one isomorphism for each %z; G

is well defined and is a bijection. Since g%z is an isomorphism, G preserves colours on
each %z; and hence overall. Moreover, it also preserves the order on each %z: Since f

preserves the ordering of the pieces, G preserves the ordering on X : &

As an important special case of the above, we may take for p the trivial partition
of C (into singletons). The lemma then reduces the problem of classifying a general
coloured linear order to the monochromatic ones (the Bp-classes), known by
Morel’s result, and those for which allBp-classes are singletons (that is, those having
no non-trivial monochromatic intervals), since the general case is obtained by
replacing each point by a monochromatic countable 1-transitive linear order, so that
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points having the same colour are replaced by the same (isomorphic) linear order,
but points having different colours may be replaced by linear orders that need not be
isomorphic. The main reduction, however, comes about by taking a suitable non-
trivial partition p; in which case (in the finite case at any rate), the lemma effects a
reduction in the total number of colours, and an inductive analysis is possible. The
following lemma, which applies in both the finite and infinite cases, tells us how we
can recognize when QC arises, and is a key point in the classification.

The C-coloured version of Q; where C is a given (finite or countably infinite) set
of colours, may be characterized as the set Q of rational numbers, together with
a colouring F :Q-C such that for every xoyAQ and cAC there is zAQ

with xozoy and FðzÞ ¼ c: This exists and is unique up to isomorphism (see [5,
Lemma 4.1] for example) and we shall denote it by QC ; or by Qn if jCj ¼ n

(for n ¼ 1; 2;y;@0).
If x; y lie in the linearly ordered set ðX ;oÞ; and are such that xoy and there is no

zAX with xozoy; then we say x and y are consecutive, and we write x5y:

Lemma 1.4. Let ðX ;o;FÞ be a countable, 1-transitive, coloured linear ordering, where

jCjX3: Suppose that for any partition p (with pafCg), all Bp-classes are singletons.

Then ðX ;o;FÞDQC :

Proof. First, let us see that ðX ;o;FÞ is dense. If not, then there are consecutive x5y

in X : Taking p ¼ ffcg : cACg; all Bp-classes are singletons, so FðxÞaFðyÞ: Since
jCjX3; we may alternatively let p ¼ ffFðxÞ;FðyÞgg,ffcg : cAC 
 fFðxÞ;FðyÞgg:
Then xBpy; contrary to all Bp-classes singletons. Clearly, X cannot have endpoints.

Now, given xoyAX and cAC; choose u; v with xouovoy: Let p ¼ ffcg;
C 
 fcgg: By assumption, ufpv; so there is wAX such that upwpv and FðwÞ ¼ c

(which is u or v; or if both FðuÞ and FðvÞ do not equal c; is given directly by the
definition of ufpv). Therefore, ðX ;o;FÞDQC : &

By this lemma, if ðX ;o;FÞD/ QC ; and jCjX3 is finite, we can use Lemma 1.3 to
reduce the number of colours. This will enable us, in the finite case, to classify all
ðX ;o;FÞ in terms of the possibilities for ðX=Bp;o;FÞ:

2. Finite sets of colours

Morel [3] proved that, up to isomorphism, the countable 1-transitive linear orders
are Za or Q � Za for a countable ordinal a; where Za is the ordinal power. This will be
employed in the sequel, as the ‘basis case’ (the monochromatic one). We remark that
it is immediate that there must be (at least) @1 pairwise non-isomorphic countable,
2-coloured, 1-transitive linear orders. And this is true even if we require there to be at
least two colours, since we can take a single point coloured by one colour, followed
by an arbitrary monochromatic linear order from Morel’s list coloured by another.
We shall show that there are actually only @1 of them in all, and we are able to give
an explicit description.
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If ðY0;o0;F0Þ;y; ðYn
1;on
1;Fn
1Þ; are coloured linear orderings, then we write
QnðY0;y;Yn
1Þ for the coloured linear order resulting from Qn by replacing all
points coloured ci by Yi; for i ¼ 0;y; n 
 1: By Lemma 1.3, this is 1-transitive if and
only if each Yi is 1-transitive.

The concatenation of ðY0;o0;F0Þ;y; ðYn
1;on
1;Fn
1Þ is the coloured linear
ordering ðY0,?,Yn
1;o;F0,?,Fn
1Þ; where xoy if x; yAYi and xoiy for
some i ¼ 0;y; n 
 1; or xAYi and yAYj where ioj: We write this as Y4

0 ?4Yn
1:

Given linear orders Y and Z; we write YðZÞ or Y � Z for the linear order resulting
from replacing every point of Y by a copy of Z (this is the ‘lexicographic product’ of
Y and Z). Formally, this is the cartesian product Y  Z ordered by ðy1; z1Þoðy2; z2Þ
if y1oy2; or y1 ¼ y2 and z1oz2: In the coloured case, any colours on Y will be
irrelevant, and the colours on the copies of Z will be just the same as they were in Z:

Using the results of Section 1, we can now move towards an inductive classi-
fication of all countable 1-transitive n-coloured linear orders.

Theorem 2.1. Let ðX ;o;FÞ be a countable, 1-transitive, 2-coloured linear ordering

with C ¼ fc0; c1g: Then ðX ;o;FÞ is isomorphic to one of the following:

(i) Q2ðY0;Y1Þ where Y0 and Y1 are countable, 1-transitive linear orders coloured

monochromatically by c0 and c1; respectively;
(ii) YðY4

0 Y1Þ or YðY4
1 Y0Þ where Y is a countable, 1-transitive linear order and Y0

and Y1 are countable, 1-transitive linear orders coloured monochromatically by c0
and c1; respectively

(and all possibilities described in ðiÞ and ðiiÞ are countable 1-transitive 2-coloured

linear orders).

Proof. Let ðX ;o;FÞ be a countable, 1-transitive, 2-coloured linear ordering. First,
let us suppose that for the trivial partition p of C; all Bp-classes of ðX ;o;FÞ are
singletons. Then between any two points coloured the same there is a point with a
different colour.

If there are consecutive xoy in X ; then FðxÞaFðyÞ; by the remark just made, and
as ðX ;o;FÞ is 1-transitive, every zAX with FðzÞ ¼ FðxÞ must be immediately
followed by some v with FðvÞ ¼ FðyÞ; and every tAX with FðtÞ ¼ FðyÞ must be
immediately preceded by some u with FðuÞ ¼ FðxÞ: Hence, ðX ;o;FÞ consists
of pairs of points coloured FðxÞ and FðyÞ; from which it follows that
ðX ;o;FÞDYð140 11Þ or Y ð141 10Þ where Y is some countable, 1-transitive linear

order and 10 and 11 are singletons coloured c0 and c1 respectively.
Otherwise, o is dense. Take any xoy; and cAC: By density there are u; v; w with

xouovowoy: As there are only two colours, two of FðuÞ; FðvÞ; FðwÞ are equal,
FðuÞ ¼ FðvÞ for example. As all Bp-classes are singletons, there is a point between u

and v having the other colour. Hence, both colours appear in ðx; yÞ: It follows that
ðX ;o;FÞDQ2:

Now, returning to general ðX ;o;FÞ; by Lemma 1.3, ðX=Bp;o;F 0Þ has one of the
forms Q2; Y ð140 11Þ; or Yð141 10Þ; and the result follows from the same lemma on
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replacing the singletons by arbitrary countable 1-transitive linear orders of the same
colour. &

We remark that the two cases of Theorem 2.1(ii) are ‘essentially the same’, that is,
up to labelling of colours, and sometimes they actually are isomorphic, for instance if
Y0DY1 and Y ¼ Za for some aX1: In part (i) however, Q2ðY0;Y1Þ and Q2ðY1;Y0Þ
are always isomorphic, even without relabelling the colours.

Now, using induction and Lemma 1.3, we can prove the following theorem.

Theorem 2.2. Let ðX ;o;FÞ be a countable, 1-transitive, coloured linear order

where 2pjCjo@0: Then ðX ;o;FÞDQiðY0;y;Yi
1Þ or ðX ;o;FÞDYðY4
0 ?4Yi
1Þ;

where Y0;y;Yi
1 are themselves countable, 1-transitive linear orders for some i41;
coloured by pairwise disjoint colour sets, and Y is a countable, 1-transitive, linear

order.

Proof. Using the same method as in the previous result, we may assume that
between any two points in ðX ;o;FÞ coloured the same there is a point with a
different colour. We use induction on the number of colours. The basis case, jCj ¼ 2;
is the previous theorem.

Now assume the result for values less than n; and let ðX ;o;FÞ be a countable, n-
coloured, 1-transitive linear order. If for every proper partition p of C; allBp-classes
are singletons, then, by Lemma 1.4, ðX ;o;FÞDQn: If, however, there is a proper
partition p of C such that not all Bp-classes are singletons, then by Lemma 1.3
ðX=Bp;o;F 0Þ; is 1-transitive and is coloured by fewer colours than X ; so by
induction hypothesis has the form QiðY0;Y1;y;Yi
1Þ or Y ðY4

0 Y4
1 ?4Yi
1Þ where

iX2: The result follows on replacing each point of X=Bp by the equivalence class it
represents. This will involve changing the Yj; but as their colour sets are pairwise

disjoint, and iX2; each of them is still coloured by fewer than n colours. &

The point of this theorem is that in the inductive representation of X ; we now
know that the outer ‘layer’ may always be taken to be of one of the two stated kinds.
It provides, in principle, a classification of all finitely coloured countable 1-transitive
linear orders. However, the induction required means that listing these gets more and
more complicated as jCj increases. For instance, the 4-coloured ones fall into at least
19 cases (depending on exactly how they are counted). A more systematic method of
listing the possibilities is provided by the use of labelled trees, and this also provides
a good way of generalizing to the case of infinitely many colours. What we do is as
follows.

For every coloured countable 1-transitive linear order, we show how to associate
with it a labelled tree of a certain type that ‘encodes’ its construction. Conversely,
given such a ‘coding’ tree, we show how to form a coloured countable 1-transitive
linear order encoded by it. This constitutes a reasonably explicit classification, if
not an actual ‘listing’. In this paper, finite trees suffice. Infinite trees are required
corresponding to the case of C infinite (see [1]).
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For us a tree is a finite partially ordered set, ðt;!Þ; such that for every x; yAt;
there is zAt with x%z and y%z; and such that for every xAt; fyAt : x%yg is linearly
ordered. (We are thinking of our trees as growing ‘downwards’.) The root r of a tree
ðt;!Þ; is its unique greatest element, and its minimal elements are called leaves. If
x; yAt; we say that y is a child of x; or x is a parent of y; and write y!!x; if y!x

and there is no zAt such that y!z!x: Distinct children of the same parent are
called siblings.

A labelled tree, ðt;!;LÞ is a tree ðt;!Þ; together with a function L : t-L;
where L is a set of ‘labels’. Our labels will be ordered pairs, where the first co-
ordinate (except at leaves) tells us how the coloured linear ordering associated with
that vertex is constructed from those associated with its children, and the second
label tells us what the colour set is for that coloured linear ordering. The ordered pair
at a leaf will have the form ð1; fcgÞ for some cAC (the 1 indicating that we are at a
leaf).

More precisely, a coding tree has the form ðt;!;L; v Þ; where ðt;!;LÞ is a
labelled tree in the above sense, with every label an ordered pair, and

(i) v is a linear ordering of the branches of t induced by a linear ordering of the
children of each vertex (meaning that one branch precedes another provided
that at the first point x of difference, the child of x in the first branch precedes
the child of x in the second one in the ordering of the children of x; we visualize
the tree as drawn ‘from left to right’ on the page),

(ii) if x!!y and yar; either x has a sibling, or y has a sibling,
(iii) if r has only one child, the first entry FðrÞ of its label is Za or Q � Za where a is

some countable ordinal (greater than zero in the first case),
(iv) if r has kX2 children, then FðrÞ is Qk or k;
(v) if xar and x is not a leaf, then either it has no sibling and FðxÞ ¼ k; where k is

its number of children (k41 by the conditions put on the tree),
or it has a sibling, and only one child, and FðxÞ ¼ Za or Q � Za (a a countable
ordinal, non-zero in the first case)
or x has a sibling and kX2 children and the first label of its parent is Ql ; with
2ploo; and FðxÞ is Qk or k; or the first label of its parent is m; for 2pmoo;
and FðxÞ ¼ Qk;

(vi) if xAt is a leaf, then FðxÞ ¼ 1;
(vii) the second member SðxÞ of the label at x is a subset of the set of colours C

such that SðrÞ ¼ C; if x is a leaf, then SðxÞ is a singleton, and if x is not a leaf,
then SðxÞ is the disjoint union of the SðyÞ for the children y of x:

Given the above definition of ‘coding tree’, we have to show how any coding tree
gives rise to a coloured linear order, and, conversely, given a (countable, 1-transitive)
coloured linear order, how we can find a coding tree that encodes it. First the
definition of what this means.

We say that a coding tree ðt;!;L; v Þ encodes the coloured linear order
ðX ;o;FÞ if we can assign coloured linear orders to the vertices of t by a function y
in such a way that yðrÞ ¼ ðX ;o;FÞ;

the colours occurring in yðxÞ are precisely the members of SðxÞ;
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a leaf with second co-ordinate fcg is assigned a singleton linear order with that
colour, and

if x is a non-leaf vertex, yðxÞ is obtained from fyðyÞ : y a child of xg according
to FðxÞ; so if FðxÞ is Qk; and y0;y; yk
1 are the children, then yðxÞ ¼
Qkðyðy0Þ;y; yðyk
1ÞÞ; if FðxÞ is k; then yðxÞ ¼ yðy0Þ4y;4 yðyk
1Þ; and if FðxÞ
is Z (a 1-transitive linear order) then yðxÞ ¼ Z � yðyÞ (where y is the child of x).

Theorem 2.3. ðiÞ Any coding tree t encodes a uniquely determined coloured linear

order, and this is countable and 1-transitive.
ðiiÞ Any coloured countable 1-transitive linear order, where the set of colours is finite,

is encoded by some coding tree.

Proof. (i) This is done by induction on the number of vertices of t: If jtj ¼ 1 then the
root is a leaf, so it encodes a singleton. Otherwise the root r has k children say, and is
labelled by ðQk;o;CÞ; ðk;CÞ; or ðZ;CÞ: By induction hypothesis, the tree below
each of these children encodes a unique coloured linear order, and this is countable
and 1-transitive. The root must therefore encode the correspondingQk-combination,
concatenation, or lexicographic product of these coloured linear orders, and this is
clearly unique. Since any Qk-combination, concatenation, or lexicographic products
of countable 1-transitive coloured linear orders with pairwise disjoint colour sets is
also countable and 1-transitive, the induction step follows.

We remark that this part of the proof is rather obvious in the finite colour set
case, but in [1] where infinite colour sets are considered, it becomes a lot more
complicated.

(ii) Let ðX ;o;FÞ be the given countable 1-transitive linear order, with finite
colour set C: We have to find a labelled tree encoding ðX ;o;FÞ; which means that
we have to assign labels, and in addition say which coloured linear order is encoded
by the tree below each vertex. We use induction on jCj:

If C has just one element, then ðX ;o;FÞ is monochromatic, so is one of the linear
orders Z in Morel’s list. If jX j ¼ 1 then it is coded by a singleton tree, with root equal
to the unique leaf labelled by ð1; fcgÞ: Otherwise, it is labelled by a 2-vertex tree, the
root labelled by ðZ; fcgÞ; and its unique child (leaf) labelled by ð1; fcgÞ: (In the latter
case, the coloured linear order assigned to the leaf is the singleton coloured by c:)

Otherwise, C has more than one element, and we may appeal to Theorem 2.2 to
write X in the form QkðY0;y;Yk
1Þ or YðY4

0 ?4Yk
1Þ; where Y0;y;Yk
1 are

themselves countable, 1-transitive, linear orders coloured by pairwise disjoint colour
sets Ci; with jCijojCj; and Y is a countable, 1-transitive linear order. To ensure that
condition (v) holds, we choose k maximal. By induction hypothesis, each Yi is
encoded by some coding tree ti; and so we also have coloured linear orders assigned
to the vertices of each ti in accordance with the definition of ‘encodes’. We obtain a
coding tree for ðX ;o;FÞ as follows.

If XDQkðY0;y;Yk
1Þ; to form t; we add a new root r; with label ðQk;CÞ and
with k children which are roots ri of copies of ti ordered left-right 0; 1;y; k 
 1 (for
definiteness, though actually in this case the order chosen does not matter). The same
coloured linear orders are assigned to the vertices of ti in t as they were in ti:
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If XDYðY4
0 y

4Yk
1Þ where jY j ¼ 1; we add a new root r; with label ðk;CÞ and
with k children which are roots of copies of ti ordered left-right 0; 1;y; k 
 1 (this
time the order does matter).

If XDYðY4
0 ?4Yk
1Þ where jY j41; we add a new root r with a unique child x;

having labels ðY ;CÞ and ðk;CÞ; respectively, and let yðxÞ ¼ Y4
0 ?4Yk
1; with the

children of x treated as the children of the root were in the case jY j ¼ 1:
In all these three cases we let yðrÞ ¼ X ; which fits the definition for each. &

3. Countable homogeneous coloured linear orders

We recall that a structure is said to be n-homogeneous if any isomorphism between
n-element substructures can be extended to an automorphism. So it is homogeneous
if and only if it is n-homogeneous for every n: It is clear that for linear orders the
notions of n-transitivity and n-homogeneity coincide (though for general structures
they will not be the same, except for n ¼ 1 when they are always equivalent). We
write that ðX ;o;FÞ is pn-homogeneous when ðX ;o;FÞ is m-homogeneous for all
mpn:

As for linear orders without colouring, it is easy to prove that any coloured linear
order is homogeneous if and only if it is 2-homogeneous. So the only natural
homogeneity assumption to make, apart from 1-transitivity, in seeking to single out
families of countable, coloured linear orders, is homogeneity, which is equivalent to
p2-homogeneity.

Let ðX ;o;FÞ be a countable, coloured, linear order. We define a relation on the
colour set C by c0Bc1 if and only if c0 ¼ c1 or there are x; y; zAX such that xozoy;
FðxÞ ¼ FðyÞ ¼ c0; and FðzÞ ¼ c1:

Lemma 3.1. Let ðX ;o;FÞ be a homogeneous, coloured linear order, and x; y; zAX be

such that xozoy and FðxÞ ¼ FðyÞ: Then for any uovAX with FðuÞ ¼ FðvÞ ¼ FðxÞ;
there is wAX such that uowov and FðwÞ ¼ FðzÞ:

Proof. By homogeneity there is an automorphism taking x to u and y to v; and we let
w be the image of z under this automorphism. &

Lemma 3.2. If ðX ;o;FÞ is homogeneous, then B is an equivalence relation.

Proof. If c0Bc1; there are x; y; zAX such that xozoy; FðxÞ ¼ FðyÞ ¼ c0; and
FðzÞ ¼ c1: By homogeneity, there is an automorphism f of ðX ;o;FÞ taking x to y;
and hence yof ðzÞ: As f preserves colour, Fðf ðzÞÞ ¼ c1; so zoyof ðzÞ with FðzÞ ¼
Fðf ðzÞÞ ¼ c1; FðyÞ ¼ c0; giving c1Bc0; and establishing symmetry.

Next consider transitivity. If c0Bc1 and c1Bc2; there are x; y; z; u; v;wAX such
that FðxÞ ¼ FðyÞ ¼ c0; FðzÞ ¼ FðuÞ ¼ FðvÞ ¼ c1 and FðwÞ ¼ c2 with xozoy and
uowov: By homogeneity, there is an automorphism f of ðX ;o;FÞ taking x to y:
Thus yof ðzÞ and Fðf ðzÞÞ ¼ c1: By Lemma 3.1, the existence of u; v;w gives bAX

with zobof ðzÞ and FðbÞ ¼ c2: If boy; then there are x; y; bAX as required to show
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c0Bc2: If b ¼ y; then c0 ¼ c2 so also c0Bc2: If yob; then xof 
1ðbÞozoy and

Fðf 
1ðbÞÞ ¼ c2: Hence in each case, c0Bc2: &

Let %c ¼ fc0AC : c0Bcg: Thus the %cs form a partition of C: This gives a
corresponding equivalence relation E on X defined by xEy if FðxÞBFðyÞ: Thus
if %x ¼ fyAX : xEyg; then %x ¼ fyAX : FðyÞAFðxÞg:

Lemma 3.3. If ðX ;o;FÞ is homogeneous, then %x is convex for all xAX :

Proof. Let xoy lie in %x: Suppose for a contradiction that there is zAX with xozoy

and ze %x: Since ze %x; FðxÞaFðyÞ:We know xEy; so FðxÞBFðyÞ;meaning that there
are u; v;wAX such that uowov; FðuÞ ¼ FðvÞ ¼ FðxÞ; and FðwÞ ¼ FðyÞ: Since
ðX ;o;FÞ is homogeneous, there is an automorphism f of X taking x to u and y to w:
Hence uof ðzÞowov and Fðf ðzÞÞ ¼ FðzÞ; so FðxÞ ¼ FðuÞBFðzÞ; giving zA %x;
contradiction. &

Lemma 3.4. If ðX ;o;FÞ is a countable, coloured linear order, then ðX ;o;FÞ is

homogeneous if and only if %x is convex and homogeneous for all xAX :

Proof. ); Suppose ðX ;o;FÞ is homogeneous. By Lemma 3.3, each %x is convex.
Now, let xAX and j be an isomorphism of a finite subset of %x into %x: Since
ðX ;o;FÞ is homogeneous, there is an automorphism f of X extending j: We show

that f j %x is an automorphism of %x: Let yA %x; so that FðyÞAFðxÞ and, since f preserves

colour, Fðf ðyÞÞAFðxÞ; giving f ðyÞA %x: This shows that ff ðyÞ : yA %xgD %x: Applying

the same argument to f 
1 shows that ff 
1ðyÞ : yA %xgD %x; so ff ðyÞ : yA %xg ¼ %x: Thus
f j %x is an automorphism of %x:

(; Suppose that for all xAX ; %x is convex and homogeneous. Let j be a partial
isomorphism of size p2 in ðX ;o;FÞ; so j : fx0; x1g-fy0; y1g with jðx0Þ ¼ y0 and
jðx1Þ ¼ y1 say. Thus Fðx0Þ ¼ Fðy0Þ and Fðx1Þ ¼ Fðy1Þ: Therefore, y0Ax0 and
y1Ax1:

If Fðx0ÞfFðx1Þ; then, by homogeneity of x0 and x1; there are automorphisms
f0 and f1 of x0 and x1 taking x0 to y0 and x1 to y1; respectively. Let G : X-X be
defined by

GðxÞ ¼
f0ðxÞ if xAx0;

f1ðxÞ if xAx1;

x if xex0,x1:

8><
>:

Since the E-classes are convex and G takes %x to %x for every xAX ; G preserves both
order and colour, so G is an automorphism of ðX ;o;FÞ extending j:

If Fðx0ÞBFðx1Þ; then by homogeneity of x0; there is an automorphism f0 of x0

extending j: Let G : X-X be defined by

GðxÞ ¼
f0ðxÞ if xAx0;

x if xex0:

�

ARTICLE IN PRESS
G. Campero-Arena, J.K. Truss / Journal of Combinatorial Theory, Series A 105 (2004) 1–13 11



Then G is an automorphism of ðX ;o;FÞ extending j: We deduce that ðX ;o;FÞ is
p2-homogeneous and hence homogeneous. &

Theorem 3.5. The countable C-coloured linear order ðX ;o;FÞ is homogeneous if and

only if there are a partition p of C and a linear order Y such that X is obtained from Y

by replacing each point of Y either by QCi
or by a singleton coloured cj where Ci or fcjg

are elements of p; and no two points of Y are replaced by the same set.

Proof. (; Since eachQCi
and singleton is homogeneous, by Lemma 3.4, all coloured

orders as described in the theorem are homogeneous.
); Let ðX ;o;FÞ be a countable, homogeneous, C-coloured linear order. Let E

be the equivalence relation on X defined earlier, and let ðX=E;o;F 0Þ be the

quotient, where F 0ð %xÞ ¼ FðxÞ: Since for any distinct %x; %yAX=E; FðxÞfFðyÞ; F 0

colours X=E trivially. We shall show that for all xAX ; %xDQFð %xÞ; or %x is a singleton.

Case i: jFð %xÞj ¼ 1: By Lemma 3.4, %x is homogeneous. Since it is monochromatic, it
is either a singleton or isomorphic to Q: In the latter case, %xDQfFðxÞg ¼ QFð %xÞ:

Case ii: jFð %xÞj41: We show that for all aobA %x and for all cAFð %xÞ there is dA %x

such that aodob and FðdÞ ¼ c:
If FðaÞ ¼ FðbÞac; then, by Lemma 3.1, since FðaÞBc; there is dA %x such that

aodob and FðdÞ ¼ c:
If FðaÞ ¼ FðbÞ ¼ c; by homogeneity of %x (Lemma 3.4), there are u; v;wA %x such

that uovowoa and FðuÞ ¼ FðvÞ ¼ FðwÞ ¼ FðaÞ: Then j ¼ fðu; aÞ; ðw; bÞg is a
partial isomorphism, so there is an automorphism f of %x extending j: Thus f ðvÞA %x;
aof ðvÞob; and Fðf ðvÞÞ ¼ c:

If FðaÞaFðbÞ and FðaÞ ¼ c; since FðaÞBFðbÞ; there are u; v;wA %x such that
uowov; FðuÞ ¼ FðvÞ ¼ FðaÞ and FðwÞ ¼ FðbÞ: As %x is homogeneous we may
suppose that bou; and there is also zA %x such that voz and FðzÞ ¼ FðbÞ: Then
j ¼ fðu; aÞ; ðz; bÞg is a partial isomorphism, so there is an automorphism f of %x

extending j: This gives us f ðvÞA %x and aof ðvÞob; with Fðf ðvÞÞ ¼ FðaÞ ¼ c: The
case where FðaÞaFðbÞ and FðbÞ ¼ c is similar.

The final case is FðaÞaFðbÞ; FðaÞ;FðbÞac: Since FðaÞBc; there are u; v;wA %x

such that uowov; FðuÞ ¼ FðvÞ ¼ FðaÞ and FðwÞ ¼ c: By homogeneity of %x we may
suppose that bou; and by Lemma 3.1, since FðaÞBFðbÞ; there is eA %x such that
uoeov and FðeÞ ¼ FðbÞ:

If woe; then j ¼ fðu; aÞ; ðe; bÞg is a partial isomorphism of %x; and as %x is
homogeneous, there is an automorphism f of %x extending j: This gives f ðwÞA %x with
aof ðwÞob and Fðf ðwÞÞ ¼ c:

If eow; then, since %x is homogeneous, there is tA %x such that vot and FðtÞ ¼
FðeÞ ¼ FðbÞ: Then j ¼ fðu; aÞ; ðt; bÞg is a partial isomorphism, and as %x is
homogeneous, there is an automorphism f of %x extending j: This gives f ðwÞA %x

with aof ðwÞob and Fðf ðwÞÞ ¼ c:
This shows that %x is isomorphic either to a singleton coloured FðxÞ; or to QFð %xÞ:

Since Fð %xÞ-Fð %yÞ ¼ | whenever xiy; each distinct equivalence class in X has a
distinct colour set, disjoint from all the others. Hence, ðX ;o;FÞ is isomorphic to
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ðY ;o;F 0Þ where each point yAY is replaced by %y: Thus ðX ;o;FÞ is isomorphic to a
countable linear order where each point is replaced by a distinct QCi

or singleton
coloured cj; where Ci and fcjg are members of a partition of C: &
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