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Abstract 

A family of polygonal knots K, on the cubical lattice is constructed with the property that the 
quotient of length L(Kn) over the crossing number Cr(Kn) approaches zero as L approaches 
infinity. More precisely Cr(K,) = 0(L(Kn)4/3). It is shown that this construction is optimal in 
the sense that for any knot K on the cubical lattice with length L and Cr crossings Cr < 3.2L413. 
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1. Introduction 

Let iZ3 be the cubic lattice with each vertex a point in lR3 with integer Cartesian 

coordinates augmented by all line segments joining adjacent vertices whose coordinates 

are different in only one coordinate. Such a line segment is called an edge or a step. 

A lattice polygon or polygon on the cubic lattice is a piecewise linear simple closed 

curve embedded in 7X3. A lattice polygon of length 12 has exactly 12 steps in it and is 

denoted by P,. A lattice polygon of length n which has the knot type K is denoted by 

P,(K). The set of all lattice polygons is denoted by P. The crossing number of the knot 

type K is the same as that of Pn(K) and is denoted by either Cr(P, (K)) or Cr(lC). 

In [2,6] the question of what is the minimum length required for a lattice polygon to 

be a knot of given knot type K has been discussed. In [2] it is shown that the minimal 

length of P,(K) is 24 if K is the trefoil knot and that no shorter lattice polygons can be 

knotted. In [6] estimates of the minimal length of P,(K) are given for all knots K: up to 
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Fig. 1. A (4,5)-torus knot. 

8 crossings and a few selected knots with 9 or 10 crossings. In all these examples the 

ratio of length divided by the crossing number of the knot is greater than 5. On the other 

hand, it has been shown in [5,7] that as n approaches infinity, most randomly chosen 

lattice polygons are complicated in the sense that they have many copies of connected 

sum components with any given knot type. Thus, the crossing number of P, will also 

approach infinity with probability one. Therefore, an interesting question is: What is the 

asymptotic behavior of Cr(P,) as n approaches infinity? A simpler and more specific 

question concerns the ratio n/Cr(P,). What is the minimum value of this ratio for all 

P, E P? Is this minimum value nonzero? In this paper we answer the above question 

with the following theorem. 

Theorem. Let Cr(P,) be the number of crossings of P,. Then 

where P is the set of all lattice polygons. 

The proof of the theorem is given in the next section. 

2. The proof of the theorem 

The proof of the theorem is done by constructing a (n’, n2 + 1) torus knot (as shown 

in Fig. 1 for n* = 4) for any large n using O(n3) steps. By [4], the crossing number of 

this torus knot is n4 - 1 hence the theorem follows trivially. 

The construction. The torus knot consists of 4 parts called bundles and denoted by Bi , 
B2, B3 and B4. Each bundle consists of n* disjoint lattice paths starting and ending on 

two parallel planes. The intersection of the end points of the paths with such a plane are 

the lattice points of an n x n square as shown in Fig. 2 for n = 4. Any n paths of a 

bundle starting in a horizontal row of n points is called a horizontal layer of the bundle 

and any n paths of a bundle starting in a vertical row of n points is called a vertical 

layer of the bundle. 
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Fig. 2. The ends of the B,‘s. 
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Fig. 3. A horizontal layer of L?I and &. 

Fig. 4. The vertical layer of BX closest to the torus tube. 

The bundles Br and B2 are identical. A horizontal layer of these bundles is shown in 

Fig. 3 for n = 4. 

It is easy to see that each layer takes 2n2 steps for BI and Bz. Since there are n layers 

each bundle, BI and B2 have a total of 4n’ steps. 

B3 is the most complicated bundle. The nj2 paths of B3 all twist one full rotation 

around a rectangular tube of length 2n + 1 whose cross section is a (n - 1) x 1 rectangle. 

All paths are contained in a rectangular box of dimensions (2n + 1) x (3n - 3) x (2n - 1) 

with the above rectangular tube in its center. Fig. 4 shows the vertical layer of B3 that 

is closest to the rectangular tube for n = 4. 

The second closest vertical layer is obtained as follows from the first layer. First 

move all edges of the first layer which are parallel to the plane of page one unit in a 

direction perpendicular to the page. (One unit up if the edge is in front of the rectangular 

tube and one unit down if the edge is in the back of the rectangular tube.) Move the 

edges perpendicular to the page one unit down if they are on the bottom of Fig. 4 and 

one unit up if they are on the top of Fig. 4. In this process each path breaks into 7 

disconnected pieces and adding 12 additional edges will connect the pieces together. The 

same procedure can be used to get from the second closest vertical layer to the third 

closest and so on. From Fig. 4 we can see that each path in the first vertical layer of B3 

has 4n + 1 steps. It follows from the above that a path in the layer which is lath closest 
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Fig. 5. The case of n = 3 for B4. 

to the rectangular tube has 4n + 1 + 12(lc - 1) steps. So summing over the length of all 

n2 paths we get that the total number of steps in Bs is 10n3 - 5n2. Notice also that the 

construction in Fig. 4 is not quite optimal, one could use a rectangular tube with a much 

smaller cross section. However the resulting improvement is small and one still needs 

0(n3) steps. The advantage in the given construction is that all paths in a given vertical 

layer have equal length. 

The bundle B4 is constructed in such a way to ensure that the union of the four 

bundles results in a knot. The construction is slightly different for even values of n and 

odd values of n. The cases of n = 3 and n = 4 are shown in Figs. 5 and 6. Notice that 

in the figures the vertices marked by the same letter are identical. We also need to point 

out that the figures shown are actually the mirror images (in the direction of the planes 

in which it starts and ends). So let us keep in mind when B4 is put together with the 

other bundles, it is the mirror images shown here that will be used. 

Observe that in the n paths of each horizontal layer of B4, (a) n - 1 of them have 

2n + 2 steps, and (b) one of them has 2n + 4 steps. There is only one exception to (b), 

which is the path that goes around the torus tube once. It has 3n + 4 steps if n is even 

and 4n + 7 steps if n is odd. So the total number of steps in B4 is 2n3 + 2n2 + 3n 
if n is even and 2n3 + 2n2 + 4n + 3 if n is odd. Now after putting the four bundles 

together (see Fig. 7) we obtain a knot with at most 16n3 - 3n2 + 4n + 3 < 16n3 steps 

(since n > 2). It is left to show that this is indeed a (n*, n* + l)-torus knot. This can be 

done by identifying a rectangular torus tube T and then observing that the constructed 

knot can be projected onto T and that it winds n2 times around the longitude and n2 + 1 

times around the meridian of T. Fig. 7 shows the top view of this rectangular torus tube 

T together with the four bundles assembled. In this view the (n - 1) x 1 cross section 
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Fig. 6. The case n = 4 for B4. 

B,x fh ; __________________-_, 
?Il+l 

Fig. 7. The top view of T with the bundles. 
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Fig. 8. The top view of the solid torus T’. 
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n=3 n=4 

Fig. 9. The side view of TI and T2 for n = 3,4. 

II l’ 
n=3 n=4 

Fig. 10. The cross section of Td for n = 3,4. 

of T is only one unit thick. Notice that only the top horizontal layers of the bundles are 

shown in the figure and only part of the top layer is shown for B3 for simplicity. 

It is not very easy to see that the knot can indeed be projected onto T. So instead of 

trying to do this, we will modify the torus tube T into the surface of a new solid torus 

T’. T’ is the union of eight parts denoted by Tl, T2, . . . , and Tg. Fig. 8 shows the top 

view of these eight parts. 

Ts through Tg are simply the solid rectangular cylinders of dimension (n - 1) x 1 x n. 

T, through T4 are topological solid cylinders with the Bi’s completely lie on their side 

surfaces, respectively. The cross section view of Tl and T2 is given in Fig. 9 for n = 3 

and n = 4. The cross section of T4 is given in Fig. 10 for n = 3 and n = 4. It has been 

indicated in Fig. 8 where these cross sections have been taken. These look like combs 
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Fig. 11. A (kn2 + 1, n2)-torus knot for any odd integer k. 

with [n/21 teeth. One can easily see that all the paths in Bt, B2 and B3 lie on these 

side surfaces. 

The intersections of T3 with the planes in which the paths of B3 start and end are the 

same as that of T, (and T2) with these planes. That is, they also look like combs with 

[n/21 teeth. One also has to imagine that this comb winds around the core tube (T) in 

the same manner the actual paths are winding around. From a topological point of view, 

the existence of such T3 is much clearer. The details are left to the reader. 

3. Discussions 

An obvious question is how much room there is for improvement. In the above con- 

struction the ratio of the length of the knot over the number of crossing of the knot is at 

most 16/n. The bulk of the length occurs in the B3 bundle (about 10n3) which is also 

generating most of the n4 - 1 crossings. If one constructs a larger (Icn2 + 1, n2)-torus 

using Ic copies of the bundle B3 as shown in Fig. 11, then this new torus knot will have 

lcn4 - kn2 crossings. For large k one can achieve that length of the knot over the number 

of crossing of the knot is about 10/n. One can also replace the bundle B4 with another 

copy of the B3 bundle and generate various torus links. 

For any given knot K, let L(K) be its length and Cr(K) be its crossing number. If 

K is a smooth knot with thickness one (cf. [1,3]), then we have 

C(K) < 16(L(K))4’3 + 3gL(K) 
\ 

47r 
(1) 

by [ 11. It is also shown in [l] that if K is a lattice knot, then 

Cr(K) < 16(2L(K))4’3 + 76L(K) 
\ 

47r 
> (2) 

since every lattice knot can be modified into a smooth knot of shorter length with 

thickness l/2. If L(K) is large enough, then (2) becomes 

Cr(K) < 3.2(L(K))4’3. (3) 

On the other hand, let Ko be the torus knot constructed in the last section, we 

have L( Ko) 6 16n3 and Cr( Ko) = n4 - 1 M n4 for n large. Thus Cr( Ko) z 

16-4/3(L(Ke))4/3 > 0.024L4/3. This tells us that although improvement to Cr(K0) 

is possible, it can only be done to the coefficient of L4/‘. For example, use the knot 
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constructed in Fig. 11 for large odd k, we can improve our result to Cr(Ks) M 

10-4/3(L(K~))4/3 > 0.046L4/3. This leads to the following results. 

Corollary 1. Let K be a smooth knot of thickness 1 and length L(K). Let Cr(K) be its 

crossing number: Then 

Cr(K) 

’ = I% (L(K))4’3 

exists and 0.046 6 s < 2.92, where 7 is the set of all smooth knots with thickness one. 

Corollary 2. Let P, be a lattice polygon of n steps, then 

Cr(P,> 
so = sup ~ 

P,EP n413 

exists and 0.046 < SO < 5.3, where P is the set of all lattice polygons. 

The construction of the knot in Fig. 11 and the fact that any lattice polygon can be 

modified into a smooth knot (without changing its knot type) with a shorter length and 

thickness l/2 imply the first part of the inequalities. The second part of the inequalities 

stems from the fact that any smooth knot of thickness one has length at least 27r and that 

any knotted lattice polygon has at least 24 steps. 

Notice that the same question can be asked on the writhe of lattice knots (or knots 

with given thickness in general). It has been proved recently in [8] that 

Wr(K) < i(L(K))“‘“, (4) 

where Wr(K) is the writhe of the knot K and K is of unit thickness. Given the close 

relationship between Wr(K) and Cr(K), (4) IS not surprising. But exactly why we have 

4/3 in both cases is worth to explore. One may be able to use the method used in one 

case to improve the bound obtained in the other case. We are not sure at this point 

whether our construction provides a lower bound on supK Wr(K)/(L(K))3/4. 
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