
J. Math. Anal. Appl. 364 (2010) 384–394

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Log-convexity and log-concavity of hypergeometric-like functions

D. Karp a,∗, S.M. Sitnik b

a Far Eastern Branch of the Russian Academy of Sciences, Institute of Applied Mathematics, 7 Radio Street, Vladivostok, Russian Federation
b Voronezh Institute of the Ministry of Internal Affairs of the Russian Federation, Voronezh, Russian Federation

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 March 2009
Available online 24 October 2009
Submitted by B.C. Berndt

Keywords:
Hypergeometric function
Kummer function
Gauss function
Log-convexity
Log-concavity
Turán inequality

We find sufficient conditions for log-convexity and log-concavity for the functions of
the forms a �→ ∑

fk(a)kxk , a �→ ∑
fkΓ (a + k)xk and a �→ ∑

fkxk/(a)k . The most useful
examples of such functions are generalized hypergeometric functions. In particular, we
generalize the Turán inequality for the confluent hypergeometric function recently proved
by Barnard, Gordy and Richards and log-convexity results for the same function recently
proved by Baricz. Besides, we establish a reverse inequality which complements naturally
the inequality of Barnard, Gordy and Richards. Similar results are established for the
Gauss and the generalized hypergeometric functions. A conjecture about monotonicity of a
quotient of products of confluent hypergeometric functions is made.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper is motivated by some recent results dealing with log-convexity and log-concavity of hypergeometric functions
as functions of parameters. More specifically, Baricz showed in [2] that the Kummer function (or the confluent hypergeo-
metric function, see [10])

1 F1(a; c; x) =
∞∑

k=0

(a)k

(c)k

xk

k! , (1)

where (a)k = a(a + 1) · · · (a + k − 1) = Γ (a + k)/Γ (a) is Pochhammer’s symbol, is log-convex in c on (0,∞) for a, x > 0 as
well as the function μ �→ 1 F1(a + μ; c + μ; x) on [0,∞). This implies, in particular, the reverse Turán type inequality

1 F1(a; c + 1; x)2 � 1 F1(a; c; x)1 F1(a; c + 2; x). (2)

(This sort of inequalities is called “Turán type” after Paul Turán in a 1946 letter to Szegő proved the inequality [Pn(x)]2 >

Pn−1(x)Pn+1(x), −1 < x < 1, for Legendre polynomials Pn , which has a similar look as (2) but different nature (see [20]).)
Baricz’s other results [3,4] deal with log-convexity and some more general comparisons of means for the Bessel functions
(expressible in terms of 0 F1) and the Gauss function 2 F1. Many of his proofs hinge on the additivity of concavity and
logarithmic convexity. This method does not work, however, for proving logarithmic concavity since in general it is not
additive.

Closely related results were given a bit earlier by Ismail and Laforgia in [13]. In particular, they showed that the deter-
minant
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Dn(x) =

∣∣∣∣∣∣∣∣∣

h(a, c, x) h(a, c + 1, x) · · · h(a, c + n, x)

h(a, c + 1, x) h(a, c + 2, x) · · · h(a, c + n + 1, x)
...

...
...

h(a, c + n, x) h(a, c + n + 1, x) · · · h(a, c + n, x)

∣∣∣∣∣∣∣∣∣
,

where h(a, c, x) = Γ (c − a)1 F1(a; c; x)/Γ (c), has positive power series coefficients. For n = 1 this leads to an inequality
which is weaker than (2).

Carey and Gordy conjectured in [8] that the Turán type inequality

[
1 F1(a; c; x)

]2
> 1 F1(a + 1; c; x)1 F1(a − 1; c; x),

holds for a > 0, c > a + 2, x > 0. Using a clever combination of contiguous relations and telescoping sums Barnard, Gordy
and Richards have recently shown in [5] that this is indeed true and even more general inequality

[
1 F1(a; c; x)

]2 � 1 F1(a + ν; c; x)1 F1(a − ν; c; x) (3)

holds for a > 0, c > a � ν − 1 and x ∈ R or a � ν − 1, c > −1 (c �= 0), x > 0, and positive integer ν . In fact, the authors show
that the difference of the left-hand and the right-hand sides of (3) has positive power series coefficients for a > 0, a � ν − 1,
c > −1. They also indicate that a similar result is true for the generalized hypergeometric function (see [10] for its various
properties)

p Fq
(
(ap); (bq); x

) = p Fq

(
(ap)

(bq)

∣∣∣∣ x

)
=

∞∑
n=0

(a1)n(a2)n · · · (ap)n

(b1)n · · · (bq)nn! xn (4)

if p � q + 1, ai > bi , i = 2, . . . , p and bi > 0, i = 1, . . . ,q.
In this paper we shall demonstrate that log-convexity and log-concavity properties of hypergeometric functions in their

upper and lower parameters serve as an illustration of a more general phenomenon. Namely, we give sufficient conditions
for the function x �→ f (a + δ, x) f (b, x) − f (b + δ, x) f (a, x) to have positive power series coefficients if f (a, x) = ∑

fk(a)kxk ,
f (a, x) = ∑

fkΓ (a + k)xk or f (a, x) = ∑
fkxk/(a)k , where fk > 0 for all k. Log-convexity or log-concavity then follow im-

mediately. Section 2 of the paper contains three general theorems for these three types of functions and a corollary which
includes direct and reverse Turán type inequalities. Section 3 collects some applications to hypergeometric functions. In
particular, we extend the result Barnard, Gordy and Richards (3) to non-integer positive ν and complement it with a reverse
inequality giving asymptotically precise lower bound for the quantity

1 F1(a + ν; c; x)1 F1(a − ν; c; x)

[1 F1(a; c; x)]2

bounded by 1 from above according to (3). We also extend some results of Baricz and provide sufficient conditions for
log-concavity and log-convexity of the generalized hypergeometric functions which are less restrictive then the conditions
ai > bi for the (less general) Turán type inequality given in [5]. We use the generalized Stieltjes transform representation
for q+1 Fq from [15] to extend this results to negative x. One curious corollary of these results is positivity of certain finite
hypergeometric sums evaluated at −1.

We note in passing that the true Turán type inequalities for the classical orthogonal polynomials [11,20] have been also
shown to exemplify a more general phenomenon. Namely, it has been demonstrated in [19] that they are dependent on
certain monotonicity properties of the coefficients of three-term recurrence relations. See further development in [6].

2. General theorems

A function f : [a,b] �→ R is said to be Wright-convex (strictly Wright-convex) if Fh(x) = f (x +h)− f (x) is non-decreasing
(increasing) on [a,b − h] for any fixed h > 0. If Fh(x) is non-increasing (decreasing) then f is Wright-concave (strictly
Wright-concave). This notion was introduced by Wright in the 1950s and well studied (see [9, p. 246] and [16, p. 3]).
Clearly, Wright-convexity implies mid-point convexity and it can be shown (see [16, p. 2]) that convexity implies Wright-
convexity so that by the celebrated result of Jensen (see, for instance, [17, Theorem 1.1.4]) for continuous functions all three
notions (convexity, Wright-convexity and mid-point convexity) are equivalent. In general the inclusions Convex ⊂ Wright-
convex ⊂ Midpoint convex are proper. We only deal here with log-convexity (log-concavity) of continuous functions so for
our purposes we record

Proposition 1. Suppose f : [a,b] �→ R is continuous and has constant sign. Then f is log-convex (strictly log-convex) iff x �→
f (x + h)/ f (x) is non-decreasing (increasing) on [a,b − h] for each fixed h > 0 and f is log-concave (strictly log-concave) iff
x �→ f (x + h)/ f (x) is non-increasing (decreasing) on [a,b − h] for each fixed h > 0.
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Using Proposition 1 we will formulate our results in terms of more common log-convexity (log-concavity) while if fact
we prove Wright log-convexity (log-concavity).

In what follows in this section the power series expansions are understood as formal, so that no questions of convergence
are discussed. It is usually clear in specific applications which variable range should be considered. We will use the standard
notation (a)n = a(a + 1) · · · (a +n − 1) for the shifted factorial or the Pochhammer symbol. The main idea in the proof of the
next theorem belongs to Fedor Nazarov (University of Wisconsin).

Theorem 1. Let

f (a, x) =
∞∑

n=0

fn
(a)n

n! xn, (5)

where fn > 0 (and is independent of a). Suppose b > a > 0, δ > 0. Then the function

ϕa,b,δ(x) = f (a + δ, x) f (b, x) − f (b + δ, x) f (a, x) =
∞∑

m=2

ϕmxm

has positive power series coefficients ϕm > 0 so that a �→ f (a, x) is strictly log-concave for x > 0 if the sequence { fn/ fn−1}∞n=0 is de-
creasing and negative power series coefficients ϕm < 0 so that a �→ f (a, x) is strictly log-convex for x > 0 if the sequence { fn/ fn−1}∞n=0
is increasing.

Remark 1. Since, clearly ϕa,b,δ(x) = −ϕb,a,δ(x), the sign of ϕm is reversed for a > b > 0.

Remark 2. The log-concavity condition from Theorem 1 can be rewritten as the Turán inequality f 2
n > fn+1 fn−1. This implies

that the log-concavity of f (a, x) is assured if f (x) = ∑
fnxn/n! belongs to the Laguerre–Pólya class L − P + . See details on

Laguerre–Pólya classes in [18].

Proof of Theorem 1. By direct multiplication we have

ϕm =
m∑

k=0

fk fm−k

{
(a + δ)k(b)m−k

k!(m − k)! − (b + δ)k(a)m−k

k!(m − k)!
}
.

This shows, on inspection, that ϕ0 = ϕ1 = 0, which explains why summation starts from m = 2 in the expansion for ϕa,b,δ(x).
Further, we can write ϕm in the form

ϕm =
[m/2]∑
k=0

fk fm−k Mk (6)

with

Mk =
{ [(a + δ)k(b)m−k + (a + δ)m−k(b)k − (a)k(b + δ)m−k − (a)m−k(b + δ)k]/[k!(m − k)!], k < m/2,

[(a + δ)k(b)m−k − (a)k(b + δ)m−k]/[k!(m − k)!], k = m/2.

Next we see that

[m/2]∑
k=0

Mk = 0 (7)

since for fn = 1, n = 0,1, . . . , we will have f (a, x) = (1 − x)−a by binomial theorem and hence the left-hand side of (7) is
the coefficient at xm in the power series expansion of

(1 − x)−a−δ(1 − x)−b − (1 − x)−a(1 − x)−b−δ = 0.

We aim to show that the sequence {Mk}[m/2]
k=0 has exactly one change of sign, namely some number of initial terms are

negative while all further terms are positive. To establish the claim note that (a + δ)l(b)l > (a)l(b + δ)l for all l (since b > a
and x �→ (x + γ )/x is decreasing for positive x and γ ) and hence M0 < 0. Now assume that Mk � 0 for some k � n/2, i.e.

(a + δ)k(b)n−k︸ ︷︷ ︸
=r

+ (a + δ)n−k(b)k︸ ︷︷ ︸
=s

� (a)k(b + δ)n−k︸ ︷︷ ︸
=v

+ (a)n−k(b + δ)k︸ ︷︷ ︸
=u

.

We want to show that the same inequality is true for k − 1. We have by inspection rs � uv and v � u. A short reflection
shows that together with the above inequality r + s � u + v this yields either v � r � s � u or v � s � r � u (another



D. Karp, S.M. Sitnik / J. Math. Anal. Appl. 364 (2010) 384–394 387
apparent possibility r > v � u > s is discarded by noting that it implies that u′ = u/r, v ′ = v/r, s′ = s/r all belong to (0,1)

and satisfy u′ + v ′ � 1 + s′ and s′ � u′v ′ so that u′ + v ′ � 1 + u′v ′ which contradicts the elementary inequality u′ + v ′ <

1 + u′v ′ , similarly for s > v � u > r). We need to prove that

Mk−1(δ) = r
b + m − k

a + δ + k − 1
+ s

a + δ + m − k

b + k − 1
− v

b + δ + m − k

a + k − 1
− u

a + m − k

b + δ + k − 1
� 0.

For δ = 0, we clearly have b+m−k
a+k−1 � a+m−k

b+k−1 , so the desired inequality is just a combination of v � r and u + v � r + s with
positive coefficients. Treating u, v , r, s as constants and differentiating with respect to δ, we get

M ′
k−1(δ) = u

a + m − k

(b + δ + k − 1)2
− v

1

a + k − 1
+ s

1

b + k − 1
− r

b + m − k

(a + δ + k − 1)2

which is obviously non-positive since v � s and r � u, which proves that Mk−1 � 0 and hence that {Mk}[m/2]
k=0 changes sign

exactly once. Now if { fn/ fn−1}∞n=0 is decreasing, then for k < m − k + 1

fk

fk−1
>

fm−k+1

fm−k
⇔ fk fm−k > fk−1 fm−k+1

which combined with (6) and (7) shows that ϕm > 0. Similarly, if { fn/ fn−1}∞n=0 is increasing, then for k < m − k + 1

fk

fk−1
<

fm−k+1

fm−k
⇔ fk fm−k < fk−1 fm−k+1

and ϕm < 0. �
Theorem 2. Let

g(a, x) =
∞∑

n=0

gnΓ (a + n)xn,

where gn > 0 (and is independent of a) and Γ (·) is Euler’s gamma function. Suppose b > a > 0, δ > 0. Then the function

ψa,b,δ(x) = g(a + δ, x)g(b, x) − g(b + δ, x)g(a, x) =
∞∑

m=0

ψmxm

has negative power series coefficients ψm < 0 so that the function a �→ g(a, x) is strictly log-convex for x > 0.

Proof. Again, by direct multiplication we have

ψm =
m∑

k=0

gk gm−k
{
Γ (a + δ + k)Γ (b + m − k) − Γ (b + δ + k)Γ (a + m − k)

}
.

Just like in the proof of Theorem 1, we can write ψm in the form

ψm =
[m/2]∑
k=0

gk gm−k Mk (8)

with

Mk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Γ (a + δ + k)Γ (b + m − k)︸ ︷︷ ︸
=r

+Γ (a + δ + m − k)Γ (b + k)︸ ︷︷ ︸
=s

− Γ (a + k)Γ (b + δ + m − k)︸ ︷︷ ︸
=v

−Γ (a + m − k)Γ (b + δ + k)︸ ︷︷ ︸
=u

, k < m/2,

Γ (a + δ + k)Γ (b + m − k) − Γ (a + k)Γ (b + δ + m − k), k = m/2.

We aim to show that Mk < 0 for k = 0,1, . . . , [m/2]. The basic fact that we need is that x �→ Γ (x + α)/Γ (x + β) is strictly
increasing for x > 0 when α > β � 0. This immediately implies that Mk < 0 for k = m/2 on taking α = δ + k = δ + m − k,
β = k = m − k. Further for k < m − k we have
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r < v ⇔ Γ (a + δ + k)

Γ (a + k)
<

Γ (b + δ + m − k)

Γ (b + m − k)
,

s < v ⇔ Γ (b + k)

Γ (a + k)
<

Γ (b + δ + m − k)

Γ (a + δ + m − k)
,

u < v ⇔ Γ (b + δ + k)

Γ (a + k)
<

Γ (b + δ + m − k)

Γ (a + m − k)
,

rs < uv ⇔ Γ (b + k)Γ (a + δ + m − k)

Γ (a + k)Γ (a + m − k)
<

Γ (b + δ + k)Γ (b + δ + m − k)

Γ (a + δ + k)Γ (b + m − k)
.

Altogether these inequalities imply r + s < u + v ⇔ Mk < 0. Indeed, dividing by v we can rewrite r + s < u + v as r′ + s′ <
1+u′ , where r′ = r/v ∈ (0,1), s′ = s/v ∈ (0,1), u′ = u/v ∈ (0,1). Since r′s′ < u′ from rs < uv , the required inequality follows
from the elementary inequality r′ + s′ < 1 + r′s′ . �
Corollary 1. Let f (a, x) be given by (5) with decreasing sequence { fn/ fn−1}, then for b > a > 0 and x > 0

Γ (a + δ)Γ (b)

Γ (b + δ)Γ (a)
<

f (b + δ, x) f (a, x)

f (a + δ, x) f (b, x)
< 1.

Proof. Indeed, since (a)k = Γ (a + k)/Γ (a) we can choose g in Theorem 2 in the form g(a, x) = Γ (a) f (a, x), where f is
given by (5). Now the estimate from above is just Theorem 1 while the estimate from below is Theorem 2. �
Remark 3. Choosing b = a + δ and δ = 1 we get the direct and reverse Turán type inequalities for f (a, x) given by (5) with
decreasing sequence { fn/ fn−1}:

a

a + 1
<

f (a + 2, x) f (a, x)

f (a + 1, x)2
< 1.

Theorem 3. Let

h(a, x) =
∞∑

n=0

hn

(a)n
xn,

where hn > 0 (and is independent of a). Suppose b > a > 0. Then the function

λa,b,δ(x) = h(a + δ, x)h(b, x) − h(b + δ, x)h(a, x) =
∞∑

m=1

λmxm

has negative power series coefficients λm < 0 so that the function a �→ h(a, x) is strictly log-convex for x > 0.

Proof. By direct multiplication we have

λm =
m∑

k=0

hkhm−k

{
1

(a + δ)k(b)m−k
− 1

(b + δ)k(a)m−k

}
.

This shows, on inspection, that h0 = 0, which explains why summation starts from m = 1 in the expansion for λa,b,δ(x). Just
like in the proof of Theorem 1, we can write λm in the form

λm =
[m/2]∑
k=0

hkhm−k Mk (9)

with

Mk =

⎧⎪⎨
⎪⎩

[(a + δ)k(b)m−k]−1︸ ︷︷ ︸
=r

+[(a + δ)m−k(b)k]−1︸ ︷︷ ︸
=s

−[(a)m−k(b + δ)k]−1︸ ︷︷ ︸
=v

−[(a)k(b + δ)m−k]−1︸ ︷︷ ︸
=u

, k < m/2,

[(a + δ)k(b)m−k]−1 − [(a)k(b + δ)m−k]−1, k = m/2.

We aim to show that Mk < 0 for k = 0,1, . . . , [m/2]. First Mk < 0 for k = m − k = m/2, since

(b + δ)k
<

(a + δ)k
(b)k (a)k
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because x �→ (x + α)/(x + β), α > β � 0, is decreasing for x > 0. Further for k < m − k we have the inequalities

r < v ⇔ (b + δ)k

(a + δ)k
<

(b)m−k

(a)m−k
,

s < v ⇔ (b + δ)k

(b)k
<

(a + δ)m−k

(a)m−k
,

u < v ⇔ (b + δ)k

(a)k
<

(b + δ)m−k

(a)m−k
,

rs < uv ⇔ (b + δ)k(b + δ)m−k

(a + δ)k(a + δ)m−k
<

(b)k(b)m−k

(a)k(a)m−k
.

Altogether these inequalities imply r + s < u + v ⇔ Mk < 0 as shown in the proof of Theorem 2. �
3. Applications to hypergeometric functions

First consider the Kummer function (1). For a, c > 0 it satisfies the conditions of Theorem 1 with fn = 1/(c)n and con-
ditions of Theorem 3 with hn = (a)n/n!. Besides, Γ (a)1 F1(a; c; x) satisfies the conditions of Theorem 2 with gn = 1/[(c)nn!].
Clearly, fn/ fn−1 = 1/(c +n − 1) is decreasing and we are also in the position to apply Corollary 1. Using the Kummer trans-
formation 1 F1(a; c; x) = e−x

1 F1(c − a; c;−x) we can extend some of the results to negative x. We collect the consequences
of the general theorems for the Kummer function in the following two statements.

Theorem 4. Suppose δ > 0. Then

a) for b > a � 0, c > 0 the function

x �→ 1 F1(a + δ; c; x)1 F1(b; c; x) − 1 F1(b + δ; c; x)1 F1(a; c; x)

has positive power series coefficients (starting with the coefficient at x2);
b) the function a �→ 1 F1(a + δ; c; x)/1 F1(a; c; x) is monotone decreasing on [0,∞) for fixed c, x > 0 and on (−∞, c − δ] for fixed

c > 0 > x, so that a �→ 1 F1(a; c; x) is log-concave,

1 F1(a + δ; c; x)2 � 1 F1(a; c; x)1 F1(a + 2δ; c; x),

on [0,∞) for fixed c, x > 0 and on (−∞, c] for fixed c > 0 > x;
c) for b > a > 0 and c, x > 0

Γ (a + δ)Γ (b)

Γ (b + δ)Γ (a)
<

1 F1(b + δ; c; x)1 F1(a; c; x)

1 F1(a + δ; c; x)1 F1(b; c; x)
< 1; (10)

for a < b < c − δ and c > 0 > x

Γ (c − a − δ)Γ (c − b)

Γ (c − b − δ)Γ (c − a)
<

1 F1(b + δ; c; x)1 F1(a; c; x)

1 F1(a + δ; c; x)1 F1(b; c; x)
< 1; (11)

both sides of both inequalities are sharp in the sense that the upper bound is attained at x = 0 and the lower bounds in (10), (11) are
attained at x = +∞ and x = −∞, respectively;

d) for a > b > 0, c > 0 and integer m � 2

4 F3

( −m,a,1 − c − m,1 − am/(a + b)

c,1 − b − m,−am/(a + b)

∣∣∣∣−1

)
> 0.

For b > a > 0 the sign of the above inequality is reversed.

Proof. Most statements follow immediately from Theorem 1. We only need to prove d) and the parts of b) and c) pertaining
to negative x. To prove b) we need to show that

1 F1
(
a′ + δ; c; x

)
1 F1(a; c; x) − 1 F1

(
a′; c; x

)
1 F1(a + δ; c; x) < 0

for a′ < a < c − δ, c > 0 > x. Following the idea from [5] we apply the Kummer transformation 1 F1(a; c; x) = ex
1 F1(c −

a; c;−x) so that the left-hand side of the above inequality equals

e2x[
1 F1

(
c − a′ − δ; c;−x

)
1 F1(c − a; c;−x) − 1 F1

(
c − a′; c;−x

)
1 F1(c − a − δ; c;−x)

]
.

Since −x > 0 and a′ < a < c − δ implies positivity of all upper parameters in this formula the claim follows from Theorem 1.
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This yields for positive a, c, δ and x:

1 F1(c − a − δ; c;−x)2 − 1 F1(c − a; c;−x)1 F1(c − a − 2δ; c;−x)

= e−2x(
1 F1(a + δ; c; x)2 − 1 F1(a; c; x)1 F1(a + 2δ; c; x)

)
� 0.

Now changing notation c − a − δ → a and −x → x we arrive at the claim b).
In a similar fashion (11) follows from (10). The sharpness of (10) and (11) at infinity is seen from [1, Corollary 4.2.3].
Finally, d) is a restatement of a) for δ = 1, since the 4 F3 from d) is the coefficient at xm in the Taylor series expansion of

the function

1 F1(a + 1; c; x)1 F1(b; c; x) − 1 F1(b + 1; c; x)1 F1(a; c; x).

To see this apply the following easily verifiable identities

(m − k)! = (−1)k m!
(−m)k

, (c)m−k = (−1)k(c)m

(1 − c − m)k
,

(a + 1)k(b)m−k − (a)k(b + 1)m−k = −m(b + 1)m−1
(−1)k(a)k(1 − am/(a + b))k

(1 − b − m)k(−am/(a + b))k
. �

Numerical tests suggests that the following enhancement of Theorem 4c) is true:

Conjecture. The ratio in the middle of (10) is monotone decreasing from (0,∞) onto (1, A), where A is the left-hand side of (10); the
ratio in the middle of (11) is monotone increasing from (−∞,0) onto (B,1), where B is the left-hand side of (11).

Remark 4. Theorem 4, a) and b), for integer δ and b = a + δ recovers [5, Theorem 1, Corollary 2]. The lower bounds in
Theorem 4c) are presumably new. Note also that although we allow any positive δ in b), for integer δ our parameter ranges
are slightly more restrictive than those from [5].

Remark 5. For the ratio of two Kummer functions with different denominator parameters Bordelon found in [7, formula (5)]
the inequality

1 >
1 F1(a; c; x)

1 F1(a;d; x)
>

Γ (c)Γ (d − a)

Γ (d)Γ (c − a)

valid for d > c > a > 0, x < 1.

Theorem 5. Suppose δ > 0. Then

a) for d > c > 0 and a > 0 the function

x �→ 1 F1(a; c + δ; x)1 F1(a;d; x) − 1 F1(a;d + δ; x)1 F1(a; c; x)

has negative power series coefficients (starting with the coefficient at x);
b) the function c �→ 1 F1(a; c + δ; x)/1 F1(a; c; x) is monotone increasing (= the function c �→ 1 F1(a; c; x) is log-convex) on (0,∞)

for fixed a, x > 0 or fixed a, x < 0;
c) the inequality 1 F1(a + δ; c + δ; x)2 � 1 F1(a + 2δ; c + 2δ; x)1 F1(a; c; x) holds true for a � c > 0, x > 0 and a � c, c > 0, x � 0,

so that μ �→ 1 F1(a + μ; c + μ; x) is log-convex on [0,∞) under these restrictions on parameters;
d) for c > d > 0, a > 0 and integer m � 1

4 F3

( −m,−d − m,a,1 − cm/(c + d)

1 − a − m, c + 1,−cm/(c + d)

∣∣∣∣−1

)
> 0.

For d > c > 0 the sign of the above inequality is reversed.

Proof. Statements a) and the part of b) for a, x > 0 follow from Theorem 3. The claim c) for positive x and a � c > 0
was proved by Baricz in [2, Theorem 2]. By the Kummer transformation this yields b) for negative x and a < 0. Similarly,
an application of the Kummer transformation to the part of b) with x > 0 gives the part of c) with x < 0. Finally, d) is a
reformulation of a) for δ = 1. �

For the Gauss function

2 F1(a,b; c; x) =
∞∑ (a)k(b)k

(c)kk! xk
k=0
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two distinct cases present themselves: if b > c > 0 then the sequence

(b)k+1/(c)k+1

(b)k/(c)k
= b + k

c + k
, k = 0,1,2, . . . ,

is decreasing, while for c > b > 0 it is increasing. We can combine Theorem 1 with Euler’s and Pfaff’s transformations,

2 F1(a,b; c; x) = (1 − x)c−a−b
2 F1(c − a, c − b; c; x)

= (1 − x)−a
2 F1

(
a, c − b; c; x/(x − 1)

) = (1 − x)−b
2 F1

(
c − a,b; c; x/(x − 1)

)
,

to get the following assertions.

Theorem 6.

a) Suppose a′ > a � 0 and b > c > 0, δ > 0. Then the function

x �→ 2 F1(a + δ,b; c; x)2 F1
(
a′,b; c; x

) − 2 F1
(
a′ + δ,b; c; x

)
2 F1(a,b; c; x)

has positive power series coefficients (starting with the coefficient at x2);
b) the function a �→ 2 F1(a,b; c; x) is log-concave,

2 F1(a + δ,b; c; x)2 � 2 F1(a,b; c; x)2 F1(a + 2δ,b; c; x),

on [0,∞) for 0 < x < 1, b > c > 0 and x < 0, c > 0 > b and on (−∞, c] for 0 < x < 1, c > 0 > b and x < 0, b > c > 0;
c) for 0 < x < 1:

Γ (a + δ)Γ (a′)
Γ (a)Γ (a′ + δ)

<
2 F1(a′ + δ,b; c; x)2 F1(a,b; c; x)

2 F1(a + δ,b; c; x)2 F1(a′,b; c; x)
< 1 (12)

if b > c > 0, a′ > a > 0 and

Γ (c − a − δ)Γ (c − a′)
Γ (c − a)Γ (c − a′ − δ)

<
2 F1(a′ + δ,b; c; x)2 F1(a,b; c; x)

2 F1(a + δ,b; c; x)2 F1(a′,b; c; x)
< 1 (13)

if c > 0 > b, c − δ > a′ > a. Further for x < 0 (12) holds true if c > 0 > b, a′ > a > 0 and (13) holds true if b > c > 0, c − δ > a′ > a.

Theorem 7.

a) Suppose a′ > a > 0 and c > b > 0, δ > 0. Then the function

x �→ 2 F1(a + δ,b; c; x)2 F1
(
a′,b; c; x

) − 2 F1
(
a′ + δ,b; c; x

)
2 F1(a,b; c; x)

has negative power series coefficients (starting with the coefficient at x2);
b) the function a �→ 2 F1(a,b; c; x) is log-convex,

2 F1(a + δ,b; c; x)2 � 2 F1(a,b; c; x)2 F1(a + 2δ,b; c; x),

on (−∞,∞) for −∞ < x < 1, c > b > 0.

Theorem 8.

a) Suppose d > c > 0 and a,b, δ > 0. Then the function

x �→ 2 F1(a,b; c + δ; x)2 F1(a,b;d; x) − 2 F1(a,b;d + δ; x)2 F1(a,b; c; x)

has negative power series coefficients (starting with the coefficient at x);
b) the function c �→ 2 F1(a,b; c; x) is log-convex on (0,∞) if a,b > 0, 0 < x < 1 or a, x < 0, b > 0 or b, x < 0, a > 0;
c) the function μ �→ 2 F1(a,b+μ; c +μ; x) is log-convex on [0,∞) if a > 0, b > c > 0, 0 < x < 1 or a < 0, b < c, c > 0, 0 < x < 1

or a > 0, b < c, c > 0, x < 0;
d) the function μ �→ 2 F1(a + μ,b + μ; c + μ; x) is log-convex on [0,∞) if a < c,b � c > 0, x < 0 or a < c, b < c, c > 0,

0 < x < 1.

Remark 6. Theorems 6–8 do not cover the case when 2 F1 is expressed in terms of the Jacobi polynomials so that the
original Turán type inequalities due to Szegő [20] and Gasper [11] cannot be derived from it.
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Applications to generalized hypergeometric function q+1 Fq (for its definition and properties see [10]) hinge on the fol-
lowing observation which might be of independent interest:

Lemma 1. Let A(x) = a0 + a1x + · · · + anxn and B(x) = b0 + b1x + · · · + bnxn have positive coefficients. Then A′(x)B(x) − B ′(x)A(x)
has non-negative coefficients if

an

bn
� an−1

bn−1
� · · · � a1

b1
� a0

b0
(14)

and non-positive coefficients if

an

bn
� an−1

bn−1
� · · · � a1

b1
� a0

b0
. (15)

If A and B are not identical then some of the coefficients are positive under (14) (so that A′(x)B(x) − B ′(x)A(x) > 0 for x > 0) and
negative under (15) (so that A′(x)B(x) − B ′(x)A(x) < 0 for x > 0).

Proof. We have

A′(x)B(x) − B ′(x)A(x) =
n∑

k=1

n∑
i=0

kakbix
i+k−1 −

n∑
k=1

n∑
i=0

kbkaix
i+k−1

= 1

x

n∑
k=1

n∑
i=0

xi+kk(akbi − aibk) =
2n∑

m=1

xm−1
k,i�n∑

i+k=m
i�0,k�1

k(akbi − aibk).

Since each term in the inner sum with i = k is clearly zero, we may write:

k,i�n∑
i+k=m

i�0,k�1

k(akbi − aibk) =
k,i�n∑

i+k=m,k<i
i�0,k�1

k(akbi − aibk) +
k,i�n∑

i+k=m,k>i
i�0,k�1

k(akbi − aibk).

Due to condition (14) every term in the second sum is non-negative. For each term in the first sum (say indexed k = k∗ ,
i = i∗ , k∗ < i∗), there is a term in the second sum with k = i∗ , i = k∗ and

k∗(ak∗bi∗ − ai∗bk∗) + i∗(ai∗bk∗ − ak∗bi∗) = (
i∗ − k∗)(ai∗bk∗ − ak∗bi∗) � 0.

Since A and B are not identical at least one of the inequalities (14) is strict which implies that at least one the terms above
is strictly positive. The second statement follows from A′(x)B(x) − B ′(x)A(x) = −(B ′(x)A(x) − A′(x)B(x)) by exchanging the
roles of A and B . �
Remark 7. It is easy to verify directly that conditions (14) are also necessary for A′(x)B(x) − B ′(x)A(x) > 0 if x > 0 when
n = 1 and n = 2 (similarly for conditions (15)).

Remark 8. After this paper was already written Árpád Baricz brought the recently published article [12] to our attention.
Lemma 1 repeats almost precisely the contents of Theorem 4.4 from [12]. Interestingly, the proof in [12] is by induction and
hence differs substantially from ours.

Now consider

R(x) =
∏q

k=1(ak + x)∏q
k=1(bk + x)

with positive ak , bk . Let em(c1, . . . , cq) denote m-th elementary symmetric polynomial,

e1(c1, . . . , cq) = c1 + c2 + · · · + cq,

e2(c1, . . . , cq) = c1c2 + c1c3 + · · · + c1cq + c2c3 + c2c4 + · · · + c2cq + · · · + cq−1cq,

...

eq(c1, . . . , cq) = c1c2 · · · cq.
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Lemma 2. The function R(x) is monotone increasing on (0,∞) if

eq(b1, . . . ,bq)

eq(a1, . . . ,aq)
� eq−1(b1, . . . ,bq)

eq−1(a1, . . . ,aq)
� · · · � e1(b1, . . . ,bq)

e1(a1, . . . ,aq)
� 1 (16)

and monotone decreasing if

eq(b1, . . . ,bq)

eq(a1, . . . ,aq)
� eq−1(b1, . . . ,bq)

eq−1(a1, . . . ,aq)
� · · · � e1(b1, . . . ,bq)

e1(a1, . . . ,aq)
� 1. (17)

Proof. We have

A(x) ≡
q∏

k=1

(ak + x) =
q∑

k=0

ek(a1, . . . ,aq)xq−k =
q∑

k=0

eq−k(a1, . . . ,aq)xk,

B(x) ≡
q∏

k=1

(bk + x) =
q∑

k=0

ek(b1, . . . ,bq)xq−k =
q∑

k=0

eq−k(b1, . . . ,bq)xk,

R ′(x) = A′(x)B(x) − B ′(x)A(x)

[B(x)]2
.

Hence by Lemma 1 we can assert that

1 = e0(a1, . . . ,aq)

e0(b1, . . . ,bq)
� e1(a1, . . . ,aq)

e1(b1, . . . ,bq)
� e2(a1, . . . ,aq)

e2(b1, . . . ,bq)
� · · · � eq(a1, . . . ,aq)

eq(b1, . . . ,bq)

which is the same as (16), is sufficient for R ′(x) > 0. Similarly for R ′(x) < 0. �
Remark 9. Conditions bi > ai , i = 1, . . . ,q, used in [5], are clearly sufficient but not necessary for (16).

Theorem 9. Put

f (α, x) = q+1 Fq
(
α, (aq); (bq); x

)
and suppose ai,bi > 0, i = 1, . . . ,q, β > α > 0. Then

a) for any fixed δ > 0 the function

x �→ f (α + δ, x) f (β, x) − f (β + δ, x) f (α, x)

has negative power series coefficients if (16) holds and positive power series coefficients if (17) holds;
b) under condition (16) and x ∈ (0,1) the function α �→ f (α + δ, x)/ f (α, x) is monotone increasing on [0,∞) for any fixed δ > 0

so that the function α �→ f (α, x) is log-convex;
c) under condition (17) and x ∈ (0,1) the function α �→ f (α + δ, x)/ f (α, x) is monotone decreasing on [0,∞) for any fixed δ > 0

so that the function α �→ f (α, x) is log-concave;
d) under condition (17) and x ∈ (0,1)

Γ (α + δ)Γ (β)

Γ (β + δ)Γ (α)
<

f (β + δ, x) f (α, x)

f (α + δ, x) f (β, x)
< 1.

Remark 10. For 3 F2(α,a1,a2;b1,b2; x) conditions (16) read:

b1b2

a1a2
� b1 + b2

a1 + a2
� 1

and for condition (17) both inequalities are reversed. According to Remark 7 after Lemma 1 in this case these conditions
are both necessary and sufficient for the increase or decrease of the function x �→ (a1 + x)(a2 + x)/[(b1 + x)(b2 + x)].

We can extend Theorem 9b) to negative x using the generalized Stieltjes transform representation

q+1 Fq

(
α, (aq)

(bq)

∣∣∣∣ x

)
=

1∫
ρ((aq); (bq); s)ds

(1 − sx)α
, (18)
0



394 D. Karp, S.M. Sitnik / J. Math. Anal. Appl. 364 (2010) 384–394
valid for bi > ai > 0, i = 1, . . . ,q, and x < 1, recently obtained by the authors in [15]. An explicit expression for the positive
function ρ(s) is given in [15]. Indeed, the inequality

f (α + δ, x) f (β, x) < f (β + δ, x) f (α, x)

is exactly the Chebyshev inequality [16, Chapter IX, formula (1.1)]. Hence, Theorem 9b) is true for all x < 1 if bi > ai > 0,
i = 1, . . . ,q.

The claim of Lemma 1 made under condition (15) clearly remains true when an = an−1 = an−r = 0. Condition (17) then
reads

eq(b1, . . . ,bq)

eq−r−1(a1, . . . ,aq−r−1)
� eq−1(b1, . . . ,bq)

eq−r−2(a1, . . . ,aq−r−1)
� · · · � er+2(b1, . . . ,bq)

e1(a1, . . . ,aq−r−1)
� er+1(b1, . . . ,bq).

This permits the application of Theorem 1 to p Fq with p � q. Of course in this case we will only have the decreasing
sequence {Fn/Fn−1} and log-concavity of p Fq in the upper parameters. For instance, an analogue of Theorem 4d) for q Fq is
the inequality

2q+2 F2q+1

( −m,α,a1, . . . ,aq−1,1 − b1 − m, . . . ,1 − bq − m,1 − αm/(α + β)

b1, . . . ,bq,1 − a1 − m, . . . ,1 − aq−1 − m,1 − β − m,−αm/(α + β)

∣∣∣∣−1

)
> 0

valid for α > β > 0, integer q � 1, integer m � 2 and

eq(b1, . . . ,bq)

eq−1(a1, . . . ,aq−1)
� eq−1(b1, . . . ,bq)

eq−2(a1, . . . ,aq−1)
� · · · � e2(b1, . . . ,bq)

e1(a1, . . . ,aq−1)
� e1(b1, . . . ,bq),

where all ai,bi > 0. For 2 F2(α,a1;b1,b2; x) these inequalities simplify to the single condition a1 � b1b2/(b1 + b2) which
ensures log-concavity in α. Theorems 2 and 3 can be applied as well.

Remark 11. Note that some results related to log-convexity of the modified Struve functions expressible in terms of 1 F2 are
given in [14].
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[16] D.S. Mitrinovć, J.E. Pecarić, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[17] C.P. Niculescu, L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, Springer Science+Business Media, Inc., 2006.
[18] G. Pólya, Location of zeros, in: R.P. Boas (Ed.), Collected Papers, vol. II, MIT Press, Cambridge, MA, 1974.
[19] R. Szwarc, Positivity of Turán determinants for orthogonal polynomials, in: K.A. Ross, et al. (Eds.), Harmonic Analysis and Hypergroups, Delhi, 1995,

Birkhäuser, Boston–Basel–Berlin, 1998, pp. 165–182. Also available as http://arxiv.org/abs/0710.3389v1.
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