Matrix semigroup homomorphisms from dimension two to three

Damjana Kokol-Bukovšek *

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Received 28 August 1998; accepted 14 May 1999

Submitted by T.J. Laffey

Abstract

We characterise all non-degenerate homomorphisms from the multiplicative semigroup of all 2×2 matrices over an arbitrary field to the semigroup of 3×3 matrices over the same field. In the case of a field of real numbers every irreducible non-degenerate homomorphism is a conjugation of the symmetric square. © 1999 Elsevier Science Inc. All rights reserved.

Keywords: Matrix semigroup; Semigroup homomorphism; Multiplicative map; Reducibility; Field homomorphism

1. Introduction

Let F be a field and let $\mathcal{M}_n(F)$ denote all $n \times n$ matrices with entries in F. In this paper we study matrix semigroup homomorphisms $\varphi : \mathcal{M}_2(F) \to \mathcal{M}_3(F)$, i.e., multiplicative maps. One way to obtain a semigroup homomorphism $\varphi : \mathcal{M}_n(F) \to \mathcal{M}_m(F)$ is to take a group homomorphism $\varphi' : GL_n(F) \to GL_m(F)$ and trivially extend it to all matrices taking $\varphi(A) = 0$ for every A with $\det A = 0$. These trivial extensions are called degenerate and are known.

An example of non-degenerate semigroup homomorphism $\varphi : \mathcal{M}_n(F) \to \mathcal{M}_n(F)$ is the identity and an example of semigroup homomorphism $\varphi : \mathcal{M}_2(F) \to \mathcal{M}_3(F)$ is the symmetric square.
that is the mapping defined as follows. Let \(\mathcal{A} : \mathbb{F}^2 \to \mathbb{F}^2 \) be a linear transformation with a matrix \(A \). Then \(\text{Sym}^2 \mathcal{A} \) is a linear transformation from the symmetric tensor product \(\mathbb{F}^2 \otimes \mathbb{F}^2 \cong \mathbb{F}^3 \) to itself defined by

\[
(\text{Sym}^2 \mathcal{A})(x \vee y) = \mathcal{A}x \vee \mathcal{A}y
\]

and \(\text{Sym}^2 A \) is its matrix in the chosen basis. If \(\{e_1, e_2\} \) is the basis of \(\mathbb{F}^2 \), then

\[
\{e_1 \vee e_1, e_1 \vee e_2, e_2 \vee e_2\}
\]

is the corresponding basis of \(\mathbb{F}^2 \otimes \mathbb{F}^2 \) and

\[
\text{Sym}^2 \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2bd \\ c^2 & cd & d^2 \end{bmatrix}.
\]

We can obtain new semigroup homomorphisms \(\phi' : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F}) \) from old ones \(\phi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F}) \), \(\varphi_1 : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_k(\mathbb{F}) \) and \(\varphi_2 : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_{m-k}(\mathbb{F}) \) by taking a direct sum, i.e.,

\[
\phi'(A) = \phi_1(A) \oplus \phi_2(A),
\]

by matrix conjugations, i.e.,

\[
\phi'(A) = S \phi(A) S^{-1}
\]

with \(S \) invertible and by using field homomorphism \(f : \mathbb{F} \to \mathbb{F} \) entrywise, i.e.,

\[
\phi'(A) = \left[f(\phi(A)_{ij}) \right]_{i,j=1}^m.
\]

We will show that in case of semigroup homomorphisms from \(\mathcal{M}_2(\mathbb{F}) \) to \(\mathcal{M}_3(\mathbb{F}) \) and \(\text{char } \mathbb{F} \neq 2 \) these are all possibilities which can occur.

2. Preliminaries

We will first show that there is no loss of generality if we assume that a semigroup homomorphism \(\phi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F}) \) maps 0 to 0 and the identity to the identity.

Lemma 1. Let \(\mathbb{F} \) be a field and \(\phi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F}) \) a semigroup homomorphism. Then \(\phi \) has the form

\[
\phi(A) = S(\phi_0(A) \oplus E) S^{-1},
\]
where \(\varphi_0 : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_k(\mathbb{F}) \) is a semigroup homomorphism with \(\varphi_0(0) = 0 \), \(\varphi_0(I) = I \), \(E \in \mathcal{M}_{m-k}(\mathbb{F}) \) is idempotent and \(S \in \mathcal{M}_m(\mathbb{F}) \) is an invertible matrix. Here either \(k \) or \(m-k \) may be 0, i.e., either \(\varphi_0(A) \) or \(E \) may be absent.

Proof. Since 0 and \(I \) are two commuting idempotents with \(0I \equiv 0 \), \(u_0^\dagger \) and \(u_I^\dagger \) are also two commuting idempotents with \(u_0^\dagger u_I^\dagger \equiv u_0^\dagger \). So they have the form

\[
\begin{align*}
\varphi(0) &= S(0_k \oplus I_l \oplus 0_{m-l-k})S^{-1} \\
\varphi(I) &= S(I_k \oplus I_l \oplus 0_{m-l-k})S^{-1},
\end{align*}
\]

where \(0_k, I_l \in \mathcal{M}_l(\mathbb{F}) \) and \(S \) is an invertible matrix. For any matrix \(A \in \mathcal{M}_n(\mathbb{F}) \) the matrix \(\varphi(A) \) commutes with \(\varphi(0) \) and \(\varphi(I) \), so it has the form

\[
\varphi(A) = S(A_1 \oplus A_2 \oplus A_3)S^{-1}.
\]

Since \(A0 = 0 \) and \(AI = A \) we have \(A_2I_l = I_l \) and \(A_30_{m-l-k} = A_3 \), so \(A_2 = I_l \) and \(A_3 = 0_{m-l-k} \). Writing \(\varphi_0(A) := A_1 \) we obtain the asserted form, since \(\varphi_0 \) is obviously a semigroup homomorphism. \(\square \)

In the proof of our main result we need the following proposition which is proved in [2].

Proposition 1. Let \(\mathbb{F} \) be a field and \(\varphi : \mathcal{M}_2(\mathbb{F}) \to \mathcal{M}_2(\mathbb{F}) \) a semigroup homomorphism, which is non-degenerate and has the properties \(\varphi(0) = 0 \) and \(\varphi(I) = I \). Then \(\varphi \) has the form

\[
\varphi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = S\begin{bmatrix} f(a) & f(b) \\ f(c) & f(d) \end{bmatrix}S^{-1},
\]

where \(f : \mathbb{F} \to \mathbb{F} \) is a field homomorphism and \(S \in \mathcal{M}_2(\mathbb{F}) \) is an invertible matrix.

We will also need the following proposition, the proof of which is due to Radjavi.

Proposition 2. Let \(\mathbb{F} \) be a field and \(\varphi : \mathcal{M}_2(\mathbb{F}) \to \mathbb{F} \) a semigroup homomorphism. Then \(\varphi \) has the form

\[
\varphi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = h(ad - bc),
\]

where \(h : \mathbb{F} \to \mathbb{F} \) is a semigroup homomorphism.

Proof. If \(\varphi \) maps either everything to 0 or everything to 1, we take \(h \equiv 0 \) or \(h \equiv 1 \). If this is not the case, then \(\varphi(0) = 0 \) and \(\varphi(I) = 1 \). Matrix
is nilpotent so it is sent to 0. Every non-invertible matrix may be written as
\[P \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} Q, \]
so it is sent to 0, too. Let us define \(h : \mathbb{F} \to \mathbb{F} \) as
\[h(a) = \varphi \left(\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \right). \]
Then \(h \) is clearly a semigroup homomorphism. Every invertible matrix may be written as
\[A = \begin{bmatrix} \det & A & 0 \\ 0 & 1 \end{bmatrix} A_1, \]
where \(A_1 \) has determinant 1. Thus we have to prove that every matrix of determinant 1 is sent to 1. Every \(2 \times 2 \) matrix of determinant 1 is a product of two simple involutions, that is matrices similar to
\[\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]
if \(\text{char } \mathbb{F} \neq 2 \) and similar to
\[\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \]
if \(\text{char } \mathbb{F} = 2 \) (see [3]). Homomorphism \(\varphi \) maps every simple involution to 1 or \(-1\). Since they are similar to each other they are all sent to 1 or all to \(-1\). In either case \(\varphi(A_1) = (\pm 1)^2 = 1. \) \(\square \)

3. Main result

The main result of this paper is the following:

Theorem 1. Let \(\mathbb{F} \) be a field and \(\varphi : \mathcal{M}_2(\mathbb{F}) \to \mathcal{M}_3(\mathbb{F}) \) a semigroup homomorphism, which is non-degenerate and has the properties \(\varphi(0) = 0 \) and \(\varphi(I) = I. \) If \(\text{char } \mathbb{F} \neq 2 \) then \(\varphi \) has one of the following forms:

a. \[\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = S \begin{bmatrix} f(a) & f(b) & 0 \\ f(c) & f(d) & 0 \\ 0 & 0 & g(ad - bc) \end{bmatrix} S^{-1}, \]
where \(f : \mathbb{F} \to \mathbb{F} \) is a field homomorphism, \(g : \mathbb{F} \to \mathbb{F} \) is a semigroup homomorphism with \(g(0) = 0, g(1) = 1 \) and \(S \in \mathcal{M}_3(\mathbb{F}) \) is an invertible matrix,

\[
\phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = S \begin{bmatrix} h(a^2) & h(ab) & h(b^2) \\ h(2ac) & h(ad + bc) & h(2bd) \\ h(c^2) & h(cd) & h(d^2) \end{bmatrix} S^{-1},
\]

where \(h : \mathbb{F} \to \mathbb{F} \) is a field homomorphism and \(S \in \mathcal{M}_3(\mathbb{F}) \) is an invertible matrix.

If \(\text{char} \mathbb{F} = 2 \) then \(\phi \) has one of the forms (a), (b) or

\[
\phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = S \begin{bmatrix} h(a^2) & 0 & h(b^2) \\ h(ac) & h(ad + bc) & h(bd) \\ h(c^2) & 0 & h(d^2) \end{bmatrix} S^{-1},
\]

where \(h : \mathbb{F} \to \mathbb{F} \) is a field homomorphism and \(S \in \mathcal{M}_3(\mathbb{F}) \) is an invertible matrix.

Remark 1. If \(\text{char} \mathbb{F} = 2 \), cases (b) and (c) are essentially different: The image of \(\phi \) in case (b) has exactly one non-trivial invariant subspace in common, which has dimension 2. On the other hand, in case (c) the image of \(\phi \) has an invariant subspace of dimension 1 in common.

Proof. Let us denote by \(E_{ij} \) the matrix which has 1 in the \(i \)th row and the \(j \)th column, and 0 elsewhere. We will divide the proof in several steps.

Step 1. Without loss of generality we may assume that \(\phi(E_{12}) = E_{13} \) and \(\phi(E_{21}) = E_{31} \). Then \(\phi(E_{11}) = E_{11} \) and \(\phi(E_{22}) = E_{33} \).

Proof. Matrix \(E_{12} \) is nilpotent of order 2, so \(\phi(E_{12}) \) must be nilpotent of order at most 2. Let us suppose that \(\phi(E_{12}) = 0 \). If \(A \in \mathcal{M}_2(\mathbb{F}) \) is any non-invertible matrix, it has rank at most 1 and we can write it as \(A = PE_{12}Q \). So \(\phi(A) = \phi(P)\phi(E_{12})\phi(Q) = 0 \) and \(\phi \) is degenerate. Thus \(\phi(E_{12}) \) must be non-zero and we can write it as \(\phi(E_{12}) = xy^T \) where \(x, y \) are two column vectors in \(\mathbb{F}^3 \) and \(y^Tx = 0 \). Similarly we obtain \(\phi(E_{21}) = uv^T \) where \(v^Tu = 0 \). Since \(E_{12}E_{21}E_{12} = E_{12} \), we have

\[
xy^Tuv^Tx = xy^T,
\]

so \(y^Tu \cdot v^Tx = 1 \). With no loss of generality we may assume that \(y^Tu = v^Tx = 1 \).

Let us choose a vector \(z \in \mathbb{F}^3 \) orthogonal to \(v \) and \(y \), i.e., \(v^Tz = y^Tz = 0 \). Then \(\{x, z, u\} \) is a basis of \(\mathbb{F}^3 \). In this basis \(\phi(E_{12}) \) has the matrix \(E_{13} \) and \(\phi(E_{21}) \) has the matrix \(E_{31} \). So without loss of generality we may assume that \(\phi(E_{12}) = E_{13} \) and \(\phi(E_{21}) = E_{31} \). Then

\[
\phi(E_{11}) = \phi(E_{12}E_{21}) = E_{13}E_{31} = E_{11}
\]

and similarly \(\phi(E_{22}) = E_{33} \).
Step 2. \(\varphi(aI) \) has the form \(f(a)(E_{11} + E_{33}) + g(a)E_{22} \) where \(f, g : \mathbb{F} \to \mathbb{F} \) are semigroup homomorphisms with \(f(0) = g(0) = 0 \) and \(f(1) = g(1) = 1 \).

Proof. Matrix \(aI \) commutes with \(E_{12} \) and \(E_{21} \), so \(\varphi(aI) \) commutes with \(E_{13} \) and \(E_{31} \) and we obtain the asserted form.

Step 3. Homomorphism \(\varphi \) has the form

\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} f(a) & f(b) \\ * & * \\ f(c) & f(d) \end{bmatrix}
\]

Proof. If

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]

is an arbitrary matrix, we have

\[
E_{11} \varphi(A)E_{11} = \varphi(E_{11}AE_{11}) = \varphi(aE_{11}) = \varphi(aI)E_{11} = f(a)E_{11},
\]

so the element in the first row and the first column of \(\varphi(A) \) must be \(f(a) \). Similarly we argue for the other corners.

Step 4. If \(A \) is upper-right (resp. upper-left, lower-right, lower-left) triangular, then \(\varphi(A) \) is upper-right (resp. upper-left, lower-right, lower-left) triangular. If \(A \) is diagonal, then \(\varphi(A) \) is diagonal.

Proof. Let

\[
A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}
\]

Then

\[
\varphi(A)E_{11} = \varphi(AE_{11}) = \varphi(aE_{11}) = f(a)E_{11}
\]

and

\[
E_{33} \varphi(A) = \varphi(E_{22}A) = \varphi(dE_{22}) = f(d)E_{33}
\]

so the first column of \(\varphi(A) \) must be \([f(a), 0, 0]^T \) and the last row must be \([0, 0, f(d)] \). Thus \(\varphi(A) \) is upper-right triangular. Similarly we prove the other cases.

Step 5. If \(f(a) \neq g(a) \) for some \(a \in \mathbb{F} \), then

\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} f(a) & 0 & f(b) \\ 0 & h(ad - bc) & 0 \\ f(c) & 0 & f(d) \end{bmatrix},
\]
where $f : \mathbb{F} \to \mathbb{F}$ is a field homomorphism, $h : \mathbb{F} \to \mathbb{F}$ is a semigroup homomorphism, so we are in the case (a) of the theorem.

Proof. Matrix aI commutes with every $A \in \mathcal{M}_2(\mathbb{F})$, so $\varphi(aI) = f(a)(E_{11} + E_{33}) + g(a)E_{22}$ commutes with $\varphi(A)$. Since $f(a) \neq g(a)$, $\varphi(A)$ has the form

$$
\begin{bmatrix}
* & 0 & * \\
0 & * & 0 \\
* & 0 & *
\end{bmatrix}.
$$

Thus

$$
\varphi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} f(a) & 0 & f(b) \\
0 & s(a,b,c,d) & 0 \\
f(c) & 0 & f(d)\end{bmatrix}.
$$

So homomorphism φ is a direct sum of two semigroup homomorphisms $\varphi_1 : \mathcal{M}_2(\mathbb{F}) \to \mathcal{M}_2(\mathbb{F})$ and $\varphi_2 : \mathcal{M}_2(\mathbb{F}) \to \mathbb{F}$ where

$$
\varphi_1\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} f(a) & f(b) \\
f(c) & f(d)\end{bmatrix} \quad \text{and} \quad \varphi_2\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = s(a,b,c,d).
$$

Now, f is a field homomorphism by Proposition 1 and $s(a,b,c,d)$ has the form $h(ad - bc)$ by Proposition 2.

From now on we will assume that $f(a) = g(a)$ for every $a \in \mathbb{F}$. So $\varphi(aI) = f(a)I$.

Step 6. If $\det A = 1$, then $\det \varphi(A) = 1$. Furthermore, $f(-1) = 1$ and

$$
\varphi(E_{12} - E_{21}) = E_{13} - E_{22} + E_{31}.
$$

Proof. Let $\varphi_1 : \mathcal{M}_2(\mathbb{F}) \to \mathbb{F}$ be the semigroup homomorphism $\varphi_1(A) = \det \varphi(A)$. By Proposition 2 it has the form $\varphi_1(A) = h(\det A)$. So, if $\det A = 1$, then $\det \varphi(A) = 1$. Now, $\det (-I) = 1$, so $\det (-I) = f(-1)^3 = 1$, thus $f(-1) = 1$. By step 4 $\varphi(E_{12} - E_{21})$ has the form $E_{13} + uE_{22} + E_{31}$. By the determinant condition we obtain $u = -1$.

From step 7 to step 14 we assume that $\text{char } \mathbb{F} \neq 2$.

Step 7. Without loss of generality we may assume

$$
\varphi(E_{11} + E_{12}) = E_{11} + E_{12} + E_{13}, \quad \varphi(E_{11} + E_{21}) = E_{11} + 2E_{21} + E_{31},
$$

$$
\varphi(E_{21} + E_{22}) = E_{31} + E_{32} + E_{33}, \quad \varphi(E_{12} + E_{22}) = E_{13} + 2E_{23} + E_{33}.
$$

Proof. Every matrix of rank one has the form $A = PE_{12}Q$ with P,Q invertible. So its image has the form $\varphi(A) = \varphi(P)E_{13}\varphi(Q)$. Thus every matrix of rank 1 is sent to a matrix of rank 1. So the matrix $\varphi(E_{11} + E_{12})$ has rank 1. Since it is upper triangular, we have
\[\phi(E_{11} + E_{12}) = E_{11} + xE_{12} + E_{13}, \]

Similarly
\[\phi(E_{11} + E_{21}) = E_{11} + yE_{21} + E_{31}, \]
\[\phi(E_{21} + E_{22}) = E_{31} + zE_{32} + E_{33}, \quad \phi(E_{12} + E_{22}) = E_{13} + tE_{23} + E_{33}. \]

Now,
\[
\begin{bmatrix}
 1 & x & 1 \\
 y & xy & y \\
 1 & x & 1
\end{bmatrix}
= \phi \left(\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right) = \phi \left(\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right)
= \begin{bmatrix}
 1 & z & 1 \\
 t & zt & t \\
 1 & z & 1
\end{bmatrix},
\]
so \(x = z \) and \(y = t \). Furthermore,
\[\phi(0) = \phi \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) = \begin{bmatrix} 2 - xy & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \]
so \(xy = 2 \). Since \(\text{char } \mathbb{F} \neq 2 \), both \(x \) and \(y \) are non-zero. If we take
\[\phi'(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & 1 \end{bmatrix} \phi(A) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/x & 0 \\ 0 & 0 & 1 \end{bmatrix}, \]
we obtain
\[\phi'(E_{11} + E_{12}) = E_{11} + E_{12} + E_{13}. \]

Homomorphism \(\phi' \) has all the properties we have proved for \(\phi \). So without loss of generality we may assume \(x = 1 \) and thus \(y = 2 \). (Actually we have multiplied the vector \(z \) from step 1 by a scalar, so we have chosen its length which was arbitrary in step 1.)

Step 8. \(\phi(E_{11} - E_{22}) = E_{11} - E_{22} + E_{33} \) and \(\phi(E_{12} + E_{21}) = E_{13} + E_{22} + E_{31}. \)

Proof. We have
\[\phi(E_{11} - E_{22}) = E_{11} + vE_{22} + E_{33}, \]
so
\[E_{11} + vE_{12} + E_{13} = (E_{11} + E_{12} + E_{13})(E_{11} + vE_{22} + E_{33}) \]
\[= \phi((E_{11} + E_{12})(E_{11} - E_{22})) = \phi((E_{11} + E_{12})(E_{21} - E_{12})) \]
\[= (E_{11} + E_{12} + E_{13})(E_{13} - E_{22} + E_{31}) = E_{11} - E_{12} + E_{13}. \]
Thus \(v = -1 \). Now,
\[
\varphi(E_{12} + E_{21}) = \varphi((E_{21} - E_{12})(E_{11} - E_{22})) = E_{13} + E_{22} + E_{31}.
\]

Step 9.
\[
\varphi\left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \varphi\left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.
\]

Proof. We have
\[
\varphi\left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & u & v & w \\ 0 & v & w & w \\ 0 & 0 & 1 \end{bmatrix}.
\]

Since
\[
\det \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = 1, \quad v \text{ must be } 1.
\]

Furthermore,
\[
\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \varphi\left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\right) = \varphi\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}\right)
\]
\[
= \begin{bmatrix} 1 & 1 & 1 \\ w & w & w \\ 1 & 1 & 1 \end{bmatrix},
\]

so \(w = 2 \). Similarly we prove \(u = 1 \) and the other equation.

Step 10. Mapping \(f : \mathbb{F} \to \mathbb{F} \) has the form \(f(a) = (h(a))^2 \), where \(h : \mathbb{F} \to \mathbb{F} \) is a semigroup homomorphism.

Proof. We have
\[
\varphi(aE_{11} + E_{22}) = f(a)E_{11} + h(a)E_{22} + E_{33},
\]
where \(h : \mathbb{F} \to \mathbb{F} \) is a semigroup homomorphism. Now,
\[
f(a)I = \varphi(aI) = \varphi((aE_{11} + E_{22})(E_{12} + E_{21})(aE_{11} + E_{22})(E_{12} + E_{21}))
\]
\[
= (f(a)E_{11} + h(a)E_{22} + E_{33})(E_{13} + E_{22} + E_{31})
\]
\[
\times (f(a)E_{11} + h(a)E_{22} + E_{33})(E_{13} + E_{22} + E_{31})
\]
\[
= f(a)E_{11} + h(a)^2E_{22} + f(a)E_{33}.
\]

So \(f(a) = h(a)^2 = (h(a))^2 \).

Step 11. \(\varphi(aE_{11} + bE_{22}) = h(a^2)E_{11} + h(ab)E_{22} + h(b^2)E_{33} \) and \(\varphi(aE_{12} + bE_{21}) = h(a^2)E_{13} + h(ab)E_{22} + h(b^2)E_{31} \).
Proof. If $b \neq 0$, we have

$$\varphi(aE_{11} + bE_{22}) = \varphi\left(bI\left(\frac{a}{b}E_{11} + E_{22} \right) \right) = f(b)f\left(\frac{a}{b} \right)E_{11} + f(b)h\left(\frac{a}{b} \right)E_{22} + f(b)E_{33} = h(a^2)E_{11} + h(ab)E_{22} + h(b^2)E_{33}$$

and

$$\varphi(aE_{12} + bE_{21}) = \varphi((aE_{11} + bE_{22})(E_{12} + E_{21})) = h(a^2)E_{13} + h(ab)E_{22} + h(b^2)E_{31}.$$

Step 12. Mapping $h : \mathbb{F} \to \mathbb{F}$ is a field homomorphism.

Proof. We have to prove that h is additive.

$$\begin{bmatrix} h(a^2) & h(a(a + b)) & h((a + b)^2) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \varphi\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & a + b \end{bmatrix} \right) = \varphi\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & b \end{bmatrix} \right) = \begin{bmatrix} h(a^2) & h(a^2) + h(ab) & h(a^2) + 2h(ab) + h(b^2) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

So $h(a(a + b)) = h(a^2) + h(ab)$. If $a \neq 0$, it follows $h(a + b) = h(a) + h(b)$.

Step 13.

$$\varphi\left(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \right) = \begin{bmatrix} h(a^2) & h(ab) & h(b^2) \\ 0 & h(ad) & h(2bd) \\ 0 & 0 & h(d^2) \end{bmatrix}$$

and

$$\varphi\left(\begin{bmatrix} a & 0 \\ c & d \end{bmatrix} \right) = \begin{bmatrix} h(a^2) & 0 & 0 \\ h(2ac) & h(ad) & 0 \\ h(c^2) & h(cd) & h(d^2) \end{bmatrix}.$$

Proof. If $b \neq 0$, we have

$$\varphi\left(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \right) = \varphi\left(\begin{bmatrix} 1 & 0 \\ 0 & d/b \end{bmatrix} \right) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}.$$

$$\varphi\left(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \right) = \varphi\left(\begin{bmatrix} 1 & 0 \\ 0 & d/b \end{bmatrix} \right) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}.$$
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & d/b & 0 \\
0 & 0 & d^2/b^2
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
h(a^2) & 0 & 0 \\
h(ab) & 0 & h(b^2)
\end{bmatrix}
=
\begin{bmatrix}
h(a^2) & h(ab) & 0 \\
h(ab) & h(b^2) & h(d^2)
\end{bmatrix},
\]

Similarly we prove the other equation.

Step 14.

\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) =
\begin{bmatrix}
h(a^2) & h(ab) & h(b^2) \\
h(2ac) & h(ad + bc) & h(2bd) \\
h(c^2) & h(cd) & h(d^2)
\end{bmatrix},
\]

so we are in case (b) of the theorem.

Proof. If \(a \neq 0\), we have

\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \varphi \left(\begin{bmatrix} a & 0 \\ c & d - \frac{bc}{a} \end{bmatrix} \begin{bmatrix} 1 & b/a \\ 0 & 1 \end{bmatrix} \right)
=
\begin{bmatrix}
h(a^2) & 0 & 0 \\
h(2ac) & h(ad - bc) & 0 \\
h(c^2) & h(cd - \frac{bc}{a}) & h((d - \frac{bc}{a})^2)
\end{bmatrix}
\begin{bmatrix}
1 & h(\frac{b}{a}) & h(\frac{b^2}{a}) \\
0 & 1 & h(\frac{b}{a}) \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
h(a^2) & h(ab) & h(b^2) \\
h(2ac) & h(ad + bc) & h(2bd) \\
h(c^2) & h(cd) & h(d^2)
\end{bmatrix}.
\]

If \(a = 0\) and \(d \neq 0\), then

\[
\varphi \left(\begin{bmatrix} 0 & b \\ c & d \end{bmatrix} \right) = \varphi \left(\begin{bmatrix} -\frac{bc}{d} & b \\ 0 & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{c}{d} & 1 \end{bmatrix} \right)
=
\begin{bmatrix}
h(\frac{bc}{d^2}) & h(-\frac{bc}{d}) & h(b^2) \\
0 & h(-bc) & h(2bd) \\
0 & 0 & h(d^2)
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
h(\frac{bc}{d^2}) & 1 & 0 \\
h(\frac{bc}{d}) & h(\frac{c}{d}) & 1
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & h(b^2) \\
0 & h(bc) & h(2bd) \\
h(c^2) & h(cd) & h(d^2)
\end{bmatrix}.
\]

The case \(a = d = 0\) we have already proved in step 11.

Step 15. If \(\text{char } F = 2\), then either

\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) =
\begin{bmatrix}
h(a^2) & h(ab) & h(b^2) \\
0 & h(ad + bc) & 0 \\
h(c^2) & h(cd) & h(d^2)
\end{bmatrix}
\]
or
\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} h(a^2) & 0 & h(b^2) \\ h(ac) & h(ad + bc) & h(bd) \\ h(c^2) & 0 & h(d^2) \end{bmatrix}
\]
or
\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} h(a^2) & 0 & h(b^2) \\ 0 & h(ad - bc) & 0 \\ h(c^2) & 0 & h(d^2) \end{bmatrix},
\]
where \(h : \mathbb{F} \rightarrow \mathbb{F}\) is a field homomorphism, so we are in the cases (b), (c) or (a) of the theorem.

Proof. We do the same as in step 7 and obtain \(xy = 2 = 0\). If \(x \neq 0\), we may assume with no loss of generality that \(x = 1\) and then \(y = 0 = 2\). Then everything is the same as in steps 8–14 and we obtain the first possibility. If \(y \neq 0\), then we may assume with no loss of generality that \(y = 1\) and then \(x = 0 = 2\). In this case all the matrices in steps 8–14 are just transposed and we obtain the second possibility. If both \(x\) and \(y\) are 0, we obtain
\[
\varphi \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]
as in step 9 and
\[
\varphi \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
\]
by the determinant condition. The semigroup \(\mathcal{M}_2(\mathbb{F})\) is generated by diagonal matrices and matrices
\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
\]
as we saw in steps 13, 14. So we obtain
\[
\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} f(a) & 0 & f(b) \\ 0 & h(ad - bc) & 0 \\ f(c) & 0 & f(d) \end{bmatrix}.
\]
Now \(\varphi(aI) = f(a)I\) gives that \(f(a) = h(a^2)\). Since \(f\) is additive by Proposition 1 and \(\text{char } \mathbb{F} = 2\), we have
\[(h(a + b))^2 = h((a + b)^2) = f(a + b) = f(a) + f(b) = h(a)^2 + h(b)^2 = (h(a) + h(b))^2,\]

so \(h\) is additive as well. \(\Box\)

4. Corollaries

Matrix semigroup homomorphism \(\phi\) is reducible if the image of \(\phi\) has a non-trivial invariant subspace in common, otherwise it is irreducible. We say that \(\phi\) is completely reducible if every invariant subspace of the image of \(\phi\) has an invariant complement.

Corollary 1. Let \(\mathbb{F}\) be a field with \(\text{char } \mathbb{F} \neq 2\). Every non-degenerate semigroup homomorphism \(\phi : \mathcal{M}_2(\mathbb{F}) \to \mathcal{M}_3(\mathbb{F})\) is completely reducible.

Corollary 2. Let \(\phi : \mathcal{M}_2(\mathbb{F}) \to \mathcal{M}_3(\mathbb{F})\) be an irreducible non-degenerate semigroup homomorphism. Then \(\text{char } \mathbb{F} \neq 2\) and

\[
\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = S \begin{bmatrix} h(a^2) & h(ab) & h(b^2) \\ h(2ac) & h(ad + bc) & h(2bd) \\ h(c^2) & h(cd) & h(d^2) \end{bmatrix} S^{-1},
\]

where \(h : \mathbb{F} \to \mathbb{F}\) is a field homomorphism and \(S \in \mathcal{M}_3(\mathbb{F})\) is an invertible matrix.

If the field \(\mathbb{F}\) is the field of real numbers \(\mathbb{R}\), then the only non-zero field homomorphism of \(\mathbb{F}\) is the identity (see [1, p. 57]). This implies the following corollary.

Corollary 3. Let \(\phi : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})\) be an irreducible non-degenerate semigroup homomorphism. Then

\[
\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = S \begin{bmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2bd \\ c^2 & cd & d^2 \end{bmatrix} S^{-1},
\]

where \(S \in \mathcal{M}_3(\mathbb{R})\) is an invertible matrix.

If the field \(\mathbb{F}\) is the field of complex numbers \(\mathbb{C}\) we may be interested only in continuous semigroup homomorphism \(\phi : \mathcal{M}_2(\mathbb{F}) \to \mathcal{M}_3(\mathbb{F})\). Then semigroup or field homomorphisms \(f, g, h : \mathbb{F} \to \mathbb{F}\) in the Theorem 1 must be continuous. The only continuous field homomorphisms of \(\mathbb{C}\) are the identity and conjugation (see [1, p. 52]).
Acknowledgements

The author would like to thank Professor Matjaž Omladič for his helpful suggestions and Professor Heydar Radjavi for the proof of Proposition 2.

References