

Topology and its Applications 96 (1999) 89-92

www.elsevier.com/locate/topol

Representing set-inclusion by embeddability (among the subspaces of the real line)

A.E. McCluskey^{a,*}, T.B.M. McMaster^b, W.S. Watson^c

^a Department of Mathematics, National University of Ireland, Galway, Ireland ^b Department of Pure Mathematics, Queen's University of Belfast, Belfast BT7 1NN, UK ^c Department of Mathematics, York University, Ontario, Canada

Received 20 August 1997; received in revised form 5 January 1998

Abstract

We establish that the powerset $\mathcal{P}(\mathbb{R})$ of the real line \mathbb{R} , ordered by set-inclusion, has the same ordertype as a certain subset of $\mathcal{P}(\mathbb{R})$ ordered by homeomorphic embeddability. This is a contribution to the ongoing study of the possible ordertypes of subfamilies of $\mathcal{P}(\mathbb{R})$ under embeddability, pioneered by Banach, Kuratowski and Sierpiński. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Partial order; Ordering by homeomorphic embeddability; Transfinite induction; G_{δ} -sets

AMS classification: 06A06; 54H10

Introduction

The ordering by embeddability of topological spaces, although a fundamental notion in topology, is imperfectly understood at present. For instance, the question—given a topological space X, what are the possible ordertypes of families of subspaces of X under the embeddability ordering?—appears not to have been fully answered for any but the most simple instances of X. Even the 'familiar' real line \mathbb{R} has yet to receive a complete analysis of the ordertypes occurring amongst its subspaces.

To facilitate the discussion we shall write $X \hookrightarrow Y$ to indicate that the space X is homeomorphically embeddable in the space Y and, adopting the terminology of [5], we shall say that a partially-ordered set (poset) P is *realized* (or *realizable*) within a family \mathcal{F} of topological spaces whenever there is an injection $\theta : P \to \mathcal{F}$ for which $p \leq p'$ if and only if $\theta(p) \hookrightarrow \theta(p')$. The 'if' component of this condition presents the main challenge

^{*} Corresponding author. E-mail: aisling.mccluskey@ucg.ie.

^{0166-8641/99/}\$ – see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0166-8641(98)00038-8

in realizations: θ must be so designed that whenever $p \notin p'$, no embedding of $\theta(p)$ into $\theta(p')$ is possible.

Discussion of realizability in the powerset $\mathcal{P}(\mathbb{R})$ of \mathbb{R} can be traced back to Banach, Kuratowski and Sierpiński [2,3,7] whose work on the extensibility of continuous maps over G_{δ} -subsets (in the context of Polish spaces) revealed *inter alia* that it is possible to realize, within $\mathcal{P}(\mathbb{R})$, (i) the antichain on 2^{c} points [2, p. 205] and (ii) the ordinal c^{+} [3, p. 199]. Fresh interest in such issues was initiated in [4] where it is shown that every poset of cardinality c (or less) can be realized within $\mathcal{P}(\mathbb{R})$. The question of *precisely* which posets of cardinalities exceeding c can be so realized is as yet unresolved and, since it increasingly reveals itself to be essentially set-theoretic in nature, it appears correspondingly impervious to a purely topological attack. The authors have recently shown that no ZFC analogue of the result in [4] for cardinality 2^{c} exists—that is, there is a consistent counterexample.

Accordingly, the present paper seeks to extend the current and limited fund of results in the area (see also [5,6]) by exhibiting how to realize a second natural poset of cardinality 2^c as a family of subspaces of \mathbb{R} ordered by embeddability: namely $\mathcal{P}(\mathbb{R})$ itself, ordered by set-inclusion. The demonstration develops work of Kuratowski on the realization of the antichain on 2^c points [2].

We quote (without proof) the classical theorem [3] of M. Lavrentiev which played a key role in the earlier work of Kuratowski et al. and, consequently, in this paper.

Theorem 1. Every homeomorphism between subsets A, B of complete metric spaces X and Y (respectively) can be extended to a homeomorphism between G_{δ} -subsets A^* , B^* of X and Y (respectively) such that $A \subseteq A^*$ and $B \subseteq B^*$.

Lemma 2. Let κ be an infinite cardinal and \mathcal{F} be a family of κ -many partial injections from κ to κ . Then there is a subset A of κ such that

- (i) $|A| = \kappa$ and
- (ii) $B, C \in \mathcal{P}(A), f \in \mathcal{F} and f(B) = C$ together imply

 $\left| (B \setminus C) \cup (C \setminus B) \right| < \kappa.$

In particular, if $B, C \in \mathcal{P}(A)$ and $|(B \setminus C) \cup (C \setminus B)| = \kappa$ then no member of \mathcal{F} maps B onto C.

Proof. Without loss of generality, \mathcal{F} contains the inverse of each of its members. Indexing \mathcal{F} as $\{f_{\alpha}: \alpha < \kappa\}$, it is routine to construct by transfinite induction a κ -sequence $(x_{\alpha})_{\alpha < \kappa}$ so that, for each α ,

$$x_{\alpha} \neq x_{\beta}$$
 for all $\beta < \alpha$ and

 $x_{\alpha} \neq f_{\gamma}(x_{\beta})$ for all $\beta < \alpha$ and $\gamma < \alpha$.

Now let *A* be the set $\{x_{\alpha}: \alpha < \kappa\}$, and note that $|A| = \kappa$.

For each $\alpha < \kappa$ define a subset $\Delta(\alpha)$ of κ by the criterion

 $\delta \in \Delta(\alpha)$ if and only if $f_{\alpha}(x_{\delta}) \in A \setminus \{x_{\delta}\}.$

Then for a given $\delta \in \Delta(\alpha)$ we can find $\varepsilon < \kappa$ for which $f_{\alpha}(x_{\delta}) = x_{\varepsilon}$ but $x_{\varepsilon} \neq x_{\delta}$. Since $f_{\alpha}^{-1} \in \mathcal{F}$, we also have $f_{\alpha}^{-1} = f_{\lambda}$ for some $\lambda < \kappa$, and we observe that $f_{\lambda}(x_{\varepsilon}) = x_{\delta}$. Due to the construction of (x_{α}) , it follows that

(a) if $\delta < \varepsilon$ then $\alpha \ge \varepsilon > \delta$ and

(b) if $\delta > \varepsilon$ then $\lambda \ge \delta$.

Hence $\delta \leq \max\{\alpha, \lambda\}$, and the set $\Delta(\alpha)$ is bounded in κ . Likewise $\Delta(\lambda)$ is bounded and condition (ii) follows. In fact, we have shown that each f_{α} when restricted and co-restricted to *A* acts as an identity mapping on "almost all" points. \Box

In the context of \mathbb{R} we now specialize to the case where $\kappa = c$ and \mathcal{F} is the family of continuous real-valued injections defined on G_{δ} -subsets of the real line. Since, via the Lavrentiev theorem, every embedding map is a restriction of such a map, this is an appropriate family to consider.

Beginning with the poset $\mathcal{P}(\mathbb{R})$ under set-inclusion, we seek to associate with each subset *H* of \mathbb{R} another subset $\theta(H)$ in such a way that

 $H \subseteq J$ if and only if $\theta(H) \hookrightarrow \theta(J)$.

This is achieved by arranging *firstly* that the associated subsets lie within the special set *A* described in the above lemma and, *secondly*, that whenever $H \not\subseteq J$ we get $|\theta(H) \setminus \theta(J)| = c$: so that embedding of $\theta(H)$ into $\theta(J)$ is rendered impossible.

Proposition 3. The powerset of \mathbb{R} , ordered by set-inclusion, can be realized within the subspaces of \mathbb{R} .

Proof. For each mapping $f: X \to Y$ we shall make use of the convenient notation f'' for the corresponding set-to-set mapping (see, for example, [1]) from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$ specified by

f''(S) = f(S), where $S \in \mathcal{P}(X)$.

Define also $u: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}^2)$ by

 $u(H) = H \times \mathbb{R}$, where $H \in \mathcal{P}(\mathbb{R})$,

noting that it is an order-isomorphism (with respect to set-inclusion) and that, whenever $H \neq J$ in $\mathcal{P}(\mathbb{R})$, u(H) and u(J) differ by *c*-many points. Choose next a bijection $v: \mathbb{R}^2 \to \mathbb{R}$ and observe that $v'': \mathcal{P}(\mathbb{R}^2) \to \mathcal{P}(\mathbb{R})$ is an order-isomorphism which maintains "large" set differences in the manner required. Finally, with \mathcal{F} as described above and A constructed within \mathbb{R} by the lemma, a bijection $w: \mathbb{R} \to A$ yields a third order-isomorphism $w'': \mathcal{P}(\mathbb{R}) \to \mathcal{P}(A)$.

Combining these maps, we derive

 $\theta = w''v''u$

which is an order-embedding of $\mathcal{P}(\mathbb{R})$ into $\mathcal{P}(A)$. Now $H \subseteq J$ in $\mathcal{P}(\mathbb{R})$ implies that $\theta(H) \subseteq \theta(J)$ and, consequently, that $\theta(H) \hookrightarrow \theta(J)$; but on the other hand,

 $H \not\subseteq J$ in $\mathcal{P}(\mathbb{R})$ implies $|\theta(H) \setminus \theta(J)| = c$

which in turn shows, using the lemma, that no member of \mathcal{F} can map $\theta(H)$ into $\theta(J)$. Lastly, if $\theta(H)$ were homeomorphically embeddable into $\theta(J)$, the Lavrentiev theorem would guarantee the extension of that embedding to a member of \mathcal{F} : a contradiction which establishes:

 $H \subseteq J$ if and only if $\theta(H) \hookrightarrow \theta(J)$

as required. \Box

Note. Of course, every *subset* of the poset $(\mathcal{P}(\mathbb{R}), \subseteq)$ is similarly realizable within $(\mathcal{P}(\mathbb{R}), \hookrightarrow)$. An immediate consequence is:

Corollary 4. Every poset E of cardinality not exceeding c can be realized within $(\mathcal{P}(\mathbb{R}), \hookrightarrow)$.

Proof. First, augment *E* if necessary to have exactly *c* elements. Then represent *E* within $\mathcal{P}(E)$ in the standard way by defining, for each $x \in E$,

 $e(x) = \{ y \in E \colon y \leq x \}. \qquad \Box$

References

- K. Kunen, Set Theory: An Introduction to Independence Proofs (North-Holland, Amsterdam, 1980).
- [2] C. Kuratowski, Sur la puissance de l'ensemble des "nombres de dimension" au sens de M. Fréchet, Fund. Math. 8 (1926) 201–208.
- [3] C. Kuratowski and W. Sierpiński, Sur un problème de M. Fréchet concernant les dimensions des ensembles linéaires, Fund. Math. 8 (1926) 193–200.
- [4] P.T. Matthews and T.B.M. McMaster, Families of spaces having prescribed embeddability ordertype, Rend. Ist. Mat. Univ. Trieste 25 (1993) 345–352.
- [5] A.E. McCluskey and T.B.M. McMaster, Representing quasi-orders by embeddability ordering of families of topological spaces, Proc. Amer. Math. Soc., to appear.
- [6] A.E. McCluskey and T.B.M. McMaster, Realizing quasiordered sets by subspaces of 'continuum-like' spaces, Order (submitted).
- [7] W. Sierpiński, Sur un problème concernant les types de dimensions, Fund. Math. 19 (1932) 65– 71.

92