Representing set-inclusion by embeddability
(among the subspaces of the real line)

A.E. McCluskey a,*, T.B.M. McMaster b, W.S. Watson c

a Department of Mathematics, National University of Ireland, Galway, Ireland
b Department of Pure Mathematics, Queen’s University of Belfast, Belfast BT7 1NN, UK
c Department of Mathematics, York University, Ontario, Canada

Received 20 August 1997; received in revised form 5 January 1998

Abstract

We establish that the powerset \(P(\mathbb{R}) \) of the real line \(\mathbb{R} \), ordered by set-inclusion, has the same ordertype as a certain subset of \(P(\mathbb{R}) \) ordered by homeomorphic embeddability. This is a contribution to the ongoing study of the possible ordertypes of subfamilies of \(P(\mathbb{R}) \) under embeddability, pioneered by Banach, Kuratowski and Sierpiński. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Partial order; Ordering by homeomorphic embeddability; Transfinite induction; \(G_\delta \)-sets

AMS classification: 06A06; 54H10

Introduction

The ordering by embeddability of topological spaces, although a fundamental notion in topology, is imperfectly understood at present. For instance, the question—given a topological space \(X \), what are the possible ordertypes of families of subspaces of \(X \) under the embeddability ordering?—appears not to have been fully answered for any but the most simple instances of \(X \). Even the ‘familiar’ real line \(\mathbb{R} \) has yet to receive a complete analysis of the ordertypes occurring amongst its subspaces.

To facilitate the discussion we shall write \(X \leftrightarrow Y \) to indicate that the space \(X \) is homeomorphically embeddable in the space \(Y \) and, adopting the terminology of [5], we shall say that a partially-ordered set (poset) \(P \) is realized (or realizable) within a family \(\mathcal{F} \) of topological spaces whenever there is an injection \(\theta : P \rightarrow \mathcal{F} \) for which \(p \leq p' \) if and only if \(\theta(p) \leftrightarrow \theta(p') \). The ‘if’ component of this condition presents the main challenge

* Corresponding author. E-mail: asling.mccluskey@ucg.ie.
in realizations: \(\Theta \) must be so designed that whenever \(p \neq p' \), no embedding of \(\Theta(p) \) into \(\Theta(p') \) is possible.

Discussion of realizability in the powerset \(\mathcal{P}(\mathbb{R}) \) of \(\mathbb{R} \) can be traced back to Banach, Kuratowski and Sierpiński [2,3,7] whose work on the extensibility of continuous maps over \(G_\delta \)-subsets (in the context of Polish spaces) revealed inter alia that it is possible to realize, within \(\mathcal{P}(\mathbb{R}) \), (i) the antichain on \(2^c \) points [2, p. 205] and (ii) the ordinal \(c^+ \) [3, p. 199].

Fresh interest in such issues was initiated in [4] where it is shown that every poset of cardinality \(c \) (or less) can be realized within \(\mathcal{P}(\mathbb{R}) \). The question of precisely which posets of cardinalities exceeding \(c \) can be so realized is as yet unresolved and, since it increasingly reveals itself to be essentially set-theoretic in nature, it appears correspondingly impervious to a purely topological attack. The authors have recently shown that no ZFC analogue of the result in [4] for cardinality \(2^c \) exists—that is, there is a consistent counterexample.

Accordingly, the present paper seeks to extend the current and limited fund of results in the area (see also [5,6]) by exhibiting how to realize a second natural poset of cardinality \(2^c \) as a family of subspaces of \(\mathbb{R} \) ordered by embeddability: namely \(\mathcal{P}(\mathbb{R}) \) itself, ordered by set-inclusion. The demonstration develops work of Kuratowski on the realization of the antichain on \(2^c \) points [2].

We quote (without proof) the classical theorem [3] of M. Lavrentiev which played a key role in the earlier work of Kuratowski et al. and, consequently, in this paper.

Theorem 1. Every homeomorphism between subsets \(A, B \) of complete metric spaces \(X \) and \(Y \) (respectively) can be extended to a homeomorphism between \(G_\delta \)-subsets \(A^*, B^* \) of \(X \) and \(Y \) (respectively) such that \(A \subseteq A^* \) and \(B \subseteq B^* \).

Lemma 2. Let \(\kappa \) be an infinite cardinal and \(\mathcal{F} \) be a family of \(\kappa \)-many partial injections from \(\kappa \) to \(\kappa \). Then there is a subset \(A \) of \(\kappa \) such that

(i) \(|A| = \kappa \) and

(ii) \(B, C \in \mathcal{P}(A), f \in \mathcal{F} \) and \(f(B) = C \) together imply

\[
|\{(B \setminus C) \cup (C \setminus B)\}| < \kappa.
\]

In particular, if \(B, C \in \mathcal{P}(A) \) and \(|\{(B \setminus C) \cup (C \setminus B)\}| = \kappa \) then no member of \(\mathcal{F} \) maps \(B \) onto \(C \).

Proof. Without loss of generality, \(\mathcal{F} \) contains the inverse of each of its members. Indexing \(\mathcal{F} \) as \(\{f_\alpha : \alpha < \kappa\} \), it is routine to construct by transfinite induction a \(\kappa \)-sequence \((x_\alpha)_{\alpha < \kappa} \) so that, for each \(\alpha \),

\[
x_\alpha \neq x_\beta \quad \text{for all } \beta < \alpha \quad \text{and} \quad \overline{x_\alpha} \\
x_\alpha \neq f_\gamma(x_\beta) \quad \text{for all } \beta < \alpha \text{ and } \gamma < \alpha.
\]

Now let \(A \) be the set \(\{x_\alpha : \alpha < \kappa\} \), and note that \(|A| = \kappa \).

For each \(\alpha < \kappa \) define a subset \(\Delta(\alpha) \) of \(\kappa \) by the criterion

\[
\delta \in \Delta(\alpha) \quad \text{if and only if} \quad f_\alpha(x_\delta) \in A \setminus \{x_\delta\}.
\]
Then for a given \(\delta \in \Delta(\alpha) \) we can find \(\varepsilon < \kappa \) for which \(f_\alpha(x_\delta) = x_\varepsilon \) but \(x_\varepsilon \neq x_\delta \). Since \(f_\alpha^{-1} \in \mathcal{F} \), we also have \(f_\alpha^{-1} = f_\lambda \) for some \(\lambda < \kappa \), and we observe that \(f_\lambda(x_\varepsilon) = x_\delta \). Due to the construction of \((x_\alpha)\), it follows that

(a) if \(\delta < \varepsilon \) then \(\alpha \geq \varepsilon > \delta \)

(b) if \(\delta > \varepsilon \) then \(\lambda \geq \delta \).

Hence \(\delta \leq \max\{\alpha, \lambda\} \), and the set \(\Delta(\alpha) \) is bounded in \(\kappa \). Likewise \(\Delta(\lambda) \) is bounded and condition (ii) follows. In fact, we have shown that each \(f_\alpha \) when restricted and co-restricted to \(A \) acts as an identity mapping on “almost all” points.

In the context of \(\mathbb{R} \) we now specialize to the case where \(\kappa = c \) and \(\mathcal{F} \) is the family of continuous real-valued injections defined on \(G_\delta \)-subsets of the real line. Since, via the Lavrentiev theorem, every embedding map is a restriction of such a map, this is an appropriate family to consider.

Beginning with the poset \(\mathcal{P}(\mathbb{R}) \) under set-inclusion, we seek to associate with each subset \(H \) of \(\mathbb{R} \) another subset \(\theta(H) \) in such a way that

\[H \subseteq J \text{ if and only if } \theta(H) \leftrightarrow \theta(J). \]

This is achieved by arranging firstly that the associated subsets lie within the special set \(A \) described in the above lemma and, secondly, that whenever \(H \nsubseteq J \) we get \(|\theta(H) \setminus \theta(J)| = c \); so that embedding of \(\theta(H) \) into \(\theta(J) \) is rendered impossible.

Proposition 3. The powerset of \(\mathbb{R} \), ordered by set-inclusion, can be realized within the subspaces of \(\mathbb{R} \).

Proof. For each mapping \(f : X \to Y \) we shall make use of the convenient notation \(f'' \) for the corresponding set-to-set mapping (see, for example, [1]) from \(\mathcal{P}(X) \) to \(\mathcal{P}(Y) \) specified by

\[f''(S) = f(S), \text{ where } S \in \mathcal{P}(X). \]

Define also \(u : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}^2) \) by

\[u(H) = H \times \mathbb{R}, \text{ where } H \in \mathcal{P}(\mathbb{R}), \]

noting that it is an order-isomorphism (with respect to set-inclusion) and that, whenever \(H \neq J \) in \(\mathcal{P}(\mathbb{R}) \), \(u(H) \) and \(u(J) \) differ by \(c \)-many points. Choose next a bijection \(v : \mathbb{R}^2 \to \mathbb{R} \) and observe that \(v'' : \mathcal{P}(\mathbb{R}^2) \to \mathcal{P}(\mathbb{R}) \) is an order-isomorphism which maintains “large” set differences in the manner required. Finally, with \(\mathcal{F} \) as described above and \(A \) constructed within \(\mathbb{R} \) by the lemma, a bijection \(u : \mathbb{R} \to A \) yields a third order-isomorphism \(u'' : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(A) \).

Combining these maps, we derive

\[\theta = u''v''u \]

which is an order-embedding of \(\mathcal{P}(\mathbb{R}) \) into \(\mathcal{P}(A) \). Now \(H \subseteq J \) in \(\mathcal{P}(\mathbb{R}) \) implies that \(\theta(H) \subseteq \theta(J) \) and, consequently, that \(\theta(H) \leftrightarrow \theta(J) \); but on the other hand,

\[H \nsubseteq J \text{ in } \mathcal{P}(\mathbb{R}) \text{ implies } |\theta(H) \setminus \theta(J)| = c \]
which in turn shows, using the lemma, that no member of \mathcal{F} can map $\theta(H)$ into $\theta(J)$. Lastly, if $\theta(H)$ were homeomorphically embeddable into $\theta(J)$, the Lavrentiev theorem would guarantee the extension of that embedding to a member of \mathcal{F}: a contradiction which establishes:

$$H \subseteq J \quad \text{if and only if} \quad \theta(H) \leftrightarrow \theta(J)$$

as required. \(\square \)

Note. Of course, every subset of the poset $(\mathcal{P}(\mathbb{R}), \subseteq)$ is similarly realizable within $(\mathcal{P}(\mathbb{R}), \leftrightarrow)$. An immediate consequence is:

Corollary 4. Every poset E of cardinality not exceeding \mathfrak{c} can be realized within $(\mathcal{P}(\mathbb{R}), \leftrightarrow)$.

Proof. First, augment E if necessary to have exactly c elements. Then represent E within $\mathcal{P}(E)$ in the standard way by defining, for each $x \in E$,

$$e(x) = \{ y \in E : y \leq x \}.$$

\(\square \)

References

