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Abstract-Bifurcations and the structure of limit sets are studied for a three-dimensional van der 
Pol-Duffing system with a cubic nonlinearity. On a base of both computer simulations and theoretical 
results a model map is proposed which allows one to follow the evolution in the phase space from a 
simple (MomSmale) structure to chaos. It is established that appearance of complex, multistructural 
set of double-scroll type is stipulated by the presence of a heteroclinic orbit of intersection of the 
unstable manifold of a saddle periodic orbit and stable manifold of an equilibrium state of saddle 
focus type. 
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1. INTRODUCTION 

Nowadays, there exists a specific interest to the study of dynamical systems with chaotic behavior. 
The stimulating factor is that the phenomenon of dynamical chaos is typical in a sense and it i:s 
found in many applications. Usually, there appear difficulties with the answer to the following 
question: which limit sets the stochastic behavior is connected with and what is the mechanism 
of the transition from regular oscillations to the stochastic regime? Rigorously, the mathematical 
image of stochastic oscillations may be an attractive transitive limit set consisting of unstablfe 
orbits, that is a strange attractor. The well-known example is Lorenz attractor [1,2]. 

However, very often the appearance of chaos is connected with more complicated mathematical 
object: with a limit set containing nontrivial hyperbolic sets as well as stable periodic orbits (the 
latter may be invisible due to small absorbing domains and large periods). Such limit sets 
may generate stochastic oscillations because of the presence of perturbations stipulated by the 
inevitable presence of noise in experiments and by round-off errors in computer modelling. These 
limit sets are known as quasiattractors [3,4]. 

A typical example of a quasiattractor is the so-called Rossler attractor arising after a period- 
doubling cascade. Another example is the spiral attractor which, somehow, is a union of the 
Rossler attractor and the unstable limit set near a homoclinic loop of a saddle-focus [5]. Also, 
if two spiral quasiattractors unite including the saddle-focus together with its invariant unstable 
manifold, then a more complicated set arise which is called double-scroll [6]. 

The quasiattractors listed above are not abstract mathematical objects but they correspond 
to real processes visible in experiments as well as in computer simulations with, for instance, 
well-known Chua circuit (Figure 1). The study of this circuit was mainly carried out for the 
case of piecewise linear approximation of the nonlinear element (7-91. Note that the interest 
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Figure 1. Circuit diagram for the chaotic van der Pol-Duffing oscillator. 

to the piecewise linear representation is, apparently, connected not with the technical aspect 
of the problem but with the idea of the applicability of analytical methods for this case. It 
happened so, nevertheless, that the complexity of the analytical expressions arising here is too 
high, the immediate analysis of them is quite difficult and it cannot actually be done without 
use of numerical methods. In fact, the direct computer simulations of the differential equations 
has appeared to be more effective. Note also that the piecewise linear approximation does not 
allow one to use the full capacity of the methods and results of the bifurcation theory developed 
mostly for smooth dynamical systems. All this was the reason why the characteristic of the 
nonlinear element was modelled in [lo] by a cubic polynomial which retains main geometrical 
features of the piecewise linear approximation. This choice gave the possibility to study local 
bifurcations by analytical methods, and then, by numerical simulation to show the presence of 
global bifurcations, in particular, those which indicate chaotic dynamic. 

The scope of the present paper is to study main bifurcations and the structure of 1im:it sets for 
the following three-dimensional system: 

k = P(dY - x> - h(r)), j, = g(x -Y) + z, i = -y, U-1) 

where p, g,cr are positive parameters describing the aforementioned electronic circuit for the 
cubical h(z) = az(z2 - 1) approximation of the nonlinear element. The parameters /3 and g 
are connected with the physical parameters of the circuit: p = C1/C2, g = G/wCl, where 
w = l/&E2. 

In spite of intensive theoretical and experimental studies, the question on principal bifurcations 
which the birth of the double-scroll quasiattractor in the model is connected with is not quite clear 
till now. The usual explanation based on Shil’nikov theorem [ll] concerning with the bifurcation 
of saddle-focus homoclinic loops is not completely satisfactory here because the hyperbolic set 
lying near the loop is not attractive. Therefore, the establishing of the presence of such loops is not 
sufficient for the existence of chaotic attractor. It will be shown, for instance, that for system (l.l), 
there exists a region in the parameter space where the bifurcational set corresponding to a single- 
round homoclinic loop of a saddle-focus lie, and Shil’nikov conditions are satisfied, but there is 
no chaotic attractor and most of orbits tend to a stable limit cycle. 

In the present paper, there is established that the appearance of the double-scroll is connected 
with the presence of heteroclinic orbits of intersection of two-dimensional invariant manifolds of 
the saddle-focus and a saddle periodic orbit. In one case, this is one of periodic orbits lying in the 
Rossler attractor; it also may be a symmetric periodic orbit arising through a condensation of 
orbits. This assertion is based on the study of a model map by the use of which the birth and the 
structure of an attractive limit set can be described which is the intersection of the double-scroll 
with a cross-section. 
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Figure 2. The double-scroll quasiattractor. 

Note that the double scroll contains the saddle-focus which may have homoclinic loops; also, 
the double-scroll may contain structurally unstable homoclinic orbits of saddle periodic orbits. 
By virtue of [12-141, this implies that stable periodic orbits may appear in the double-scroll and i-t 
is, therefore, a quasiattractor [15]. This is the reason why the bifurcational set which corresponds 
to the birth of the double-scroll and which is a smooth curve contains a Cantor set of points of 
intersection with bifurcational curves corresponding to the situation where the one-dimensional 
separatrix of the saddle-focus belongs to the stable manifold of some nontrivial hyperbolic set. 
In the adjoint intervals, the separatrix, apparently, tends to one of the stable periodic orbits. A 
component of the bifurcational curve of the birth of the double-scroll can also be found which 
corresponds to the tangency of the stable and unstable manifolds of the hyperbolic set. 

2. THE SCENARIO OF TRANSITION TO CHAOS 

2.1. Local Bifurcations 

Consider the sequence of the basic bifurcations with which the appearance of complex limit 
sets is connected. We begin with the study of equilibrium states. When g > (Y, there exists onl,y 
one equilibrium state 0 in the origin. When g < CX, there also exist two symmetric equilibrium 
states 01,02 with the coordinates xT,~ = kv’m, y* = 0, z:,~ = rdm. In tMs 
region of the parameter space, 0 is unstable: it is a saddle or a saddle-focus with one positive 
characteristic exponent. The one-dimensional separatrices of 0 will be denoted as Pi, i = l,:!, 
and two-dimensional stable manifold of 0 will be denoted as W3 (0). 

On the line g = (Y, the characteristic equation of 0 has one zero root for p # l/a2 and iit 
has two zero roots at fi = l/(.y 2. We denote this point on the parameter plane (p,g/a) as TIT 
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Figure 4. The global bifurcation diagram on p - g/a plane at a = 0.2. The 
points TH, DHo and the curves HO, HI, SN, sn, and SL are the same as in Fig- 
ure 3. The curve D1 is the curve of a period-doubling, D2 is the curve of secondary 
period-doubling, Ra is the curve of the birth of Ftossler attractor as a result of an 
infinite sequence of period-doublings, Ba is the curve of the birth of the double-scroll 
quasiattractor, and Da is the curve of the death of the double-scroll. 

(Takers-Harozov) . The bifurcations in a neighborhood of this point are known [16,17] to be 
determined by the following normal form on the center manifold: 

i = y, G = ex + py + ax3 + yx2y. 

In our case, for system (l.l), we have a = -l/a2, y = 3((r2 - l)/cr3, and the bifurcation 
diagram corresponding to cr < 1 has the form shown in Figure 3 [16,17]. Note the presence of 
the curve SL which corresponds to a homoclinic loop of the saddle 0. In a sufficiently small 
neighborhood of the point TH, the saddle value is negative in 0, so a stable limit cycle is born 
from the loop. This cycle coalesces with an unstable cycle on the curve sn which corresponds to 
the saddle-node periodic orbit. All bifurcational curves starting with the point TH are continued 
outside its small neighborhood. 

2.2. The Bifurcation Diagram 

Let us now consider nonlocal bifurcations. A calculation of the first Lyapunov value L(p) 
on the curve Ho shows that there exists a point DHo where the Lyapunov value vanishes. On 
the segment TH-DHo, we have L(p) > 0, and L(p) < 0 above the point DHo. A bifurcation 
curve SN that corresponds to a symmetric periodic orbit with one multiplier equal to +l goes 
from the point DHo. To the right of this curve, there exist two symmetric periodic orbits: the 
stable periodic orbit I’s and the saddle periodic orbit Lo. When moving on the parameter plane 
near the point TH, the latter disappears on the curve SL (in the region g < o). 

The bifurcation diagram is shown in Figure 4. The main phenomena mentioned above are 
connected with the curve SL. There exists a bifurcation point B on SL which correspond to the 
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saddle exponent v = - Re Xi,z/Xs equal to unity where X, Xl,2 are the characteristic exponents 
of the saddle-focus 0. According to [18], below the point B there exists a nontrivial hyperbolic 
set in a neighborhood of the homoclinic loop of the saddle-focus. It follows from [Is] that 
below the point B, there exist infinitely many bifurcational curves 1, and lij+r corresponding 
to multiround homoclinic loops and infinitely many bifurcational curves sni corresponding to 
saddle-node periodic orbits. 

Different types of bifurcation sequences leading to chaotic dynamics were described in [5]. In our 
case, one of the typical scenarios can be: equilibrium state-periodic orbit-period doubling- 
chaos, as well as the scenario connected with structurally unstable Poincare homoclinic orbits 
arising before the period-doubling cascade finishes (see, for instance, [19]). 

We describe here (following [5]) th e main features of the first scenario. We will trace the 
periodic orbit Pi which is born from Oi. Note that Pi is the boundary of the unstable manifold 
IV‘(Oi); it is also the limit set for a separatrix of the saddle-focus 0. Later (when the parameter @ 
increases) the multipliers of this periodic orbit become complex-conjugate which lea.ds to that 
the manifold W“(Oi) become winding onto Pi. Next, on the curve Dr, the period-doubling 
bifurcation happens with the orbit Ii, and then the period-doubling cascade starts. Tlhis process 
leads to the appearance of two nonsymmetric Rossler attractors Ml and Mz which inherit to PI 
and P2. 

In the parameter region where the quasiattractor Mi is separated from the other by the stable 
manifold IV(O), it is a limit set for W”(Oi) as well as for the one-dimensional separatrix Pi. The 
beginning of the birth of a symmetric quasiattractor is the tangency of W”(Or) with IV(O) along 
a heteroclinic orbit (due to the symmetry, there appears also a heteroclinic orbit of tangency of 
WU(02) with Ws(0)). When the parameter varies, each of this heteroclinic orbits Isplits onto 
two transverse heteroclinic curves. In this situation, both one-dimensional separatrices Pi and I’2 
of the saddle-focus 0 belong simultaneously to the boundary of each of the manifolds IV‘(Oi). 

3. THE MODEL MAP 

In this section, we propose a geometric model which reflects main features of system (1.1). On 
the other hand, our construction is interesting itself and it may be considered as a realization of 
the object called “confiner” in [20,21]. 

Suppose that smooth dissipative system X possessing a center symmetry has a sa.ddle-focus 
equilibrium state 0 with the characteristic exponents Xi,2 = -X f iw, X3, where X, w, and X3 
are positive. Also, the system is supposed to have a symmetric saddle periodic orbit L,a. Assume 
that the stable manifold W’(Le) of the periodic orbit is homeomorphic to a cylinder and the 
saddle-focus 0 lies inside the cylinder. We also suppose that outside W’(Le) there is a stable 
symmetric periodic orbit Pc, as in system (1.1). 

Let D be some cross-section on which Cartesian coordinates (z, y) can be introduced such that 
the line lo : y = 0 is the intersection with the manifold W’(0). Denote as pi the point of first 
intersection of the one-dimensional separatrix l?i of 0 with D. Let U(lc) and Ui(pi) be some 
neighborhoods of the line lc and of the point pl, respectively, and let U+(ls) (U-(lo)) be the 
component of U(I c corresponding to the positive (respectively, negative) values of y. According ) 
to [13,15], the map U+(Za) -+ Us defined by the orbits of the system is represented in the 
form 

Z=2*+bl~s~yVcos(w-ln(y)+8i)+~r(2,y), 

g = y* + b2 . cc. yv sin (w . In(y) + 62) + &(z, y), 
(3-l) 

where $i are smooth functions which tend, as y -+ 0, to zero along with their first derivative with 
respect to y. An analogous formula is valid for the map U- (la) -+ Uz(p2). An extrapolation of 
the properties of the local map defined by (3.1) leads to the following construction which is in a 
good agreement with the results of computer simulations. 
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Consider two components D+ and D- into which the cross-section D is divided by the line le; 
i.e., D = D+ U D- U lo. We have D+ = {(z,y) 1 IzI 5 c, 0 < y 5 h*(x)}, D- = {(z,y) 1 1x1 5 
c, -h(s) 5 y < 0}, where y = h*(z) is a component of the intersection of the stable manifold 
IV(&) with D. The orbits of the system define the maps T(p)+ : D+ + D,T(p)- : D- + D, 
and Z’(p)+ and T(P)- are written as 

and 
f = f-(&YIP), G = 9-b Y, PI, 

respectively; here, f+, f-, g+, g- E CT, and p = (p(‘),~(~)). 
The following properties are assumed for these maps. 

1. T+ and T- can be defined on lc so that lim,,+sT+M(s, y) = (z*, y*), lim,,-sT-M 
(GY) = tz**, -y*), where pi(z*, y*) and ps(z**, -y*) are the points of first intersection of 
the one-dimensional separatrices of the saddle-focus 0 with D. We suppose that T depends 
on ~1 in the following way: the first component of p moves the point Pi in vertical direction 
and the second component of p moves it in horizontal direction. 

2. Each of the areas D+, D- is represented as a union of an infinite number of regions SC, 3; , 
ST, sy, si+ = {(Z,Y) I 1x1 I c, 5;+1 I y < Ci*}, q- = {(GY) I 14 I c, 3; < y I -E;+l}, 
i=l ,***1 where <; = h*(z), lim+,oo l<fl = 0. The map T+ or T- acts so that the image 
of any vertical segment with one end-point on Ze has the form of a spiral winding at the 
point pr or ps, respectively. The boundary -$ : y = [Zr,, of two adjoining regions StS$, 
is chosen such that z = 0 if and only if (2, y) E $, and T*y* is a segment of a curve of 
the form 2 = hi(y) where [%I =< 1. 

Introduce the following notations: 

DI = { (z,Y) I --c I x 2 -;, IYI < h(z)}, D2 = { (GY) I ; 5 2 I c, Iyl < h(z)}, 

D+ = D+ (7 Di, 0%: = D- n DI, 

T s T* I D*, (f*,g*) = (f,g), Si E Si’, ^li = 7’. 

Let S$ (SF) be that part of S$ (3;) on which TS$ E D1 (TS; E Dz). Suppose that the 
map T satisfies the following additional conditions: 

3. TD1 c D,TDz c D; 
4. I$$1 < 1; 
5. ri = ~(Tyi,Tyi+l) > qc,‘, q > 2, i > 1; 
6. in Si there can be selected a set ui such that the following inequality is fulfilled everywhere 

on ci: 

Ml ’ 17 l- llfd7,‘11 < q/l/f,?G’11~ /1wsarq; 

7. p1 E so+, p2 E s,-. 

Note that Condition 2 is fulfilled near the line 20 (i.e., for the sets Si with i sufficiently large) 
by virtue of (3.1). Conditions 3-5 are also automatically fulfilled near Ec if the saddle index 

J’ = -&&,2/x3 is less than unity in the saddle-focus. Moreover, in this case rq<z -+ 00 
as i + 00; in other words, q 4 co as i ---) 00.~ 

The fulfillment of Condition 6 means that, for those parameter values for which there exist i 
and j such that the map cri + Oj is defined, the operator xj : Hi(L) -+ Hj(L) is contract- 

lThe validity of such a model can be verified by computer simulations. It occurs that the contraction in horizontal- 
direction is so strong that the images of the area z = d&$/Z under the action of the Poincare map have, in 
natural scale, the form of one-dimensional curves (Figures 5b-8b,l2b). 
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ing [22,23], where Hi(L) is the space of the curves y = p(z) lying in ai and satisfying the 
Lipschitz condition with some Lipschitz constant L. 

For system (l.l), one can see that the divergence Div = p(cr - g) - g of the vector field in 
the saddle-focus 0 is positive for g < ,&/(l + /?). This implies that 2~ < 1 in this parameter 
region. For us, it is important that v < 1 which, for the case of formation of a homoclinic loop, 
implies [ll] the presence of nontrivial hyperbolic sets and infinitely many Smale horseshoes. 

Let Tk be the restriction of T onto Sk. For those parameter values for which T-y0 c So,Tyo fl 
Si = 0 (i.e., T&‘a c Ss as in Figure 5), in Sc there exists a stable limit set which depends on the 
concrete properties of the map TO. When parameter change so that the image of the boundary “yo 
moves down, with the moment when T-y0 n Sr # 0, there appears the situation analogous to 
the creation of Smale horseshoe (Figure 6). In addition to the hxed point Mr = T~,bf~, saddle 
periodic points Mik = T,k o TiMik, 1 < k 2 k+ arise in Sr and So. The appearance of these 
points implies the creation of a nontrivial hyperbolic set due to formation of a heteroclinic contour 
composed by heteroclinic orbits of intersection of the stable (unstable) manifolds of each of these 
points with the unstable (stable) manifolds of each other point. 

‘0 

(a) The theoretical model. (b) Computer simulations. 

Figure 5. The Poincarb map on the semiplane r = fll - g/a), y > fil -g/a)@ - 
l/4)/20 for the parameter values lying to the left of the bifurcation curve D1. 

The further lowering of the curve Tyc implies the appearance of periodic points Ms, = T o 
TzM2,, n > k, in So and S’s, and so on. The structure of the limit set becomes more and more 
complicated but it remains in the region D, + for the moment when the unstable manifold of the 
point Mzn will have a tangency with lo (Figure 7). After the moment of tangency of ToSonlo # 0 
and TI& n lo # 0, there appear preimages To -‘lo and Tr’lo of the line Ze in SO and Sr near the 
boundary 7s. These preimages intersect the unstable manifold of the nontrivial hyperbolic set. 
Thus, the preimages of lo will accumulate on the leaves of the stable manifold of the hyperbolic 
set. Besides, those parts of St and Sf which are bounded by the curves Tc’Zo and Tcllo axe 
mapped by T+ into D- (i.e., in the region where the map T- acts). Due to the symmetry, the 
analogous parts of ST and SF are mapped into D + by T-. Thus, two symmetric attractors are 
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p=16.0 g=O.85 a=0.2 

(4 (b) 

Figure 6. As Figure 5 with values of p and g/a lying to the right of the curve Dl. 

b=16.851355 g=O.85 a=0.2 

TYO 

(4 O-4 

Figure 7. As Figure 5 with values of /? and g/a lying on the curve I3A. 

now united (Figure 8). The limit set newly created is the double-scroll attractor which we will 
consider in the next section. 
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-h, 

p=16,852 g=,85 a=,2 

(b) 

Figure 8. As Figure 5 with values b, g/a lying to the right of the curve BA. 

4. THE STRUCTURE OF THE LIMIT SET 
Denote the region bounded by the lines Tcl lo and Tc’la as ho. Consider the regions 

(a) hg and hh which are the connected components of ho\yo; 
(b) Q1 = uzlSi. 

Let k be the number such that the point pl belongs to Tc’(Q, U hz). Denote 

kf = max {k 1 T;” (QI u hi) ~TISI # 0, Tyl I-IT,-” (91 u h;) = i-4+- 
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and 

h&T;‘oT;” 
k=l 

. 

By these definitions, kt > E is the maximal number such that Tryi II Ti”:(Qi u he) = 0 

and Tiyr n T;“:-‘(Ql u ho) # 0; and RI is the complement to the preimage of the regions 
Tik(Ql U ht) with respect to the map 2’1. 

Let X C DF be a region bounded by two vertical segments lying on the boun&ries of Dt and 
by two horizontal lines lying between Pys and Fyi. Let X0 and Xi be the intersections TSo n X 
and TS1 I? X, respectively. If Tri fl Xj = 0, i, j = 0, 1, then the left and right boundaries of these 
sets again will lie on the corresponding boundaries of Dt. 

We define inductively the subsets of D1 such that if a point belongs to such subset, this will 
determine its behavior under the action of the map T. 

(1) Xf = Xi, i = 0, 1, 
(2) Xi = T;l(Xi-l n T&). 

Evidently, Xi1 is the Zith preimage of Xi with respect to Ti. Analogously to (l), we denote 
Xi1 n TSj = (Xi’):. Applying 1s - 1 times, the map TJF’ we obtain, analogously to (2), the set 
(X,‘l )y , or omitting parentheses, Xf,:‘r2. Thus, 

m1,m2 ,..., mr-1,l 
(3) Xn,,,, ,..., me-1,ni = T,-,l(X:tA’?:;E;Y n TS,,), where ni = 0,l; 0 5 mi 5 kr if ni = 0, 

and rni E z if ni = 1. 

The set of regions defined’by (3) is in one-to-one correspondence with the set of infinite (to 
the left) sequences of zeros and units with the restriction that the length of complete strings of 
zeros must not be greater than kf (because mj 5 kt if nj = 0; see (3)). 

As the region X, one can, for instance, take the region Si because Si n TSo # 0 and S,n 
TlS1 # 0 in the situation, where T+yo lies below le. By the above scheme (l)-(3), the set 
((SI)$~.) of regions (Sl)Zs is constructed, where m, = (ml, mz,. . . , mis), n, = (ni,nz,. . . ,n,) 
are multi-indices. The limit s --) co corresponds to a set ST which is in one-to-one correspondence 
with the set of sequences infinite to the left, composed by zeros and units with the restriction 
that the length of any complete string of zeros does not exceed kr. 

The set 5’: consists of invariant fibers; it can also be shown by the use of Condition 6 that the 
set S; contains a nontrivial hyperbolic set: each fiber contains exactly one point of this set. Note 
that the nonwandering set is not, in principle, exhausted by the orbits of Sr. 

The following lemma describing the structure of the decomposition of ,571 onto regions corre- 
sponding to different types of orbit behavior is evident. 

LEMMA 3.1. The region S1 is a union of the following sets: 

(a) Si-the set of stable fibers; the set of points whose orbits never leave SO U Sr under the 
action of the map T; 

(b) H’ = hh u (UsI n &--the set of points whose orbits leave 0: and enter DT after 
a finite number of iterations; 

(c) R; = u(R1)T) n &-the set of points whose orbits enter RI after a finite number of 
iterations; this set may contain stable periodic orbits; 

(d) Q; = ~si(Qi\Si)z n &-the set of points whose orbits enter one of the regions Sip 
1 < i < 00 after a finite number of iterations; and 

(e) L; = Undo n Sl-the set of preimages of the discontinuity line lo, where m, = 
(ml,m2,.. .,mj,), n, = (nl,n2,. .., n,), mi E (0, l}, mj* = 1; 1 5 ni 5 kf if mi = 0 
unj E Z, if mi = 1. 

As it follows from Lemma 1, the sets Q; U Hi U R; give the adjoint intervals in Si for the 
Cantor discontinuum of the set St of stable fibers of the nontrivial hyperbolic set. Evidently, if 
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“S, 

. . . . . 
Figure 9. The decomposition of the region 5’1 onto the regions corresponding to 
different behavior of orbits (an illustration to Lemma 3.1). 

pr E H,‘, then after some number of iterations the point pr will lie below the line la and the next 
part of its orbit will be defined by the map T-. If pr E S; (i.e., if it belongs to some stable fiber), 
then there exist arbitrarily small perturbations which move the point pr into Hf. Hereat, the 
point pi will cross preimages of the discontinuity line lo. Thus, after a number of iterations, the 
point pr may be mapped close to the line lo, at a distance which is less than perturbations present 
in the system, and the behavior of the following iterations of pi will not be defined uniquely. 

For the set Ss, there can also be found the number k such that TG”(S1 U 52) n TzS2 # 0 and 
Ttk(Sl U Sz) n T(yl U ys) = 0. In this case, Sz will contain the preimage T<’ oTrkS1, together 
with the preimages of the regions Si, i = 1,2,. . . , hc and (RI); defined by Lemma 1. 

The same may hold for the other regions SZ; i.e., there exist rfi, j; and k; , k+ (1 5; k; 2 k:, 
1 < i < ?ii, 1 5 jf 5 i - 1) such that the following situation takes place for ki 2 k < kr 
and 1 < i 5 jfL: TckSj f~ TiSi # 8, T{“(U. j;<iSj) n T(ri U ~i+l) = 8. As in Lemma 1, the 
decomposition of the region Si onto the sets Si, ho, Si/ui, i = 1,2,. . . ,751, and Qm = Ug,,Qi can 
be done. Note that any region Si, 1 < i 5 iF, will contain preimages of the regions Sj, j < i 
(Figures 7-9). 

To describe the set of preimages of the discontinuity line Zc and the regions Si, we consider the 
graph G defined in the following way [23]. Each region Si is represented by the vertex ai; the 
saddle-focus 0 is represented by the vertex 0 with the edge 8 which starts and ends in 0; the 
maps TJT’ o TrkSi: Si -+ Sj are represented by the edges itj if these maps are defined and if 

T(yj U Tj+l) n T, -kSi = 0; if Tcklo n Si # 0 and TckZo n T(yi u yi+r) = 0, then also the edges i 
and 2 are constructed (Figure 10). 

Simultaneously, we consider the graph G, which obtained if to retain only that edges sfj of G 
for which TJy’ o TrkSi c oj. We also retain only those vertices for which there exist at least one 
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Figure 10. The graph Go. 

edge entering the vertex and at least one edge leaving the vertex; all the other are eliminated 
with the adjoining edges. 

By definition, each of the edges 6$ of G, corresponds to the map TJ:’ o Ttk : cri -+ aj which 
is saddle on Ui by virtue of Condition 6. Due to [1,23], we arrive at the following theorem. 

THEOREM 3.1. The system X, has a nontrivial hyperbolic set which is in one-t&one correspon- 
dence with the set of infinite paths along the edges of G,. 

The next theorem shows the nontrivial character of the bifurcational set on the parameter p 
plane. 

THEOREM 3.2. There exists a countable set of bifurcational curves corresponding to the presence 
of homoclinic loops of the saddle-focus 0 and a Cantor set of bifurcational curves corresponding to 
the situation where the one-dimensional separatrix of the saddle-focus lies on the stable manifold 
of a nontrivial hyperbolic seL2 

Proof. Let ,UO be the value of p at which w”(&&) have a tangency with W’(O). Let ~1 vary so 
that the point PI(~) traces a vertical line V: p c2) = 0, ~0 < p< p* such that on the upper bound 
of the line the point pi(p) belongs to the preimage of the upper bound of Si, and on the lower 
bound of the line, the point PI belongs to the preimage T<‘yi of the lower bound of Si. For all 
p E TJ, we have PI(~) E T{hSi, i > 1. By virtue of Condition 5, TckSj n TiSi # 8, j 2 i. Denote 
T;’ o Ttk as Tik. If PI(~) E TckSi, this map is defined on the set Uj”,iSj, and the fixed point 
Mik = Tcl oTc’h/l,$ exists in Si. We denote the stable manifold of this point as W”(M&). This 
stable invariant fiber is a topological limit for the preimages T%;Sj, J > i. Evidently, the size of 

*On the structure of the bifurcational set corresponding to homoclinic loops of systems close to a system with a 
saddle-focus homoclinic loop, see also [24]. 
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the set T,%Sj, j 2 i tends to zero as n -+ 00. The preimages TikSj, j > i lie either below IV/, 
if the map Tt o Ti acts in an orientable way (i is even), or from both sides if the map Tt o Ti is 
nonorientable (i is odd). 

Suppose, for more definiteness, that PI(~) lies above IV!. Evidently, for some p*, P~(,u*) E 
Ws(M&). Then, TjSj n IV(Mik) # 8 at /J = /J* for any j > i. Since It,,, T$Sj = IV:, there 
exists an integer N such that the first return map on the set Tt o Tif Uyzi Sj acts as a Smale 
horseshoe map on each pair of adjoining regions Sj and Sj+r (Figure 11). 

-------B---v, -------B---v, 
-------------- -------------- - - I,l,l:: I) z : .T,” .T,” 1, 1, 

,A$$ ..t:‘:::t,., ,.. ,.. I, I, ,> ,> ,, (. (j, j ’ ,, (. (j, j ’ : )O 0”. : )O 0”. %1P,1 %1P,1 : (3 : (3 i.+., :.-~ i.+., :.-~ 
Figure 11. The existence of infinitely many Smale’s horseshoes at the moment when 
the one-dimensional separatrix of the saddle-focus belongs to the stable manifold of 
the saddle periodic orbit lying in the region Ti’S’i. 

For ~1 close to /.J*, a large finite number m of the horseshoes is preserved. Therefore, for all 
close p, in the set Tt oyk(Sj U Sj+r), i 5 j 5 i + m, there exists a Cantor set MTm(bb) of stable 
invariant fibers of a nontrivial hyperbolic set which, in turn, serve as limits for sequences of the 
lines .Ck of preimages of the discontinuity line le. When ~1 varies, the point PI(~) intersects all 
these lines and each intersection corresponds to one of the bifurcation prescribed by the theorem. 
The theorem is proved. 

5. THE DEATH OF THE SPIRAL QUASIATTRACTOR 

After the bifurcation of the appearance of the heteroclinic orbit L, that belongs to the in- 
tersection of the unstable manifold of a saddle periodic orbit and the stable manifold of the 
saddle-focus 0, the set T+ho E D- n Dr (analogous to the set hi in D-) will be mapped into 
D+ n 0s and its image by the map T+ will have a spiral shape, winding to the point PI(~), 
and will lie in D+ n D1. When the distance to the bifurcational set in the parameter space that 
corresponds to the birth of the heteroclinic orbit L, grows, the curves T:^lo+ and T{yi; will move 
far from the line le. Consequently, the set hi(&) will contain more and more preimages of the 
regions SF n Dl(ST n Dz) corresponding to decreasing j. Finally, the moment happens when a 
structurally unstable heteroclinic orbit appears at the points of which the unstable manifold of 
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the point A& has a tangency with the stable manifold of the symmetric periodic orbit L (Fig- 
ure 12). After that, the region D is no longer an absorbing domain because there appear regions 
in D for the points of which the stable periodic orbit FO is the limit set. These regions are the 
preimages of the region Go E ho bounded by the curves T;‘(S, n W8(Lo) II Tcl(S1 n W8(Lo). 

‘ho 

p=21.06 g=O.9 a=0.2 

(a) The theoretical model. (b) Computer simulations. 

Figure 12. The moment of death of the double-scroll. Here, a heteroclinic orbit 
appears which tends to Lo ss t --) co, and tends, as t -* -00, to a saddle periodic 
orbit whose unstable manifold is the boundary of the nontrivial hyperbolic set. A4o is 
the fixed point; W”(Mo) is the stable manifold of the fixed point MO, W”(Mo) is 
the unstable manifold of the fixed point Mo; the points lying upper Wd(Mo) tend to 
stable cycle Fo; Mh is the closed point to the nonrough heteroclinic point; TMh is 
following iteration of the point Mh. 
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