offset in four of the six studies (median, −$21; range −$35 to −$0.50). In one case, the GI event offsets (due to the unusually high cost of treating minor GI) were greater than the additional cost of the coxib. CONCLUSIONS: Variation in drug acquisition cost of NSAIDs relative to coxibs was more important in contributing to the variation in results but the variations in clinical inputs and in costs of GI events were also important. More investigation into the reasons for differences in costs and clinical input is needed.

EVALUATION OF MEDICATION ADHERENCE IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE
Kim IW1, Livengood KB2, Nichol MB2
1University of Southern California, School of Pharmacy, Los Angeles, CA, USA; 2Pfizer Inc, New York, NY, USA

OBJECTIVES: Although there has been research published on the topic of medication adherence in chronic obstructive pulmonary disease (COPD), nothing in the literature describes the association between patient-reported adherence and clinical outcomes. This study examines the relationship between two patient-reported adherence measures and clinical outcomes in COPD.

METHODS: Three-hundred and twenty COPD patients from seven geographically diverse sites across the United States were enrolled from April 2003 to November 2003 and administered both the Morisky Medication Adherence Scale (MMAS) and Inhaler Adherence Scale (IAS) questionnaires. Subsequently, retrospective chart review was conducted to collect demographic, laboratory, and clinical data for each participant. The association between patient-reported medication adherence and FEV1 and FEV1 % predicted was determined using both ordinary least squares (OLS) regression and a parametric two-step sample selection model.

RESULTS: Both the MMAS and IAS indicated the majority of participants appear to be adherent with their medication regimen. The results derived from the two-step sample selection model demonstrated that every one-point increase in IAS score was associated with an increase in both FEV1 (p = 0.0003) and FEV1 % predicted (p = 0.0041). Medication adherence, as measured by the MMAS, was not associated with a significant change in either FEV1 or FEV1 % predicted.

CONCLUSIONS: The IAS appears to be a tool that clearly demonstrates the association between patient-reported medication adherence and significantly improved clinical outcomes in COPD. The IAS also appears to be superior to the MMAS in this respect.

CHOOSING BETWEEN SF12/SF-36 PREFERENCE-BASED ALGORITHMS FOR COST-UTILITY ANALYSIS
Pickard AS1, Wang ZX2, Lee TA3, Walton SM1
1University of Illinois at Chicago, Chicago, IL, USA; 2Hines VA Hospital, Hines, IL, USA

OBJECTIVES: The purpose of this study was to illustrate how decision-making could be affected by the choice of preference-based algorithms for the SF-36 and SF-12, and provide some guidance on selecting an appropriate algorithm.

METHODS: Two sets of data were used: 1) a clinical trial of adult asthma patients; and 2) a longitudinal study of post-stroke patients. Incremental costs were assumed to be $2000 per year over standard treatment, and QALY gains realized over a 1-year period. Ten published algorithms were identified, denoted by first author: Brazier (SF-36), Brazier (SF-12), Shmueli, Fryback, Lundberg, Nichol, Franks (3 algorithms), and Lawrence. Incremental cost-utility ratios (ICURs) for each algorithm, stated in dollars per quality-adjusted life year ($/QALY), were ranked and compared between datasets. RESULTS: In the asthma patients, ICURs ranged from Lawrence's SF-12 algorithm at $30,769/QALY to Brazier's SF-36 algorithm at $63,492/QALY. ICURs for the stroke cohort varied slightly more dramatically. The MEPS-based algorithm by Franks et al. provided the lowest ICUR at $27,972/QALY. The Fryback and Shmueli algorithms provided ICURs that were greater than $50,000/QALY. The ICUR-based ranking of algorithms was strongly correlated between the asthma and stroke datasets (r = 0.69). CONCLUSIONS: SF-36/SF-12 preference-based algorithms produced a wide range of ICURs that could potentially lead to different reimbursement decisions. Brazier's SF-36 and SF-12 algorithms have a strong methodological and theoretical basis and tended to generate relatively higher ICUR estimates, considerations that support a preference for this algorithm over the alternatives. The “second-generation” algorithms developed from preferences mapped from other indirect preference-based measures tended to generate lower ICURs that would promote greater adoption of new technology. There remains a need for an SF-36/SF-12 preference-based algorithm based on the US general population that has strong theoretical and methodological foundations.