
Journal of Pure and Applied Algebra 78 (1992) 275-290 

North-Holland 

275 

Algebraic functor slices 

V. Koubek’” 
MFF KU, Malostranske n&r. 2S, 118 00 Praha 1, Czechoslovakia 

J. Sichler* 
Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 

V. TrnkovA* 
MfilJK, Sokolovskci 83, 186 00 Prahu 8, Czechoslovakia 

Communicated by F.W. Lawvcre 

Received 26 June 1991 

Abstract 

Koubek. V., J. Sichler and V. Trnkovi, Algebraic functor slices. Journal of Pure and Applied 

Algebra 78 (1992) 275-290. 

Forgetful functors of any two categories of monadic algebras over 3% for which the functor Tin 

a monad T = (T, q, p) is not naturally equivalent to the identity or a constant functor or to 

their coproduct are slice equivalent to one another. In particular. any two forgetful functors of 

nondegenerate varieties of algebras (that is. varieties which possess a term which is neither a 

projection nor a constant) are slice equivalent. 

Introduction 

Classical results by Birkhoff [3] and de Groot [4] show that every group is 

isomorphic to the full automorphism group of a distributive lattice, and to the 

group of all autohomeomorphisms of a topological space. Following Isbell’s ideas 

[9], the concept of a full embedding (that is, a full and faithful functor) has been 

investigated and used to generalize and substantially strengthen various classical 

representations of groups or monoids as automorphism groups or endomorph&m 

monoids of given mathematical structures. 

Early representation results of this kind were summarized in [15]. Following 

this monograph’s terminology, we say that a category X is algebraically universal 

(or alg-universal) whenever any category d&A) formed by all homomorphisms 

between universal algebras of an arbitrary set type A can be fully embedded into 
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YC. Every small category can be fully embedded into YC and, in particular, every 

monoid is isomorphic to the endomorphism monoid of an object from any 

alg-universal category YC. 

Algebraically universal varieties of algebras are plentiful. For instance, the 

category zQ(A) of all algebras of a unary type A = (1, 1, . . .} is alg-universal 

exactly when A has at least two entries; see [S] and [24]. 

Early examples of alg-universal categories include the category YJJI of all 

semigroups [7], and the category L&t of all (0, 1)-lattices [6]. These examples of 

algebraic universality appear already in [15]; more recent results characterize the 

alg-universal varieties of .$yp [12] as those satisfying only permutational identities 

while failing the identity x”yrr = (xy)” for each n > 1, and the alg-universal 

subvarieties of L!Yutt [5] as those containing a lattice without a prime filter. The list 

of alg-universal varieties contains numerous other entries, such as De Morgan 

algebras [l], or varieties of distributive (0, 1)-lattices with two additional con- 

stants [ll]. 

Other recent representation results such as [14], [21], [22], or [23] concern 

simultaneous representations of pairs of categories. An underlying idea of these is 

to investigate both a category SC, whose objects are structured in two different 

ways, and a category YC, obtained from Y”, by deleting one of the two structures of 

YC,. Any such deletion gives rise to a faithful functor K : X, + X2 and, in turn, 

leads to the question of simultaneous existence of a pair of full embeddings 

comparing such functors. 

More precisely, an abstract simultaneous representation problem can be formu- 

lated as follows. 

Given a functor 

for what functors H : S’f, -+ X2 do there exist full embeddings @, : 2, + Xi such 

that the diagram 

commutes? 

Existing simultaneous representations already extend certain classical results. 

For instance, every group G and its subgroup H can be represented by a single 

Tychonoff space X so that H is isomorphic to the group of all autohomeomor- 

phisms of X, while G is isomorphic to the group of all autohomeomorphisms of its 

P-compactification PX [23]. In another example, H is represented by the 
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automorphism group of an algebra A with three unary operations, while G is 

isomorphic to the automorphism group of a reduct A- of A obtained by the 

deletion of one of the operations of A [14]. 

In the latter example, at least two unary operations are needed to represent an 

arbitrary group G, see [15] or [16], while a single unary operation is all that is 

needed to select an arbitrary subgroup H of G. This illustrates a recurring, and 

perhaps even a general phenomenon: to represent a functor H : ii??, + SY.. simulta- 

neously in another one, say K : LX, + X2, the structure of X2 must be considerably 

richer than the additional structure needed to produce X, from YC,. 

We believe that the notion of a functor slice, introduced in [17] and investigated 

here, gauges the type and complexity of an additional structure needed to 

produce simultaneous representations from full embeddings. Various simulta- 

neous representations were justified through an implicit application of functor 

slices [14], and functor slices also served explicitly as building blocks for several 

simultaneous representations in [13] and [17]. 

More recent investigations suggest that functor slices may well offer a classifica- 

tion of functors, particularly of faithful functors into the category Yet of all sets 

and mappings [17]. The present paper aims to illustrate this idea by showing how 

functor slices describe concrete categories of algebraic nature. 

1. Concepts and results 

A commutative diagram of functors 

(1) 

-in which we denote 0 = Ko @, = Q2 0 H - is called a subpullback if, for any 

two objects a and b of the category SC,, the diagram (2) of horn-sets 

(2) 

is a pullback in Yet. 

In other words, a commutative diagram (1) is a subpullback if and only if for 

any a,b EobjZ, and for any h, E B$(H(a), H(b)), k, E X,(@,(a), Q,(b)) with 

K(k,) = Q2(h2) there is a unique morphism h, E &(a, b) for which @,(h,) = k, 
and H(h,) = h,. 
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Definition. We say that a functor H : 2, + SY2 is a slice of a functor K : YC, -+ 3’C, 

whenever there exist faithful functors @, : 2, + Y’, with i E { 1,2} completing the 

diagram (1) to a subpullback. If H is a slice of K and K is a slice of H, the 

functors H and K are said to be slice-equivalent (or s-equivalent). 

To illustrate the terminology and the concept, let us consider the category .Yu,, 

of topological spaces and continuous maps and the category 9’05 of partially 

ordered sets and monotone maps. From [17] we recall the fact that the forgetful 

functor Top-+ Yet is a slice of the forgetful functor 90s + Yet; hence there is a 

subpullback 

of faithful functors. Furthermore, we recall a well-known fact that any faithful 

functor F : Yet + Yet contains a copy of the identity functor I : Yet + Yet in the 

sense that there exists a monotransformation I--+ F. Thus if @,(X,, r,) = 

(F(X,), 5,) for objects (X,, t;) of Fop and i = 1,2, then a mapping f : (X,, t,)-, 

(X2, t2) is continuous exactly when F(f) : (F(X,), -‘,)- (F(X2), s) is monotone 

and, since f : X, - X2 is the restriction of the mapping F(f) : F(X,)-+ F(X2) to 

X, C F(X,), it is natural to visualize the forgetful functor .Yo,LJ+ Yet as a ‘sliced 

off’ section of the forgetful functor Yes-+ Yet. 

It is easy to see that a functor G is a slice of K whenever G is a slice of H and H 

is a slice of K. Hence s-equivalence is a bona fide equivalence, and slices of any 

two s-equivalent functors form the same collection. 

Convention. To avoid verbose statements, in cases of familiar concrete categories 

with standard forgetful functors into Yet we shall say that such categories are 

s-equivalent whenever, in actual fact, the s-equivalence applies to their forgetful 

functors. 

Under this convention, numerous familiar concrete categories fall into several 

‘baskets’ determined by mutual s-equivalence of their members. Proofs of all 

s-equivalences below are quite straightforward and can be found in [17]. 

The basket R contains the following categories: 

S(F) for any faithful functor F : Yet -+ Yet of either variance; we recall that 

objects of S(F) are all pairs (X, R) of sets with R c F(X), and that a 

mapping f : X-+X’ is a morphism of S(F) from (X, R) to (X’, R’) 

exactly when [F(f)](R) c R’ for a covariant functor F while 

[F(f)](R’) c R in the contravariant case; the forgetful functor 

S(F)+ Yet sends (X, R) to the set X; in particular, 
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%[(A’) for an arbitrary positive type A+, whose objects are relational systems 

of type A+ and whose morphisms are all compatible maps; these are 

just categories S(F) for which F is a coproduct of the appropriate 

covariant horn-functors; 

!%dj(A’) for an arbitrary positive type A+; these are full subcategories of 

%[(A’) consisting of partial algebras and their homomorphisms; 

C&s - the category of all partially ordered sets and monotone mappings; 

Fop and all its full subcategories down to the category of all metrizable 

spaces; 

%rq - the category of all uniform spaces and uniformly continuous maps, 

and all its full subcategories down to the category of all complete 

metrizable spaces; 

Jtletr _ the category of all metric spaces and maps which do not increase the 

distance, and all its full subcategories down to the category of all 

complete metric spaces of diameter at most one. 

In the basket A we find: 

&MA+) - the category of all universal algebras of a positive type A’ and all 

their homomorphisms; 

%omp - the category of all compact Hausdorff spaces and continuous maps, 

and all its full subcategories down to the category of all Boolean 

spaces. 

The basket P contains: 

sL!j(A”) - the category of all universal algebras of a nonvoid nullary type A” 

and, in particular, 

Yet, - the category of all pointed sets. 

Let !3!, ~4 and 9 denote the respective collection of slices of any, and hence 

each, forgetful functor of a category from a corresponding basket. It is easy to see 

that Yet I + Yet is a slice of xQ(l)+ Yet and that &h(l)- Yet is a slice of 

S42) + Yet; hence 9 is a subcollection of &, and & is a subcollection of 2. 

These three slice collections differ from one another already on the level of 

one-object categories and, for a functor H : SY, + X2 between small categories, 

[17] demonstrates that: 

(R) 

(A) 

(P) 

H is in 9 if and only if it is faithful, 

H is in C& if and only if H is faithful and obeys Isbell’s Zig Zag 

condition [lo] and [17], 

H is in 9 if and only if it is faithful and satisfies the condition 

(p) for a,b,c E obj X,, if p E %,(a, b) and P E %(H(b), H(c)), 
then p = H(v) for some v E %Y,(b, c) if and only if p 0 H(p) = 

H(a) for some u E %?,(a, c). 

Let g”p denote the dual collection of all opposites H’lp : X~p+ 2’~” to functors 

H : SY, + %?? from a collection S?. While 9?. and ti are self-dual, that is, 53 = 3 ‘I’ 

and &=&“p [17], this is not the case for the collection 9, see (P) above. The 
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collection 9’“’ thus produces a fourth basket, denoted P”“. This basket contains, 

for instance, the subcategory 9&1,(l) of 9&~(l) whose morphisms, in addition to 

the single unary relation, preserve also its complement [17]. 

The purpose of this paper is to enrich the basket A in a following way. 

Theorem 1.1. Let T = (T, 7, /A) be a monad over Yet. If the functor T : Yet+ Yet 
is not naturally equivalent to a constant functor or to the identity functor or to their 

coproduct, then the category YetT of all T-algebras is slice equivalent to &h( 1). 

What monads remain? 

If T is naturally equivalent to a coproduct of the identity functor and a constant 

one with a nonvoid value, then, clearly, LfetT falls into the basket P. If T is 

naturally equivalent to a constant functor, then YetT consists of one-element 

objects. Finally, for a functor T naturally equivalent to the identity endofunctor of 

Yet, the category YetT of monadic algebras is isomorphic to Yet. We call all these 

monads degenerate. 
It is easily seen that the forgetful functor UT : YetT+ Yet is a slice of the 

forgetful functor A!$( 1) + Yet; the converse requires more work. 

To formulate the second result, we recall that a functor U : SC+ Z’is of descent 
type [2] if it has a left adjoint and if the associated comparison functor is full and 

faithful. We say that U : X + 2’ has the transfer property if for any .9-isomor- 

phism A : b+ U(a) there exists a Yt-isomorphism K : ii--+ a such that U(K) = A. 

Theorem 1.1 admits a further generalization, Theorem 1.2, applicable, for 

instance, to the category of all Banach spaces and all linear operators of norm at 

most one, and to the category of all extremally disconnected compact Hausdorff 

spaces (see the remark at the conclusion of the article). 

Theorem 1.2. Let U : X+ Yet be a functor of a descent type with the transfer 
property. If the monad T arising from this adjunction is nondegenerate, then U is 
slice equivalent to the forgetful functor &t$(l)--+ Yet. 

We proceed as follows. First we show that the full subcategory 4nv of d&(l) 

formed by all monounary algebras (X, cp) satisfying cp 0 cp = 1, belongs to the 

basket A. The subsequent Section 3 establishes properties of set functors needed 

to prove Theorem 1 .l. The proof of Theorem 1.1 is presented next; it makes an 

essential use of the fact that Azv determines the basket A. The proof of Theorem 

1.2 concludes the article. 

2. Involutory unary algebras 

Let AQ( 1) denote the category of all monounary algebras, and 9nv its subvarie- 

ty formed by all algebras (X, cp) E &J(l) satisfying (p’(x) = x for all x E X. 
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We aim to show that 5%~ belongs to the basket A. Since 9%~ is a full subcategory 

of &k(l), we need only the claim below to complete the task. 

Proposition 2.1. The underlying set functor d&(l)+ Yet is a slice of the underly- 
ing set functor 9nv+ Yet. 

Proof. We must define functors @ and F so that the diagram 

$!7(1) - Yet 

@ 
i I 

F 

9nv~ Yet 

(3) 

is a subpullback. 

To this end, for any set X, let B(X) denote the free Boolean group over X and, 

for every mapping f : X+ Y, let B(f) : B(X) + B(Y) denote its free extension. 

If U : 93g+ Yet is the underlying set functor of the variety %Q of Boolean groups, 

then the composite G = U 0 B is a well-defined set functor. 

Next we define a functor F : Yet + Yet by 

F(X) = X x G(X) 

for any set X, and 

F(f )k 6) = (f(x), G(f)(b)) 

for any (x, b) E X x G(X) and f : X+ Y. 

Thus F is a set functor such that F( f)(x, 0) = (f(x), 0), and F( f)(x, x’) = 
(f(x), f(x’)) for all x E X and all x’ in the generating set XC G(X) of B(X). 
Define a monounary algebra 0(X, cp) = (F(X), p”) in which the mapping 

‘p# : F(X)+ F(X) is given by 

cp#(x, b) = (x, q(x) + 6) for all (x, 6) E F(X) = X x G(X) . 

Then cp#(cp#(x, b)) = cp#(x, q(x) + 6) = (x, 24x) + b) = (x, b), that is, (cp#)’ = 

id F(xj. Next we define 

Q(f) = F(f) = f x G(f) for all morphisms fin 9nv. 

To verify that @ is a functor, we observe that, for any morphism 

f : M-7 tp)+(Y, !b>, 

F(f)dk b) = F(f)@, 4~) + b) = (f(x), G(f)(+) + b)) 

= (f(x), f+) + G(f)(b)) > 

+%f)k b) = +“(f(x), G(f)(b)) = (f(x), Iclf(x) + G(f)(b)). 
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From fo cp = $ of it now follows that F(f) IS, indeed, a morphism of @(X, cp) into 

@(Y, $). Hence @ : dLj( 1) + 4nv is a well-defined faithful functor and the 

diagram (3) commutes. 

Conversely, let F(f) : (F(X), ‘p#)- (F(Y), $#) be a homomorphism in 4nv. 

Then 

ww(x> 0) = F(f)(x, 4x>> = (f(x), fP(X)> 

must coincide with 

lpF( f)(x, 0) = $“( f(X)? 0) = (f(x), efh)) 

for all x E X, that is, f : (X, cp) + (Y, I,!J) must be a homomorphism in s!$( 1). The 

diagram (3) is, indeed, a subpullback. 0 

Altogether, the variety 4nv belongs to the basket A. 

3. On set functors 

First we recall some well-known facts about set functors F : Yet-+ Yet (see [19] 

and Proposition 11.4 of [ZO]). 

Let P be an arbitrary set, and let const, : Yet+ Yet denote the constant functor 

with the value P. We assume that const,, assigns P to every nonvoid set and the 

identity mapping l,, to every mapping between nonvoid sets. 

Every set functor F has a unique coproduct decomposition associated with the 

set of all natural transformations from the identity functor I : Yet+ Yet into F. If 

1 = (0) denotes the standard singleton, then F decomposes uniquely as a co- 

product 

F=U{F”luEF(l)}, 

of components F”, given, for every set X and its unique mapping cx : X+ 1, by 

F”(X) = F(c,)-‘{ a}. The unique natural transformation n” : I+ F” is then de- 

termined by n’:(O) = a. 

Denote 2 = (0, l}, and let uj : 1 + 2 be the maps with u,(O) = j for j E 2. If 

F”(u,,) # F”(u,), then F” is faithful and 7” is a monotransformation. On the other 

hand, F”(u,,) = F”(u,) implies the existence of a unique d’j, E F”(X) such that 

n;(x) = d’;: for every x E X. 

ForA,,A?~X.leti,:A,~Xandi:A,nA?‘Xdenotethecorresponding 

inclusion maps. Then A, n A2 # 0 implies 

[F”(i,)](F”A ,) n [Fa(i2)](FUA2) = [F”(i)](F”(A, n AZ)) , 
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and hence this is also true for the original functor F. On the other hand, if 

A,#0#A2andA,nA,=0, then 

[F"(i,)](F"A,)n [F"(~~)](F"A~) = (Td.' > 
X 

These observations lead directly to the following claim: 

Lemma 3.1. Let L : Yet + Yet be a functor such that L(1) is a singleton, and let 

77 : I+ L be the unique natural transformation. Tf L is not naturally equivalent to I 

or const(,,) , then there exists a set P for which the functor G = L 0 K with 

K = I x const, has a coproduct decomposition G = G,,LlG, with insertions 

y’ : G,+ G such that 

(a) the functor G,, is faithful, and 

(b) there is a natural transformation p : K+ G, with IJ~ = y ’ 0 p. 

Proof. If n : I+ L is an epitransformation, then either L is faithful and hence 77 is 

a natural equivalence of I onto L, or else n consists of constant maps and L is 

naturally equivalent to a constant functor with a singleton value. Hence we can 

find a set P of the smallest cardinality such that L(P)\q,,(P) # 0; since L(1) is a 

singleton, P must have at least two elements. 

For any x, let b, : P+ {x} x P denote the bijection defined by b,(p) = (x, p). 

Select some q E Q(P) = L(P)\vr(P) and denote q, = [L(b,)]( q). 

Set K-Zxconst, and G=LoK. Then G=U{G”[~EG(~)}, and we can 

define G,,=U{G”IaEQ(lXP)} and G, =u{G” [aE~,~~,(l x P)}. Hence 

G = G,,IlG, as claimed. Next, let p : K- G, be the natural transformation 

determined by p,(k) = 7, .,,(k) for k E K( 1) = 1 x P; it is clear that nK = y ’ 0 p. 

To show that G,, is faithful, we define a natural transformation (T : I+ G,, by 

requiring that a,(0) = q,), an element of G,,(l) c L( 1 x P). To see that (T is a 

monotransformation, select distinct x, ,x2 E X and observe that A, = {x,} X P 

and A, = {x2} X P are disjoint nonsingleton subsets of X x P. The observation 

preceding this lemma implies that, in the case of a faithful functor L, the subsets 

WJW,) of L(X x P> are disjoint, or else they intersect in the singleton 

{d,,,) = nxx17(X x p) and G,,(X) n nxxp (X x P) = 0. In either case, cx(x,) = 

[L(i,)]( q.,,) is distinct from vx(x,) = [ L(&)]( q12). 0 

Let T = (T, 7, p) be a monad over Yet, and let us assume that, as in Theorem 

1.1, T is not naturally equivalent to a constant, identity or to their coproduct. We 

aim to show that then 

CD) there is a set P such that the functor H = To K with K = I X const, 

has a coproduct decomposition H = H,,LIH, such that H,, is faithful, 

and nK = y ’ 0 p for the coproduct insertion y ’ : H, + H and some 

p: K-H,. 
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Let 

be the decomposition of T into its components T”. The natural transformation 

n : I+ T then maps I into one of these components, say into L = T’. From the 

fact that Z.L 0 Tq : T-+ T is the identity it easily follows that n is a monotransforma- 

tion except when T is naturally equivalent to const,; we may thus assume that L is 

a faithful component of T. 
If L is not naturally equivalent to I, then Lemma 3.1 applies to L. Hence for 

some set P and K = I x const, there exists a coproduct decomposition GJG, of 

Lo K obeying Lemma 3.1(a) and 3.1(b). It follows that To K decomposes into 

H, = G, and ZZ,, = u { T”o K 1 a # c}LIG,,, and that these factors satisfy (D). 

From now on, let us assume that L is naturally equivalent to I. Then T must 

have components other than L and, amongst these, at least one which is 

nonconstant. 

If one of these components, say T , ’ is faithful, then we choose P = 1. The 

functor H = To Z can then be decomposed into a coproduct of Ho = Th and H, 
which, in turn, is the coproduct of all components other than T’. This decomposi- 

tion also satisfies (D). 

Finally, suppose that Th # L is a nonconstant component of T that is not 

faithful. Applying Lemma 3.1 to T’, we obtain a set P and a decomposition 

G = G,,llG, of G = Th 0 K with K = Z X const, that satisfies Lemma 3.1(a) and 

3.1(b). But then H,, = G,, is a faithful factor of H = To K and, together with 

H, = u {T” 0 K 1 a # b}lIG, , forms a coproduct decomposition of H for which 

(D) holds. 

Since it exhausts all possibilities, the preceding argument shows that (D) holds 

for every nondegenerate monad. 

4. Proof of Theorem 1.1 

For future easy reference, we note that the natural transformations n : I-+ T 
and Z_L : T’-+ T of a monad T = (T, 7, p) satisfy 

and 

poqT= 1, = ~0 TV. (5) 

A pair (Y, h) with h : T(Y) + Y is a T-algebra provided 

hoT(h)=hopr and ho~,=l,. (6) 
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A mapping f : (Y, h) -+ (Y’, h’) between T-algebras is a T-morphism if 

foh=h’oT(f). (7) 

The concrete category L&t of all T-algebras and all T-morphisms has the 

natural forgetful functor UT(Y, h) = Y. 

Proposition 4.1. For any nondegenerate monad T = (T, 77, p) there exist functors 
Yr : 4nv + Yet T and H : Yet + Yet such that the diagram 

is a subpullback. 

Proof. Let A = (X, cp) be an object of $nv, that is, let cp : X- X satisfy (p* = 1,. 

Since T is nondegenerate, (D) of Section 3 is satisfied, and we define an auxiliary 

mapping b, : H(X)-+ H(X) by 

(9) 

clearly 6: = lHCXJ. 

If (X, cp) and (X’, cp’) are objects of 4nv and f : X-X’ a mapping, then 

fo cp = cp’ of implies that 6,. 0 H(f) = H(f) 0 b,. 
For any object A = (X, cp) of 4nv we set W(A) = (H(X), h,), where 

Then h, : TH(X)- H(X) is a well-defined mapping. To see that P(A) = 
(H(X), h,) is a T-algebra, we must show that it obeys (6). Indeed, the second 

part of (6) is an easy consequence of (10). the naturality of 77 and of (5): 

A calculation verifying that q(A) obeys the first part of (6) uses (lo), the fact 

that b: = lHCX), the commutativity in (4), and the naturality of p as follows: 
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Thus W(A) = (H(X), h,) . 1s an T-algebra for each object A = (X, cp) of 4nv. 

Let A’ = (X’, p’) be another object of 9nv and let f : (X, q)+ (X’, cp’) be a 

morphism in 9~. If V(A’) = (H(X’), hAs), then 

and 

Recalling that b,l.H(f) = N(f)b, in conjunction with the naturality of p and the 

fact that H = TK, we obtain 

and hence also H(f)h,$ = h,.TH(f). A ccording to (7), the mapping H(f) is a 

morphism from V(A) to *(A’) in YctT. 

Therefore q : 4rw-t L&t ” is a well-defined faithful functor and the diagram (8) 

commutes. 

To show that (8) is a subpullback, let A and A’ be objects of .9nv as before, and 

let f : X-X’ be a mapping such that H(f) : q(A)- *(A’) is an T-morphism, 

that is, a mapping satisfying 

H(f)h, = h,,,Wf). 

Clearly. any such f’ also satisfies 

Next we claim that 

Indeed, since y ’ : H, + TK is the insertion of H, into TK = H = NJH,, from 

(9) it follows that b,{yL = y,LH,(cp). Using the natural transformation p : K-t H, 
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with vKcx) = yfvpx we get 

and (12) follows immediately. 

Thus 

KJ(%(X)) = h,~LK(X)T(b,,)T(rl~cx,) 

= b,,~~cx,T(rl~c,~,)H(cp) = b,H(cp) 

by (lo), (12) and (5). Hence 

where the last equality follows from the definition of 6,. The left-hand side of 

(11) thus becomes 

(13) 

Since n is natural, we have H(f)nKCx) = v~(~.~K(~) and hence also 

But T(b,4.)T(qKtX.l) = T(qKtxa,)fi(~‘) by (I2), and ~~~~.)T(rl~~,~~,) = I,cx,, bY 

(5). Therefore, 

h..TH(f)T(q& = bA3Wcp’)W.f) 1 

and the definition of b,l. implies that the right-hand side of (11) takes on the form 

= b,Jf(p’f)y;r = b,.y;.H,,(cp’f) = y;Ji,,(cp’f) (14) 

Since y” is a monotransformation and the functor H,, is faithful, from (ll), (13) 

and (14) we conclude that p’f= fq. Therefore, f : A- A’ is a morphism of .%w, 

and the diagram (8) is a subpullback as claimed. Cl 

To see that, for any nontrivial monad T, the forgetful functor U1‘ : St T+ YCY 

is a slice of .@(l)- %f, we simply define a functor r : .%vT + .z&j( 1) by 

r( Y, h) = (T(Y), ~~0 h) on the objects of %‘r, and by I‘(f) = T(f) on its 

morphisms. If (Y, h) and (Y’, h’) are T-algebras, then the naturality and injectivi- 



288 V. Koubek et al 

ty of q imply that a mapping g : Y+ Y’ satisfies T( g)~r/~o h = qy, 0 h’ 0 T(g) if 

and only if go h = h’ 0 T(g). But the latter statement is equivalent to the claim 

that the diagram 

is a subpullback. 

In conjunction with Proposition 4.1, this shows that, for any nondegenerate 

monad T, the category YctT belongs to the basket A. 

Corollary 4.2. If V is a nontrivial variety offinitary or infinitary algebras that is not 

polynomially equivalent to the variety of sets, then either 

(a) V is essentially nullary and belongs to the basket P, or 

(b) V is not essentially nullary and belongs to the basket A. q 

5. Proof of Theorem 1.2 

Let U : X- Yet be a functor of descent type. Then U has a left adjoint 

F : Yet + X; let 7) : I-+ U 0 F and E : Fo U + I respectively denote the unit and 

the counit of this adjunction. The comparison functor 

into the category of all T-algebras over the monad T = (T, q, p) = (UF, TJ, UE F), 

determined by @(a) = (U(a), U(F,)) on objects of X is full and faithful. Recall 

that U = UT0 CD, where UT : 9etT + St is given by U’( Y, h) = Y for any T- 

algebra (Y, h). Since @ is full and faithful, the diagram 

is a subpullback. For a nondegenerate monad T, let IE : $nv-+ Y’etT be the 

functor from the proof of Theorem 1.1 for which the diagram 

Q 
L I 

TK 

Yet T B Yeet 
Ii ’ 
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is a subpullback. Should there be a functor J$ : 5%~ + 5Y for which ?P = @ 0 2, 

then, clearly, the forgetful functor 4nv-+ Yepet is a slice of U : X-+ 92t. To 

complete the proof of Theorem 1.2, we need to show that this is the case 

whenever U has the transfer property. 

Let A = (X, cp) be an object of 9nv. Recall that V(X, cp) = (TK(X), hA) is a 

T-algebra with h, = bApLKCXjl’(bA) for some involution b, : 7’K(X)+ TK(X). 

For the object a = FK(X) of 5Y we have @(a) = (TK(X), IJ(.sEKcX))) = 

(TK(X), pKcx)). It is clear that the diagram 

T’K(X)% T’K(X) 

h/t I I I*K(X) 

Two h, w-v 

commutes; hence b, : F(A) -+ @(a) is an isomorphism of these T-algebras. 

Therefore, UT(b,) : UTW(A)+ U( ) . a IS an isomorphism in Yet and, because U 

has the transfer property, there exists a 5Y-isomorphism u : i-a such that 

U(a) = UT!P(A) = TK(X) and U(a) = UT(b,). It follows that the composite 

b;’ 0 G(U) : @(ii)- W(A) IS a T-algebra isomorphism with UT(bj’ 0 Q(c)) = 

UT(6,‘)oUT(b,) = lrKcX). Thus the diagram 

T*K(X)- T’K(X) 

UC*;) 
I i 

“a 

TK(X) = TK(X) 

commutes and, consequently, @(a) = F(A). We set Z(A) = ci and extend this 

assignment to a functor 2 : 9nv+ 3C in a standard manner. 

The comparison functor @ : .YC* YetT is a full embedding and UT 0 @ = U, so 
that U is a slice of UT. As noted at the conclusion of the preceding section, the 

functor UT is, in turn, a slice of the forgetful functor z&$(l)-+ Yet. Combined 

with the argument above. this observation completes the proof of Theorem 

1.2. q 

Remark. (a) Let GZ&zn, be the category of all Banach spaces and all linear operators 

of norm at most one, and let U : %‘un, -+ Yet denote its natural unit-ball forgetful 

functor. Since U is of descent type [18], has a left adjoint leading to a nondegen- 

erate monad, and enjoys the transfer property, Theorem 1.2 applies to U to show 

that %urz, belong to the basket A. 

(b) It is well known (cf. [2, p. 1141) that the category %‘amp of all compact 

Hausdorff spaces and all their continuous maps is a category YetT of monadic 

algebras over a monad T = (T, q, p) whose functor part T assigns the set PX of 

all ultrafilters to any given set X. It follows that the forgetful functor U : %‘-+ Yet 
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of the full subcategory % of %amp consisting of all p-compactifications of discrete 

spaces is of descent type and has the transfer property. Hence any full subcate- 

gory of %omp down to the category V: (e.g., the category of all extremally 

disconnected spaces) belongs to the basket A. 
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