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The class of Lie color algebras contains the one of Lie superalgebras

and so the one of Lie algebras. In order to begin an approach to the

structure of arbitrary Lie color algebras, (with no restrictions neither

on the dimension nor on the base field), we introduce the class of

split Lie color algebras as the natural extension of the classes of split

Lie algebras and split Lie superalgebras. By developing techniques

of connections of roots for this kind of algebra, we show that any

such algebra L is of the form L = U + ∑
j Ij with U a subspace of the

abelian (graded) subalgebra H and each Ij a well described (graded)

ideal of L satisfying [Ij, Ik] = 0 if j �= k. Under certain conditions,

the simplicity of L is characterized and it is shown that L is the direct

sum of the family of its minimal (graded) ideals, each one being a

simple split Lie color algebra.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and previous definitions

Lie color algebras were introduced as ‘generalized Lie algebras’ in 1960 by Ree [8], being also called

color Lie superalgebras (see [1]). Since then, this kind of algebra has been an object of constant inter-

est in mathematics, (see [9,10] and [6,7,14–16] for recent references), being also remarkable for the

important role played in theoretical physic, especially in conformal field theory and supersymmetries

[12,13].

In the present paperwe begin an approach to the structure of infinite dimensional Lie color algebras

by introducing the class of split Lie color algebras of arbitrary dimension as the natural extension of the

class of split Lie superalgebras studied in [4], which in turn extends the class of split Lie algebras [2,11].
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Throughout this paper, Lie color algebras L are considered of arbitrary dimension and over an

arbitrary field K. It is worth to mention that, unless otherwise stated, there is no restriction on dim L,

the products [Lα, L−α], or {k ∈ K : kα ∈ Λ}, where Lα denotes the root space associated to the root

α, and Λ is the set of nonzero roots of L.

In §2 we develop techniques of connections of roots in the framework of split Lie color algebras so

as to show that L is of the form L = U + ∑
j Ij with U a subspace of the abelian (graded) subalgebra H

and each Ij a well described (graded) ideal of L satisfying [Ij, Ik] = 0 if j �= k. In §3 and under certain

conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of

its minimal (graded) ideals, each one being a simple split Lie color algebra.

Definition 1.1. Let K be an arbitrary field and Γ an abelian group. A skew-symmetric bicharacter of

Γ is a map ε : Γ × Γ −→ K \ {0} satisfying
ε(g1, g2) = ε(g2, g1)

−1,

ε(g1, g2 + g3) = ε(g1, g2)ε(g1, g3),

for any g1, g2, g3 ∈ Γ .

It is clear that ε(g, 0) = 1 for any g ∈ Γ , where 0 denotes the identity element of Γ .

Definition 1.2. Let L = ⊕
g∈Γ Lg be a Γ -graded K-vector space. For a nonzero homogeneous ele-

ment v ∈ L, denote by v̄ the unique group element in Γ such that v ∈ Lv̄, which will be called the

homogeneous degree of v. We shall say that L is a Lie color algebra if it is endowed with a K-bilinear

map

[·, ·] : L × L −→ L

satisfying:

[v,w] = −ε(v̄, w̄)[w, v], (Skew-symmetry)

[v, [w, t]] = [[v,w], t] + ε(v̄, w̄)[w, [v, t]], (Jacobi identity)

for all homogeneous elements v,w, t ∈ L.

Lie superalgebras are examples of Lie color algebras with Γ = Z2 and ε(i, j) = (−1)ij, for any
i, j ∈ Z2. We also note that L0 is a Lie algebra.

The usual regularity concepts will be understood in the graded sense. For instance, an ideal I of L is

a graded subspace I = ⊕
g∈Γ Ig of L such that [I, L] ⊂ I. A Lie color algebra L will be called simple if

[L, L] �= 0 and its only (graded) ideals are {0} and L.

Let us introduce the class of split algebras in the frameworkof Lie color algebras.We recall that given

anelement x of a Lie algebraL; the adjointmapping is denotedby adx anddefinedas adx(y) = [x, y] for
any y ∈ L.A splitting Cartan subalgebraHof a Lie algebraL is defined as amaximal abelian subalgebra,

(MASA), of L such that the adjoint mappings adh for h ∈ H are simultaneously diagonalizable. If L

contains a splitting Cartan subalgebra H, then L is called a split Lie algebra. This means that we have

a root space decomposition L = H ⊕ (
⊕

α∈Λ Lα) where Lα = {vα ∈ L : [h, vα] = α(h)vα for

any h ∈ H} for a linear functional α ∈ H∗, Λ := {α ∈ H∗\{0} : Lα �= 0} and 0 ∈ H∗ denotes the

zero linear functional. The subspaces Lα for α ∈ H∗ are called root spaces of L and the elements

α ∈ Λ ∪ {0} are called roots of L.

We introduce the concept of split Lie color algebra in an analogous way. We begin by considering a

maximal abelian graded subalgebraH = ⊕
g∈Γ Hg among the abelian graded subalgebras of L. Observe

that H is necessarily a maximal abelian subalgebra of L as the following lemma shows.
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Lemma 1.1. Let H = ⊕
g∈Γ Hg be a maximal abelian graded subalgebra of a Lie color algebra L. Then H

is a maximal abelian subalgebra of L.

Proof. Consider an abelian subalgebra K of L such that H ⊂ K . For any x ∈ K we have [x,Hg] = 0

for each g ∈ Γ , and so by writing x = ∑n
i=1 xgi with xgi ∈ Lgi for i = 1, ..., n, being gi ∈ Γ

and gi �= gj if i �= j, we get by the grading [xgi ,Hg] = 0. Hence, for any gi, i = 1, ..., n, we have

(Hgi + Kxgi) ⊕ (
⊕

g∈Γ \{gi} Hg) is an abelian graded subalgebra of L containing H and so xgi ∈ Hgi .

From here we get x ∈ H and then K = H. �

Definition 1.3. Denote by H = ⊕
g∈Γ Hg a maximal abelian (graded) subalgebra, (MAGSA), of a Lie

color algebra L. For a linear functional α : H0 −→ K, we define the root space of L, (respect to H),

associated to α as the subspace

Lα = {vα ∈ L : [h0, vα] = α(h0)vα for any h0 ∈ H0}.
The elements α ∈ (H0)

∗ satisfying Lα �= 0 are called roots of L respect to H and we denoteΛ := {α ∈
(H0)

∗\{0} : Lα �= 0} where 0 ∈ (H0)
∗ is the zero lineal functional. We say that L is a split Lie color

algebra, respect to H, if

L = H ⊕
⎛
⎝⊕

α∈Λ

Lα

⎞
⎠ .

We also say that Λ is the root system of L.

Split Lie algebras and split Lie superalgebras are examples of split Lie color algebras. Hence, the

present paper extends the results in [2,4].

It is clear that the root space associated to the zero root L0 satisfies H ⊂ L0 . Conversely, given any

v0 ∈ L0 we can write v0 = h + ∑n
i=1 vαi

with h ∈ H and vαi
∈ Lαi

for i = 1, ..., n, being αi ∈ Λ with

αi �= αj if i �= j. Hence 0 = [h0, h + ∑n
i=1 vαi

] = ∑n
i=1 αi(h0)vαi

for any h0 ∈ H0. So, taking into

account the direct character of the sum and that αi �= 0, we have that any vαi
= 0 and then v0 ∈ H.

Consequently

H = L0 . (1)

Lemma 1.2. Let L = ⊕
g∈Γ Lg be a split Lie color algebra with corresponding root space decomposition

L = H ⊕ (
⊕

α∈Λ Lα). If we denote by Lα,g = Lα ∩ Lg , then the following assertions hold.

1. Lα = ⊕
g∈Γ Lα,g for any α ∈ Λ ∪ {0}.

2. Hg = L0,g . In particular H0 = L0,0.

3. L0 is a split Lie algebra, respect to H0, with root space decomposition L0 = H0 ⊕ (
⊕

α∈Λ Lα,0)

Proof

1. By theΓ -grading of Lwemay express any vα ∈ Lα, α ∈ Λ∪{0}, in the form vα = vα,g1 +· · ·+
vα,gn with vα,gi ∈ Lgi for distinct g1, ..., gn ∈ Γ . If h0 ∈ H0 then [h0, vα,gi ] = α(h0)vα,gi for

i = 1, ..., n. Hence Lα = ⊕
g∈Γ (Lα ∩Lg) andwe canwrite Lα = ⊕

g∈Γ Lα,g for anyα ∈ Λ∪{0}.
2. Consequence of Eq. (1) and item 1.

3. We also have Lg = Hg ⊕ (
⊕

α∈Λ Lα,g) for any g ∈ Γ . By considering g = 0 we get L0 =
H0 ⊕ (

⊕
α∈Λ Lα,0). Hence, the direct character of the sum and the fact thatα �= 0 for anyα ∈ Λ

give us that H0 is a MASA of the Lie algebra L0. Hence L0 is a split Lie algebra respect to H0. �

Lemma 1.3 is an immediate consequence of the Jacobi identity and the fact ε(0, g) = 1 for any

g ∈ Γ . Together, Lemmas 1.2 and 1.3 show the root space decomposition provides a refinement (see

[5, Definition 3.1.4]) of the Γ -grading of L.
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Lemma 1.3. If [Lα, Lβ ] �= 0 with α, β ∈ Λ ∪ {0}, then α + β ∈ Λ ∪ {0} and [Lα, Lβ ] ⊂ Lα+β .

From Lemmas 1.3 and 1.2-1 we can assert that

[Lα,g1, Lβ,g2] ⊂ Lα+β,g1+g2

for any g1, g2 ∈ Γ .

Definition 1.4. A root systemof a split Lie color algebra L is called symmetric ifα ∈ Λ implies−α ∈ Λ

for any linear functional α : H0 → K.

2. Connections of Roots. Decompositions

In the following, L denotes a split Lie color algebra with a symmetric root system Λ and L =
H ⊕ (

⊕
α∈Λ Lα) the corresponding root space decomposition.

Definition 2.1. Let α and β be two nonzero roots. We say that α is connected to β if there exist

α1, ..., αn ∈ Λ such that

1. α1 = α.

2. {α1, α1 + α2, α1 + α2 + α3, ....., α1 + · · · + αn−1} ⊂ Λ.
3. α1 + · · · + αn−1 + αn ∈ {±β}.
We also say that {α1, ..., αn} is a connection from α to β .

Observe that {α} is a connection from α to itself and to −α and so α is connected to ±α.

The next result shows the connection relation is of equivalence. The proof is analogous to the one for

split Lie algebras given in [2, Proposition2.1] andvirtually identical to theone for split Lie superalgebras

given in [4, Proposition 2.1].

Proposition 2.1. The relation∼ inΛ defined byα ∼ β if and only ifα is connected to β is of equivalence.

For any α ∈ Λ, we denote by

Λα := {β ∈ Λ : β ∼ α}.
Clearly if β ∈ Λα then −β ∈ Λα and, by Proposition 2.1, if γ /∈ Λα then Λα ∩ Λγ = ∅.

Our next goal is to associate an (adequate) ideal LΛα of L to any Λα . For Λα, α ∈ Λ, we define

HΛα := spanK{[Lβ, L−β ] : β ∈ Λα}. Then HΛα is the direct sum of

∑

β∈Λα,g∈Γ

[Lβ,g, L−β,−g] ⊆ H0

and

∑
β∈Λα ;

g,g′∈Γ ,g+g′ �=0

[Lβ,g, L−β,g′ ] ⊆ ⊕

g∈Γ \{0}
Hg .

We also define

VΛα := ⊕

β∈Λα

Lβ = ⊕

β∈Λα,g∈Γ

Lβ,g .
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Finally, we denote by LΛα the following (graded) subspace of L,

LΛα := HΛα ⊕ VΛα .

Proposition 2.2. Let α ∈ Λ. Then the following assertions hold.

1. [LΛα , LΛα ] ⊂ LΛα .
2. If γ /∈ Λα then [LΛα , LΛγ ] = 0.

Proof.

1. Taking into account H = L0 and Lemma 1.3, we have

[LΛα , LΛα ] = [HΛα ⊕ VΛα ,HΛα ⊕ VΛα ] ⊂ VΛα + ∑

β,δ∈Λα

[Lβ, Lδ]. (2)

If δ = −β then

[Lβ, Lδ] ⊂ HΛα . (3)

If δ �= −β , by Lemma 1.3 we have that in case [Lβ, Lδ] �= 0 then β + δ ∈ Λ. From here, if

{α1, . . . , αn} is a connection fromα toβ then {α1, . . . , αn, δ} is a connection fromα toβ +δ in

case α1 +· · ·+αn = β and {α1, . . . , αn, −δ} in case α1 +· · ·+αn = −β . Hence β + δ ∈ Λα

and so

[Lβ, Lδ] ⊂ VΛα . (4)

From Eqs. (2)–(4) we conclude [LΛα , LΛα ] ⊂ LΛα .

2. We have

[LΛα , LΛγ ] = [HΛα ⊕ VΛα ,HΛγ ⊕ VΛγ ] ⊂ [HΛα , VΛγ ] + [VΛα ,HΛγ ]
+[VΛα , VΛγ ]. (5)

Consider the above third summand [VΛα , VΛγ ] and suppose there exist β ∈ Λα and η ∈ Λγ

such that [Lβ, Lη] �= 0. As necessarily β �= −η, then β + η ∈ Λ. So {β, η, −β} is a connection

betweenβ andη. By the transitivity of the connection relationwehave γ ∈ Λα , a contradiction.

Hence [Lβ, Lη] = 0 and so

[VΛα , VΛγ ] = 0. (6)

Consider now the first summand [HΛα , VΛγ ] in (5) and suppose there existβ ∈ Λα and η ∈ Λγ

such that [[Lβ, L−β ], Lη] �= 0. Then

[[Lβ,g, L−β,g′ ], Lη] �= 0

for some g, g′ ∈ Γ . By Jacobi identity, either [L−β,g′ , Lη] �= 0 or [Lβ,g, Lη] �= 0 and so

[VΛα , VΛγ ] �= 0 in any case, what contradicts Eq. (6). Hence

[HΛα , VΛγ ] = 0.

Finally, we note that the same above argument shows

[VΛα ,HΛγ ] = 0.

By Eq. (5) we conclude [LΛα , LΛγ ] = 0. �
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Proposition 2.2-1 let us assert that for any α ∈ Λ, LΛα is a Lie color subalgebra of L that we call the

Lie color subalgebra of L associated to Λα .

Theorem 2.1. The following assertions hold.

1. For any α ∈ Λ, the Lie color subalgebra

LΛα = HΛα ⊕ VΛα

of L associated to Λα is an ideal of L.

2. If L is simple, then there exists a connection fromα toβ for anyα, β ∈ Λ and H = ∑
α∈Λ[Lα, L−α].

Proof

1. Since [LΛα ,H] = [LΛα , L0] ⊂ VΛα , taking into account Proposition 2.2 we have

[LΛα , L] =
⎡
⎣LΛα ,H ⊕

⎛
⎝ ⊕

β∈Λα

Lβ

⎞
⎠ ⊕

⎛
⎝ ⊕

γ /∈Λα

Lγ

⎞
⎠

⎤
⎦ ⊂ LΛα .

2. The simplicity of L implies LΛα = L. Therefore Λα = Λ and H = ∑
α∈Λ[Lα, L−α]. �

Theorem 2.2. For a vector space complement U of spanK{[Lα, L−α] : α ∈ Λ} in H, we have

L = U + ∑

[α]∈Λ/∼
I[α],

where any I[α] is one of the ideals LΛα of L described in Theorem 2.1-1, satisfying [I[α], I[β]] = 0 if

[α] �= [β].
Proof. By Proposition 2.1, we can consider the quotient set Λ/ ∼:= {[α] : α ∈ Λ}. Let us denote by

I[α] := LΛα . We have I[α] is well defined and, by Theorem 2.1-1, an ideal of L. Therefore

L = U + ∑

[α]∈Λ/∼
I[α].

By applying Proposition 2.2-2 we also obtain [I[α], I[β]] = 0 if [α] �= [β]. �

Let us denote by Z(L) = {v ∈ L : [v, L] = 0} the center of L.

Corollary 2.1. If Z(L) = 0 and [L, L] = L, then L is the direct sum of the ideals given in Theorem 2.1,

L = ⊕

[α]∈Λ/∼
I[α].

Proof. Taking into account Theorem 2.2, from [L, L] = L it is clear that L = ∑
[α]∈Λ/∼ I[α]. The direct

character of the sum now follows from the facts [I[α], I[β]] = 0, if [α] �= [β], and Z(L) = 0. �

3. The simple components

In this section we study if any of the components in the decomposition given in Corollary 2.1 is

simple. Under certain conditions we give an affirmative answer. From now on char(K) = 0.
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Lemma 3.1. Let L = H ⊕ (
⊕

α∈Λ Lα) be a split Lie color algebra. If I is an ideal of L then I = (I ∩ H) ⊕
(
⊕

α∈Λ(I ∩ Lα)).

Proof. Wemay view L = H ⊕ (
⊕

α∈Λ Lα) as a weight module respect to the split Lie algebra L0 with

maximal abelian subalgebra H0, (see Lemma 1.2-3), in the natural way. The characteristic property of

ideals gives us that I is a submodule of L. It is well-known that a submodule of a weight module is

again a weight module. From here, I is a weight module respect to L0, (and H0), and so I = (I ∩ H) ⊕
(
⊕

α∈Λ(I ∩ Lα)). �

Taking into account the above lemma, observe that the grading of I and Lemma 1.2-1 let us write

I = ⊕
g∈Γ

Ig = ⊕
g∈Γ

⎛
⎝(Ig ∩ Hg) ⊕

⎛
⎝⊕

α∈Λ

(Ig ∩ Lα,g)

⎞
⎠

⎞
⎠ . (7)

Lemma 3.2. Let L be a split Lie color algebra with Z(L) = 0. If I is an ideal of L such that I ⊂ H, then

I = {0}.
Proof. Suppose there exists a nonzero ideal I of L such that I ⊂ H. We have [I,H] ⊂ [H,H] = 0. We

also have that the fact [I, ⊕
α∈Λ Lα] ⊂ I ⊂ H implies [I, ⊕

α∈Λ Lα] ⊂ H∩ (
⊕

α∈Λ Lα) = 0. From here

I ⊂ Z(L) = 0, a contradiction. �

Let us introduce the concepts of root-multiplicativity and maximal length in the framework of

split Lie color algebras, in a similar way to the ones for split Lie algebras, split Lie superalgebras and

split Lie triple systems, (see [2–4] for these notions and examples). For each g ∈ Γ , we denote by

Λg := {α ∈ Λ : Lα,g �= 0}, (see Lemma 1.2-1).

Definition 3.1. We say that a split Lie color algebra L is root-multiplicative if given α ∈ Λgi and

β ∈ Λgj , with gi, gj ∈ Γ , such that α + β ∈ Λ, then [Lα,gi , Lβ,gj ] �= 0.

Definition 3.2. We say that a split Lie color algebra L is of maximal length if for any α ∈ Λg , g ∈ Γ ,

we have dim Lκα,κg = 1 for κ ∈ {±1}.
Observe that if L is of maximal length, then Eq. (7) let us assert that given any nonzero ideal I of L

then

I = ⊕
g∈Γ

⎛
⎜⎝(Ig ∩ Hg) ⊕

⎛
⎜⎝

⊕

α∈ΛI
g

Lα,g

⎞
⎟⎠

⎞
⎟⎠ (8)

where ΛI
g := {α ∈ Λ : Ig ∩ Lα,g �= 0} for each g ∈ Γ .

Theorem 3.1. Let L be a split Lie color algebra of maximal length, root multiplicative and with Z(L) = 0.

Then L is simple if and only if it has all its nonzero roots connected and H = ∑
α∈Λ[Lα, L−α].

Proof. The first implication is Theorem 2.1-2. To prove the converse, consider I a nonzero ideal of L.

By Lemma 3.2 and Eq. (8) we can write I = ⊕
g∈Γ ((Ig ∩ Hg) ⊕ (

⊕
α∈ΛI

g
Lα,g)) with ΛI

g ⊂ Λg for any

g ∈ Γ and some ΛI
g �= ∅. Hence, we may choose α0 ∈ ΛI

g being so

0 �= Lα0,g ⊂ I. (9)

For any β ∈ Λ\{±α0}, the fact that α0 and β are connected gives us a connection {γ1, ...., γr} from
α0 to β such that
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γ1 = α0,

γ1 + γ2, γ1 + γ2 + γ3, ..., γ1 + γ2 + γ3 + · · · + γr−1 ∈ Λ

and

γ1 + γ2 + γ3 + · · · + γr ∈ {±β}.
Consider α0 = γ1, γ2 and γ1 + γ2. Since γ2 ∈ Λ there exists g1 ∈ Γ such that Lγ2,g1 �= 0. From here,

the root-multiplicativity and maximal length of L show 0 �= [Lα0,g, Lγ2,g1 ] = Lα0+γ2,g+g1 , and by Eq.

(9)

0 �= Lα0+γ2,g+g1 ⊂ I.

We can argue in a similar way from α0 + γ2, γ3 and α0 + γ2 + γ3 to get

0 �= Lα0+γ2+γ3,g2 ⊂ I

for some g2 ∈ Γ . Following this process with the connection {γ1, ...., γr} we obtain that

0 �= Lα0+γ2+γ3+···γr ,g3 ⊂ I

and so either 0 �= Lβ,g3 ⊂ I or 0 �= L−β,g3 ⊂ I for some g3 ∈ Γ . That is,

0 �= Lεβ,g3 ⊂ I for some ε ∈ {±1}, some g3 ∈ Γ (10)

and for any β ∈ Λ.

Taking into accountH = ∑
γ∈Λ[Lγ , L−γ ], the grading of L gives usH0 = ∑

γ∈Λ,g∈Γ [Lγ,g, L−γ,−g].
From here, there exists γ ∈ Λ and g4 ∈ Γ such that

[[Lγ,g4 , L−γ,−g4 ], Lεβ,g3] �= 0. (11)

By the Jacobi identity either [Lγ,g4 , Lεβ,g3] �= 0 or [L−γ,−g4 , Lεβ,g3] �= 0 and so Lγ+εβ,g4+g3 �= 0 or

L−γ+εβ,−g4+g3 �= 0. That is (see Eq. (10))

0 �= Lκγ+εβ,κg4+g3 ⊂ I (12)

for some κ ∈ {±1}. Since εβ ∈ Λg3 we have by themaximal length of L that−εβ ∈ Λ−g3 . By Eq. (12)

and the root-multiplicativity and maximal length of L we obtain

0 �= [Lκγ+εβ,κg4+g3 , L−εβ,−g3 ] = Lκγ,κg4 ⊂ I. (13)

Taking into account Eq. (13) and that Eq. (11) gives us

β([Lγ,g4 , L−γ,−g4 ]) �= 0,

we have that for any g5 ∈ Γ such that Lεβ,g5 �= 0 necessarily

0 �= [[Lγ,g4 , L−γ,−g4], Lεβ,g5 ] = Lεβ,g5 ⊂ I

and so Lεβ ⊂ I. That is, we can assert that

Lεβ ⊂ I (14)

for any β ∈ Λ and some ε ∈ {±1}. Since H = ∑
β∈Λ[Lβ, L−β ] we get

H ⊂ I. (15)
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Now, given any −εβ ∈ Λ, by the facts −εβ �= 0,H ⊂ I and the maximal length of L we have

[H0, L−εβ ] = L−εβ ⊂ I. (16)

From Eqs. (14)–(16) we conclude I = L. Consequently L is simple. �

Theorem 3.2. Let L be a split Lie color algebra of maximal length, root multiplicative, and satisfying

Z(L) = 0, [L, L] = L. Then L is the direct sum of the family of its minimal ideals, each one being a simple

split Lie color algebra having all its nonzero roots connected.

Proof. By Corollary 2.1, L = ⊕
[α]∈Λ/∼ I[α] is the direct sum of the ideals I[α] = HΛα ⊕ VΛα =

(
∑

β∈[α][Lβ, L−β ]) ⊕ (
⊕

β∈[α] Lβ) having any I[α] its root system, Λα , with all of its roots connected.

It is easy to check that Λα has all of its roots Λα-connected, (connected through roots in Λα). We also

have that any of the I[α] is root-multiplicative as consequence of the root-multiplicativity of L. Clearly

I[α] is ofmaximal length, and finallyZI[α](I[α]) = 0, (whereZI[α](I[α]) denotes the center of I[α] in I[α]),
as consequence of [I[α], I[β]] = 0 if [α] �= [β], (Theorem 2.2), and Z(L) = 0. We can apply Theorem

3.1 to any I[α] so as to conclude I[α] is simple. It is clear that the decomposition L = ⊕
[α]∈Λ/∼ I[α]

satisfies the assertions of the theorem. �
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