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SUMMARY

De novo DNA methylation is an essential aspect of
the epigenetic reprogramming that takes place
during early development, yet factors responsible
for its instatement at particular genomic loci are
poorly defined. Here, we demonstrate that the
KRAB-ZFP-mediated recruitment of KAP1 to DNA
in embryonic stem cells (ESCs) induces cytosine
methylation. This process is preceded by H3K9
trimethylation, and genome-wide analyses reveal
that it spreads over short distances from KAP1-
binding sites so as to involve nearby CpG islands.
In sharp contrast, in differentiated cells, KRAB/
KAP1-induced heterochromatin formation does not
lead to DNAmethylation. Correspondingly, themeth-
ylation status of CpG islands in the adult mouse liver
correlates with their proximity to KAP1-binding sites
in ESCs, not in hepatocytes. Therefore, KRAB-ZFPs
and their cofactor KAP1 are in part responsible for
the establishment during early embryogenesis of
site-specific DNAmethylation patterns that aremain-
tained through development.

INTRODUCTION

The genome-wide site-specific methylation of cytosine residues

is a key epigenetic contributor to the identity, fate, and transcrip-

tional activity of a cell. This process is tightly regulated during

development (Reik, 2007; Saitou et al., 2012). A set of enzymes

partakes in the deposition andmaintenance of the 5-methylcyto-

sine (5mC) mark. DNA methyltransferase (DNMT) 3a and

DNMT3b, in conjunction with DNMT3L, recognize nonmethy-

lated DNA and catalyze de novo cytosine methylation, while

DNMT1, recruited at the replication fork by PCNA and NP95

(also known as UHRF1), is responsible for the maintenance of

this modification during cell division (Sharif et al., 2007). In

contrast, what tethers de novo DNMTs to specific genomic loci

remains ill defined, although an association with chromatin

changes, notably methylation of histone 3 at lysine 9 (H3K9),

has been noted in some circumstances. For instance, the

H3K9 mono- and dimethyltransferase G9a appears to be impor-
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tant for de novo DNA methylation of the OCT4 promoter (Feld-

man et al., 2006) and of murine leukemia virus (MLV)-derived

retroviral vectors in embryonic stem cells (ESCs) (Leung

et al., 2011), the H3K9 trimethyltransferase SETDB1 was found

to recruit DNMT3a at tumor suppressor genes in cancer cells

(Li et al., 2006), and the H3K36me3 mark was observed to foster

DNA methylation (Dhayalan et al., 2010). This is reminiscent of

the interplay between chromatin changes and DNA methylation

that has been documented in plants and fungi (Jackson et al.,

2002; Tamaru and Selker, 2001).

The first four days of embryonic development are character-

ized by a genome-wide wave of demethylation. However, this

reprogramming spares imprinted loci and is incomplete over

sequences derived from retrotransposons such as endogenous

retroviruses (ERVs) and long interspersed nuclear elements

(LINEs). DNA methylation is then rapidly re-established by the

time of implantation. During this window of epigenetic instability,

both DNA demethylating and de novo methylating activities are

expressed. How their opposite influences lead to specific meth-

ylation patterns remains unclear, although the role of cis-acting

elements that autonomously determine DNA methylation states

during this period was recently revealed (Lienert et al., 2011b;

Saitou et al., 2012).

Recent evidence implicates the KRAB/KAP1 epigenetic regu-

lation system in the early embryonic control of DNA methylation.

With almost 400 members in both human and mouse, KRAB-

containing zinc finger proteins (KRAB-ZFPs) constitute the

largest family of transcriptional regulators encoded by higher

vertebrates (Emerson and Thomas, 2009). Using their C-terminal

array of C2H2 zinc fingers for DNA binding, KRAB-ZFPs recruit

their universal cofactor KAP1 (also known as TRIM28 or TIF1-

beta) via their N-terminal KRAB domain. KAP1 then acts as

a scaffold for chromatin-modifying complexes that, notably,

comprise histone deacetylases and the histone methyltransfer-

ase SETDB1, leading to histone deacetylation, deposition of

H3K9me3, binding of HP1, formation of heterochromatin, and

transcriptional silencing (Friedman et al., 1996; Moosmann

et al., 1997). KAP1 and KRAB-ZFPs were recently shown to

silence ERVs and murine leukemia virus in ESCs (Rowe et al.,

2010; Wolf and Goff, 2007), and this system was implicated in

DNA methylation maintenance of imprints during early develop-

ment. (Li et al., 2008; Quenneville et al., 2011). Finally, artificial

tethering of KAP1 to the body of a lentiviral vector leads to

DNA methylation and permanent silencing of an adjacent
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Figure 1. KRAB/KAP1-Induced De Novo DNA Methylation in ESCs

(A)Murine ESC expressing indicated tTR derivatives were transducedwith a lentivector containing TetO repeats upstream of an ICR and a PGK.GFP cassette and

examined by FACS after 2 days of culture with or without doxycycline.

(B) Methylation of ICR DNA, measured by pyrosequencing 3 weeks after introduction of the lentivector into murine ESCs expressing tTR fusion proteins (full-

length ZFP57 [tTR.ZFP57], KRAB-deleted [tTR.ZNF], KRAB-domain [tTR.KRAB]).

(C) TetO.ICR.PGK.GFP and tTR.KRAB vectors were introduced in control (sh-empty) or KAP1-depleted (shKAP1) human ESCs, subsequently analyzed as in (A)

and (B). Transcriptional repression and ICR DNA methylation are both abrogated in Kap1 KD cells.

(D) The PGK promoter contained in indicated vectors becomes methylated in both mouse and human ESCs, with a slight increase when the ICR is inserted

upstream.

(B–D) *Statistically significant (p < 0.01).
promoter when allowed to occur during the first few days of

embryogenesis (Wiznerowicz et al., 2007).

In this study, we provide formal evidence that the KRAB/

KAP1-mediated sequence-specific recognition of thousands

of genomic loci in ESCs leads to their DNA methylation,

thus ensuring the genome-wide establishment of site-specific

epigenetic marks that are subsequently maintained during

development.

RESULTS

KRAB/KAP1-Induced De Novo DNAMethylation in ESCs
In order to investigate the role of KRAB-ZFPs and KAP1 in de

novo methylation, we first used a lentiviral vector-based system

suitable for monitoring both DNA methylation and epigenetic
Cell Reports 2, 766–773, October 25,
silencing in either mouse or human ESCs. A first set of vectors

expressed a Tet repressor (tTR) fused to different parts of

ZFP57, the KRAB-ZFP involved in the maintenance of imprinting

(Li et al., 2008; Quenneville et al., 2011). The second set con-

tained a PGK.GFP expression cassette downstream of TetO

repeats, with or without a 2 kb KvDMR1 imprinted control region

(ICR) as intervening sequence. We previously demonstrated

that, in this configuration, tTR fusion proteins bind TetO in a doxy-

cycline-preventable manner (Wiznerowicz and Trono, 2003). We

first engineered murine ESC lines to produce the various tTR

derivatives, before transduction with the TetO.ICR.PGK.GFP

vector in the presence or absence of Dox. Three weeks later,

we examined GFP expression and ICR DNA methylation,

respectively, by fluorescence-activated cell sorting (FACS) (Fig-

ure 1A) and pyrosequencing (Figure 1B). In the presence of
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Figure 2. De NovoMethylation Is Progressive and Independent from

G9a and NP95

(A–C) In the absence of Dox, GFP expression is repressed rapidly and stays

low (A), whereas DNA methylation at ICR (B) and PGK promoters (C) slowly

increases over 3 weeks.

(D) DNA methylation at ICR is significantly increased upon KAP1 docking (off

Dox) in both wild-type andG9a orNP95 KOmurine ESCs (left), correlating GFP

repression (right). *p < 0.05, * *p < 0.01.
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Dox, all cell lines exhibited high levels of GFP and the ICR dis-

played low rates (<20%) of CpG methylation. In contrast, when

doxycycline was omitted; hence, when tTR.ZFP57 or tTR.KRAB

was allowed to bind its TetO target, GFP production was

silenced and the ICR was methylated to about 60%. Both GFP

repression and tTR-induced ICR methylation were absent in

tTR.ZNF-expressing cells, irrespective of Dox exposure, con-

sistent with the KAP1-docking dependence of these processes.

In mouse ESCs, KAP1 deletion leads to growth arrest, differ-

entiation, and ultimately cell death (Rowe et al., 2010). However,

human ESCs can maintain pluripotent self renewal after shRNA-

mediated knockdown of the master regulator (D.T., unpublished

data). We thus tranduced a human ESC line expressing

tTR.KRAB with either a control (shEMPTY) or a Kap1-specific

(shKAP1) shRNA lentiviral vector that reduced the Kap1 mRNA

level to less than 10% that of wild-type (data not shown). We

then introduced TetO.ICR.PGK.GFP in these cells, in the pres-

ence or absence of Dox. Without the drug, shEMPTY-trans-

duced human ESCs efficiently repressed GFP expression, while

this phenotype was almost completely abrogated in the Kap1

knockdown cells (Figure 1C). As a corollary, methylation of the

lentivector-contained ICR occurred in control cells, but was pre-

vented by KAP1 depletion (Figure 1C). Together, these results

demonstrate that human ESCs support KRAB-induced de

novo DNA methylation and confirm the KAP1 dependence of

this process on the PGK promoter and KvDMR1 ICR.

To assess the possible impacts of the ICR sequence and of the

distance between the KAP1-docking site and the promoter, we

examined in parallel an ICR-devoid TetO.PGK.GFP vector, in

which the transcription start site is about 2 kb closer to the

TetO motif. Pyrosequencing-based examination of six CpGs

situated within the PGK promoter revealed that these readily

underwent KAP1-recruitment-dependent de novo DNAmethyla-

tion, whether or not the ICR was present (Figure 1D). If anything,

5mC deposition at the PGK promoter was higher in the presence

of the intervening sequence, demonstrating not only that DNA

methylation could spread at some distance from the KAP1-

docking site, but also that the KvDMR1 ICR may contain methyl-

ation-promoting elements.

Differential Kinetics of KRAB/KAP1-Induced
Transcriptional Repression and De Novo DNA
Methylation
With a similar system, we previously demonstrated that tran-

scriptional repression is driven by the deposition of repressive

histone marks at the promoter and initially does not reflect

DNA methylation, which only later establishes a secondary state

of irreversible silencing (Wiznerowicz et al., 2007; Wiznerowicz

and Trono, 2003). KAP1-mediated GFP silencing was immedi-

ately apparent in our system (Figure 2A), confirming that
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Figure 3. Short-Range Spreading of KRAB/KAP1-Associated DNA

Methylation

(A) Distribution of CpG islands among groups exhibiting low (<20%), inter-

mediate (>20%, < 80%) and high (>80%) levels of methylation, their entire pool

(Total ES) compared with the subsets located 5 kb and 1 kb from KAP1-

binding sites in murine ESCs.

(B) Methylation levels of CpG islands in mouse ESCs, according to distance

from KAP1-binding sites. Fischer’s exact test shows significance (p < 0.001)

until 8–10 kb (225–532 islands considered per group).

(C) KAP1-close CpG islands (n = 758 for 5 kb and n = 224 for 1 kb) also exhibit

higher methylation levels in human ESCs (RDM, randomly selected islands).

Measured methylation levels are lower than in murine ESCs due to the use of

RRBS (as opposed to full-genome sequencing).

(D) Anticorrelation of CTCF enrichment and DNA methylation on KAP1-close

CpG islands in murine ESCs. The 0 kb point represents the middle of the

distance between KAP1-binding sites and CpG islands, restricting this in silico

analysis to islands situated 5 kb or less from a KAP1 site.
histone-mediated transcriptional repression proceeds very

rapidly. To determine the underlying kinetics of KRAB/KAP1-

induced DNA methylation, we examined 5mC deposition at the

CpG dinucleotides contained in both the ICR and PGK promoter

in murine ESCs at a series of time points after transduction with

the TetO.ICR.PGK.GFP vector (Figures 2B and 2C). At day 3,

levels of DNA methylation were extremely low over both

sequences. By 1 week, they raised to about 20%, and they

stayed at this level if Dox was present in the culture. If tTR.KRAB

was allowed to bind the TetO motif, CpG methylation progres-

sively increased to reach more than 80% at both the ICR and

the PGK promoter within 3 weeks.

G9a and NP95 Independence of KRAB/KAP1-Induced
De Novo DNA Methylation
It has been reported that G9a histone methyltransferase is

needed for methylation of an MLV-derived retroviral vector in

murine ESCs (Leung et al., 2011), and it was proposed that

NP95 plays a similar role for the CMV immediate early promoter

(Meilinger et al., 2009). To find out whether these findings related

to KRAB/KAP1-dependent events, we stably expressed

tTR.KRAB into murine ESCs knocked out for either one of these

factors (Dong et al., 2008; Sharif et al., 2007) and transduced the

resulting cell lines with the TetO.ICR.PGK.GFP lentiviral vector.

In both settings, KAP1-induced GFP repression was fully

preserved and Dox-controllable ICR methylation was main-

tained. Indeed, both baseline and induced ICR methylation

levels were higher in G9a knockout than in control ESCs,

whereas both were lower in NP95�/� cells, as anticipated from

a defect in the maintenance of this modification (Figure 2D).

Because the deletion of SETDB1 rapidly leads to ESC growth

arrest and death, we could not test the importance of this known

partner of KAP1 (Matsui et al., 2010) in KAP1-induced DNA

methylation.

Spreading of KAP1-Induced DNA Methylation to Nearby
CpG Islands
In order to assess the impact of KAP1 genomic recruitment and

patterns of DNA methylation in ESCs, we used a combination of

publically available and in-house ChiP-seq and CpGmethylation

data, for both murine and human ESCs (Lienert et al., 2011a;

Meissner et al., 2008; Stadler et al., 2011). Considering the

very strong levels of overall DNA methylation of the genome,

we concentrated our analysis on so-called CpG islands, which

are highly enriched in CpG dinucleotides and are typically hypo-

methylated. We first classified CpG islands in three subsets

according to their DNA methylation status in murine ESCs: low

(less than 20% methylation), intermediate (between 20% and

80%) and high (more than 80%) (Figure 3A). Of the total CpG

island pool, 89% was found in the low methylation subset,

whereas only 8% and 3% exhibited intermediate and high levels

of this modification, respectively. However, when CpG islands

located less than 5 kb (591) or less than 1 kb (324) from

a KAP1-binding site were examined, the fraction with low meth-

ylation levels decreased to 70% and 60%, respectively Corre-

spondingly, the proportion of CpG islands with intermediate

and high levels of DNA methylation increased, reaching 27% in

intermediate and 12% in highlymethylated categories for islands
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Figure 4. KRAB/KAP1-Mediated De Novo Methylation Induces the Early Embryonic Setting of Permanent Epigenetic Marks

(A) Same experiment as in Figures 1A and 1B, in indicated mouse somatic cells. KAP1 recruitment does not induce DNA methylation.

(B) DNA methylation in the mouse liver of CpG islands close (0–5 kb) or far (45–50 kb) from liver KAP1 sites (liver KAP1, n = 492 and 552, respectively) or in ESCs

(ES KAP1, n = 591 and 429). A t test (Mann-Whitney U) reveals a difference (p < 0.001) between ES KAP1 groups but not between liver KAP1 groups.

(C) Higher levels of DNA methylation in somatic cells (mouse embryonic fibroblasts, neural progenitor cells, and CD8-positive T cells) for islands located close to

KAP1-binding sites in ESCs. All groups are of similar size (n between 538 and 655), and a t test (Mann-Whitney U) reveals a difference (p < 0.001) between close

and distant sites.

(D) The distribution of KAP1-close (<5 kb) methylated, unmethylated, and total CpG islands demonstrates that methylated islands are usually remote from total

Refseq TSSs.

(E) Gene ontology analyses (GREAT) of transcriptional units situated near ESCs and KAP1-close methylated CpG islands identifies genes expressed in

preimplantation development and in extraembryonic tissues (left) and genes, the inactivation of which results notably in imprinting and early developmental

phenotypes (right).
situated within 1 kb of a KAP1-binding site (p < 10�15). To further

examine the distance at which KAP1 can promote the methyla-

tion of a CpG island, we performed a reverse analysis, in which

the average methylation levels of CpG islands located at given

distances from aKAP1-binding site were determined (Figure 3B).

CpG islands coinciding precisely with a KAP1 site (0 kb) had the

highest average methylation score, while a relatively rapid

decrease was noted afterward, CpG islands situated between

8 and 10 kb from a KAP1 site displaying profiles no different

from a random pool of these sequence elements. These results,

obtained on the basis of the analysis of CpG-rich sequences,

were confirmed when elements identified as CpG islands were

examined in the mouse genome through biochemical purifica-

tion (Figure S1). In human ESCs, we used reduced representa-

tion bisulfite sequencing (RRBS) data (Meissner et al., 2008)

and similarly found that levels of methylation of CpG islands

were inversely proportional to their distance to a KAP1-binding

site (Figure 3C). Remarkably, in both murine and human ESCs,

a strong enrichment in CTCF-binding sites was seen in the space

separating KAP1 landing sites and unmethylated KAP1-close
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CpG islands, compared with their methylated counterparts (Fig-

ure 3D). In this setting, CTCF may thus act as a barrier element,

or directly counteract the deposition of methylation marks, as

previously suggested (Stadler et al., 2011).

KRAB/KAP1-Induced Repression and DNA Methylation
Patterns in Adult Tissues
We previously observed that KRAB/KAP1-induced transcrip-

tional repression is reversible when triggered in somatic cells

(Wiznerowicz and Trono, 2003). This suggested that, in this

setting, docking of the silencing complex does not lead to

DNA methylation. To ascertain this point, we introduced the

TetO.ICR.PGK.GFP vector in tTR.KRAB-expressing NIH 3T3

cells and primary mouse embryonic fibroblasts (MEFs). In either

cell type, Dox-controllable GFP repression was fully operational,

but no significant methylation of the ICR could be detected (Fig-

ure 4A). DNMT3a, DNMT3b, or DNMT3L overexpression in NIH

3T3 (Figure S2) did not trigger any increase in KRAB/KAP1-

induced DNA methylation, indicating that other factors account

for the ESC specificity of this process. To confirm the general
Open access under CC BY-NC-ND license.
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implications of this finding, we examined a possible relationship

between the methylation status of CpG islands in the mouse

liver, as previously determined by RRBS (Meissner et al.,

2008), with that of KAP1-binding sites mapped in this organ by

ChIP-seq (Bojkowska et al., 2012). There was no correlation

between these two parameters (Figure 4B). Instead, the likeli-

hood that a CpG island was found to be methylated in the liver

was conditioned by its proximity to a KAP1-binding site in

ESCs, a relationship that was also observed in three other

somatic cell types (Figure 4C). Thus, whereas KRAB and KAP1

do not govern DNA methylation in differentiated tissues, site-

specific methylation marks established by this system in early

embryogenesis are maintained through development.

While KRAB/KAP1-induced DNA methylation is expected to

be functionally beneficial at ERVs and ICRs, the resulting perma-

nent inactivation of its other targets, such as promoters or

enhancers of cellular genes, could be problematic. In that

respect, our genome-wide exploration revealed interesting

features. Methylated CpG islands were on average positioned

farther from transcriptional start sites (TSSs) than their unmethy-

lated counterparts, suggesting that they functioned in their

majority as enhancers rather than promoters (Figure 4D), while

the few TSSs (26) close to these CpG islands were transcription-

ally inactive (Figure S3). Also, KAP1-close CpG islands were

often linked to genes active during the earliest phases of

embryogenesis and in extraembryonic tissues; that is, not likely

to suffer from the functional inactivation of cis-acting transcrip-

tional activators in inner cell-mass- or epiblast-derived ESCs

(Figure 4E).

DISCUSSION

The present study demonstrates that the site-specific KRAB/

KAP1-mediated induction of heterochromatin in ESCs can lead

to de novo DNA methylation and suggests a mechanism for

the establishment of this epigenetic mark during early embryo-

genesis at many genomic loci found to be methylated in adult

tissues. Our data support a model in which, at KRAB-ZFP-

targeted sites, KAP1 and associated chromatin modifiers,

including DNA methyltransferases, directly counter the DNA-

demethylating forces that are active across the genome during

this period. This process is particularly relevant for endogenous

retroviruses, which constitute primary targets of KRAB/KAP1-

mediated silencing and most likely drove the positive selection

undergone by KRAB-ZFP genes during evolution. Our data

suggest that the sequence-specific recognition of ERVs by

KRAB-ZFPs, most of which are expressed in ESCs but shut

down shortly thereafter (unpublished data), leads to their

permanent silencing by DNA methylation, alleviating the need

for continuous expression of their cognate trans-repressors.

Although emanating from the same general mechanism, the

control of imprinted loci represents an interesting variant, since

the responsible KRAB-ZFP, ZFP57, recognizes only the methyl-

ated version of a motif present in all ICRs (Quenneville et al.,

2011). This elegantly ensures that methyl marks are preserved

on the imprinted allele during the wave of reprogramming that

takes place after fertilization, while avoiding their instatement

on the nonimprinted allele.
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On the basis of the analysis of CpG islands at least, the

spreading of KAP1-induced DNA methylation was limited in

ESCs, averaging no more than 3 to 5 kb from the KAP1-docking

sites. While this could reflect the rapid exhaustion of a putative

heterochromatin-propagating activity, the local recruitment of

counteracting factors such as CTCF may play a role. Our obser-

vation of limited KAP1-induced heterochromatin spreading is

also consistent with the description of DNA methylation occur-

ring in mouse ESCs over the 50 long terminal repeat and genomic

flanking sequences of a retroviral vector, but not over its 30

regions (Berwin and Barklis, 1993). Such short-range propaga-

tion also explains how KRAB/KAP1 might be involved in control-

ling tens of thousands of endogenous retroelements during early

embryogenesis without triggering the complete methylation-

mediated blockade of the host genome.

In 3T3 or primary murine embryonic fibroblasts, KRAB/KAP1-

mediated induction of heterochromatin was not followed by DNA

methylation. This is in agreement with our previous observation

that the repression of a promoter through the doxycycline-

controllable nearby docking of KRAB/KAP1 is fully reversible in

a wide variety of somatic cells, whether in tissue culture or in vivo

(Wiznerowicz and Trono, 2003). These data are also consistent

with our finding that the methylation status of CpG islands in

themouse liver is conditioned by their proximity to KAP1-binding

sites in ESCs, not in hepatocytes. That epigenetic changes trig-

gered in differentiated tissues by the recruitment of KRAB/KAP1

at specific loci be histone- rather than DNA-based explains how

this system can regulate such highly dynamic processes as

lymphohematopoietic differentiation, B cell activation, hepatic

metabolism, and management of behavioral stress (Bojkowska

et al., 2012; Santoni de Sio et al., 2012; Jakobsson et al.,

2008). Nevertheless, our finding of such a fundamental differ-

ence in the outcome of KRAB/KAP1-mediated repression

between ESCs and differentiated tissues warrants a character-

ization of the molecular complexes recruited at KAP1-binding

sites in either setting. This effort may not only shed light on the

mechanisms involved in conditioning the establishment of

permanent epigenetic marks at specific loci under physiological

circumstances, but also point to the kind of dysregulation driving

their aberrant instatement in pathologies such as cancer.

EXPERIMENTAL PROCEDURES

Cell-Based Assays

All cell lines were cultured under standard conditions. Lentiviral vector was

used with a mutiplicity of infection (MOI) of 50 and 10, respectively, for tTR-

fusion expression vectors and 36 and 10 for TetO-containing reporter vectors,

into mouse (ES, MEF, and NIH 3T3) and human (ES) cells. Human ESCs trans-

duced with control or Kap1 shRNA lentiviral vectors were selected with

hygromycin (see Extended Experimental Procedures). DNA was extracted

and bisulfite conversion was performed, followed by PCR (primers are avail-

able in Extended Experimental Procedures) and pyrosequencing performed

according to standard protocols.

In Silico Analyses

Data from different public data sets (GEO IDs GSE28247 GSE11034

GSE30280 GSE31183) were used to examine whole-genome bisulfite

sequencing, RRBS-, and CTCF-binding sites in mouse ESCs. Mouse and

human CpG islands and human RRBS data were obtained from the ENCODE

project (ENCODE Project Consortium, 2011). KAP1 ChIP-seq data were from
7712012 ª2012 The Authors Open access under CC BY-NC-ND license.
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our previous work (Bojkowska et al., 2012; Rowe et al., 2010). Data were

analyzed with the use of the ‘‘ChIP-seq on-line analysis tools’’ package

(http://ccg.vital-it.ch/chipseq/), the GREAT website (http://bejerano.stanford.

edu/great/public/html/) (McLean et al., 2010), and in-house shell scripts using

h19 andmm9 assemblies. Fisher’s exact test was used to determine statistical

significance.
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Stadler, M.B., and Schübeler, D. (2011a). Genomic prevalence of heterochro-

matic H3K9me2 and transcription do not discriminate pluripotent from

terminally differentiated cells. PLoS Genet. 7, e1002090.

Lienert, F., Wirbelauer, C., Som, I., Dean, A., Mohn, F., and Schübeler, D.
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