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Abstract Most commonly, to estimate permeability, we can use values of porosity, pore size dis-

tribution, and water saturation from logging data and established correlations. One benefit of using

wireline log data to estimate permeability is that it can provide a continuous permeability profile

throughout a particular interval.

This study will focus on the evaluation of formation permeability for a sandstone reservoir in the

reservoir formations of Hassi R’Mel Field Southern from well log data using the multivariate meth-

ods. In order to improve the permeability estimation in these reservoirs, several statistical regression

techniques have already been tested in previous work to correlate permeability with different well

logs. It has been shown that statistical regression for data correlation is quite promising. We pro-

pose a two-step approach to permeability prediction that utilizes non-parametric regression in con-

junction with multivariate statistical analysis. First we classify the well log data into electrofacies

types. A combination of principal component analysis, model-based cluster analysis and discrimi-

nant analysis is used to characterize and identify electrofacies types. Second, we apply non-

parametric regression techniques to predict permeability using well logs within each electrofacies.

Three non-parametric approaches are examined via alternating conditional expectations (ACE),

generalized additive model (GAM) and neural networks (NNET) and the relative advantages

and disadvantages are explored. The results are compared with three other approaches to perme-

ability predictions that utilize data partitioning based on reservoir layering, lithofacies information

and hydraulic flow units. An examination of the error rates associated with discriminant analysis

for uncored wells indicates that data classification based on electrofacies characterization is more

robust compared to other approaches.
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Figure 1 Field location of Hassi R
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These methods are tested and compared at the heterogeneous reservoirs in Triassic formations of

Hassi R’Mel. The results show that permeability prediction is improved by applying variable selec-

tion to non-parametric regression ACE while tree regression is unable to predict permeability.

In comparing the relative predictive performance of the three regression methods, the alternating

conditional expectations with ACE method appears to outperform the other two methods.

� 2016 Egyptian Petroleum Research Institute. Production and hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The knowledge of permeability is critical to developing an
effective reservoir description. Permeability data can be

obtained from well tests, cores or logs. Normally, using well
log data to derive estimates of permeability is the lowest cost
method. In the Hassi R’Mel area (Fig. 1), the principal reser-

voir is located in the deposits of Triassic age. This field of
’Mel. Sands (yellow), lime-

ite (Magenta), Silts (light
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Southern directed anticline structure is located at the Western
end of the Triassic province of Algeria (Fig. 1). The principal
studies carried out in this formation are mainly focalized

in electrofacies characterization and non-parametric regres-
sion ACE techniques [7] and are proven to be successful in
predicting permeability in highly heterogeneous sandy

reservoirs.
The prediction of absolute permeability is a key element in

reservoir descriptions and has a direct impact on, among
others, [14], effective completion designs, successful water

injection programs and more efficient reservoir management.
Traditionally simple linear regressions of core porosity – per-
meability data or empirical formulae using various log

responses (usually porosity, clay volume and water saturation)
have been used to predict permeability. These empirical meth-
ods only apply locally and ignore the fact that there is no the-

oretical basis for a relationship between porosity and
permeability. In addition the scatter of the data about the
regression line is explicitly ignored and implicitly attributed
to measurement error or lower order variability in reservoir

characteristics. Amaefule et al. [1] state that a practical and
theoretically correct methodology is proposed for identifica-
tion of hydraulic flow units based on a modified Kozeny–Car-

man equation [6,5,2,12,1]. In doing so they make extensive use
of core data to describe the complex variations in pore geom-
etry and the identification of ‘‘flow zone indicators” (FZI)

from hydraulic units, which are, in turn, implicitly linked too
much improved permeability estimations [24].

This article investigates the usefulness of the mathematical

concepts and the predictive capabilities of multivariate analysis
[23] with a view to better estimation of facies using the tree
regression methods and to improving permeability estimates
for the Hassi R’Mel Field in Triassic Formations.

In this context, we utilize the stepwise algorithm method to
further improve permeability estimates. Stepwise regression is
a kind of stepwise algorithm used in linear regression. We first

demonstrate the availability of the stepwise algorithm by
applying stepwise regression [10,11] to Hassi R’Mel Southern
(Triassic). A method combining the stepwise algorithm and

ACE is proposed and applied to the Hassi R’Mel Field (Trias-
sic). Results are compared with those from regression without
variable selection.

2. Methodology

The applications of the results obtained during the facies anal-

ysis, starting from the available log data for the Triassic forma-
tions of Hassi R’Mel Southern made it possible, first, to define
ten electrofacies (sandstone, shale, dolomite, evaporate, ande-
site and clay), in the wells of Triassic formations. Manual

facies analysis of Triassic well log data was carried out in ten
porosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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Prediction of permeability and porosity from well log data 3
surveys [3]. This allowed us, in a first stage, to define ten
lithologies. Next, after developing a model on a well using
the ‘‘Petrolog” software, and checking it on other wells, a

semi-automatic data processing was carried out on seven other
wells. The facies analysis in the Hassi R’Mel Field is shown in
Fig. 2.
Figure 2 Facies analysis in T

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and p
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This approach was developed in two stages for the predic-
tion of permeability using the non-parametric regression in
conjunction with multivariate statistical analysis [17]. In a first

step, a classification of log data in many electrofacies types is
made in accordance with the unique characteristics of well
log data and measures reflecting minerals and lithofacies in
riassic of Hassi R’Mel [3].

orosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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the interval studied. A combination of principal component
analysis, cluster analysis based on a model and discriminant
analysis [16] is used to characterize and identify the types of

electrofacies. Second, we apply nonparametric regression tech-
niques to predict permeability using well logs in each electrofa-
cies. Three non-parametric approaches are examined:ACE,

GAM, and NNET and the relative advantages and disadvan-
tages are explored.

3. Data available

The data presented in this analysis have been gathered from 5
wells. We left out two cored wells (HRS-7 and HRS-8) to ver-

ify our correlations using blind tests. The data presented in this
analysis have been gathered from 7 wells. The consideration of
the data quality and field-wide availability, a suite of well logs

is selected for the analysis. In this field we have 7 well logs: cali-
per, gamma ray (GR), and three different resistivity (LLD,
LLS, and MSFL), acoustic transit-time (DT), neutron (NPHI),
and density (RHOB), and photoelectric logs (PEF). Among

the 7 well logs, only 6 logs (GR, RLLD, DT, NPHI, RHOB,
and SW) are chosen for characterizing the electrofacies groups.

After partitioning of well log responses into electrofacies

groups, statistical regression techniques are applied to model
the correlation between permeability and well log responses
within the partitioned groups. In this study, three non-

parametric techniques are examined using ACE, GAM, and
NNET and their relative predictive performances are assessed.
In neural network modeling, the 927 sample data set from 7
wells was divided into two subsets for training and supervising.

The supervising data set is used for testing whether the neural
net can generalize from the training data set. For each electro-
facies group, we modeled the networks containing the optimal

number of nodes in the hidden layer which produce the least
mean square error for the supervising data set.
Table 1a Shows the Mean Square Errors (MSE) and Mean Absolu

GR (API) DT (ls/ft) Rhob (cc)

MSE 1420.377 4485.003 177.4659

MAE 33.329 66.021 11.2626

MRSE 0.496 0.696 34.1510

MRAE 0.681 0.829 4.8987

R2 0.275 0.343 0.4992

Erreurs quadratiques moyennes (MSE) et erreurs absolues moyennes (M

square error); MAE: Erreur absolue moyenne (Mean absolute error).

Erreurs quadratiques moyennes (MSE) et erreurs absolues moyennes (M

Table 1b Shows the Mean Square Errors (MSE) and Mean Absolu

GR (API) DT (ls/ft) Rhob (cc)

MSE 193258.4 171866.0 223655.5

MAE 317.8 289.0 355.7

MRSE 110.7 24.7 45558.6

MRAE 7.5 3.5 156.8

R2 0.1 0.4 �0.1

Erreurs quadratiques moyennes (MSE) et erreurs absolues moyennes (M

square error); MAE: Erreur absolue moyenne (Mean absolute error).

Erreurs quadratiques moyennes (MSE) et erreurs absolues moyennes (M

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and
analysis and neural network, Hassi R’Mel Field, Algeria, Egypt. J. Petrol. (2016), h
Table 1a and b compares regression errors for the three models
used for developing the correlations. These errors are summa-
rized in terms of mean squared error (MSE) and mean abso-

lute error (MAE) during regression. The GAM appears to fit
the data better compared to the other models.

4. Analyses

4.1. Electrofacies analysis

Recent methods used in electrofacies classification are mainly
based on techniques for identifying groups from responses log-

ging data with the same characteristics. (Fig. 3). For this pur-
pose, the process results of principal component analysis can
be shown in Table 2. First principal component (PC1) appears

to indicate porosity (NPHI) of the formation while second
principal component (PC2) shows a stronger correlation with
density (RHOB) readings. The eigenvectors of the covariance
matrix (

P
) provides coefficients of the principal component

transformation.

4.1.1. Principal component analysis

Principal component analysis (PCA) is probably the oldest and
best known of the techniques of multivariate analysis. It was
first introduced by Pearson [19], and developed independently
by [13]. Like many multivariate methods, it was not widely

used until the advent of electronic computers, but it is now well
entrenched in virtually every statistical computer package.

Principal components constitute an alternative form of dis-

playing the data [15], thereby allowing better knowledge of its
structure without changing the information. In addition,
because the total variance in a data set can be defined as the

sum of the variances associated with each principal compo-
nent, the first few principal components that explain most of
the variation in the original variables are often useful to reveal
te Errors (MAE) for porosity.

RLLD (X m) NPhi (%) SW (%)

349071.5 230.4 224.171

109.9 13.4 13.136

2.5 630535.9 4185.298

0.9 212.8 45.430

�0.1 0.5 0.494

AE) pour la porosité. MSE: Erreur quadratique moyenne (Mean

AE) pour la perméabilité. Mêmes notations qu’au Table 7a.

te Errors (MAE) for permeability. Same notations as Table 7a.

RLLD (X m) NPhi (%) SW (%)

514328.3 225,150 225,010

415.0 358 358

5268.2 474,475,956 4,928,654

32.1 4785 1295

�0.1 �0 �0

AE) pour la porosité. MSE: Erreur quadratique moyenne (Mean

AE) pour la perméabilité. Mêmes notations qu’au Table 7a.

porosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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Table 2 First principal component analysis.

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7

GR 0.810222 �0.221781 0.112247 �0.326747 0.254331 0.332007 0.008781

DT 0.928652 �0.085377 �0.060521 0.064263 0.149098 �0.298393 0.106090

RHOB 0.802908 0.415180 �0.075180 0.373197 0.141656 �0.053781 �0.122791

RLLD �0.771005 0.191981 �0.209594 0.454785 0.309703 0.135997 0.059369

NPHI �0.017782 �0.613081 0.664005 0.427526 0.008350 �0.002590 �0.007632

SW 0.431749 0.779061 0.310636 0.177623 �0.216682 0.163703 0.069734

CPOR 0.525146 �0.521029 �0.491840 0.356037 �0.239513 0.162650 0.016158

Eigen value 3.220466 3.220466 3.220466 3.220466 3.220466 3.220466 3.220466

Contribution (%) 46.0067 46.0067 46.0067 46.0067 46.0067 46.0067 46.0067

Total variance (%) 46.00666 46.00666 46.00666 46.00666 46.00666 46.00666 46.00666

Figure 3 Electrofacies – Well Hassi R’Mel – Triassic. (Red) paleosols, (Blue) Sebkha, (Green) Floodplain, (Magenta) Fluvial, (Black)

Dolerites.
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the structure in the data. This can reduce the dimensionality of
the problem and complexity in the cluster and discriminant

analysis.

4.1.2. Cluster analysis

This method can provide better performance compared to tra-

ditional methods such as the nearest neighbor and k-mean
clustering methods, which are often not capable of identifying
the groups (sebkha, river channel, paleosols, floodplains and

dolerite) that are either overlapping or of varying sizes and
shapes.

Another advantage of the model-based approach is that

there is an associated Bayesian criterion for assessing the
model [22]. Bayesian criterion is associated with this method
to evaluate the model [22] where the number of clusters with-
out the subjective judgments necessary in other conventional

cluster analysis techniques can be estimated.
Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and p
analysis and neural network, Hassi R’Mel Field, Algeria, Egypt. J. Petrol. (2016), h
4.1.3. Discriminant analysis

It is a statistical analysis to predict a categorical dependent
variable (called a grouping variable) by one or more continu-
ous or binary independent variables (called predictor vari-

ables). Discriminant analysis is used when groups are known
a priori (unlike in cluster analysis). Each case must have a
score on one or more quantitative predictor measures, and a

score on a group measure. In simple terms, discriminant func-
tion analysis is classification the act of distributing things into
groups, classes or categories of the same type.

This technique is based on the assumption that an individ-

ual sample arises [8] from one of g populations or groups
(P1, . . . Pg, g > 2). If each group is characterized by a
group-specific probability density function fc(x) and the prior

probability of the group/c is known, then according to the
Bayes theorem, the posterior distribution of the classes given
the observation x is as follows (Eq. (1)):
orosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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pðc=xÞ ¼ pcpðx=cÞ
pðxÞ ¼ pcfcðxÞ

pðxÞ apcfcðxÞ ð1Þ
4.1.4. Permeability correlation

The non-parametric regression techniques which do not

require a priori assumptions about the functional forms to
model the data in this case may be applied if electrofacies
are known. In this case correlations between permeability
and log responses can be established for each kind of electro-

facies. There are generally three different nonparametric
approaches that address this issue: GAM, ACE, and Nnet.

4.2. The Generalized additive models (GAM)

Regression model has the general form (Eq. (2)):

E y=x1; x2; . . . ; xp

� � ¼ aþ
Xp
i¼1

u1ðxlÞ þ e ð2Þ

where vL is the predictor and uL is function of predictors. Thus
additive models replace the problem of estimating a function
of a p-dimensional variable v by one of estimating p separate
one-dimensional functions, uL. Such models are attractive if

they fit the data since they are far easier to interpret than a
p-dimensional multivariate surface.

Algorithm: The response transformation models generalize the

additive model by allowing transformation of the response vari-
able y. The models have the following general form as (Eq. (3)):

hðyÞ ¼ aþ
Xp
l¼1

/lðxÞ þ e ð3Þ

The ACE algorithm, originally proposed by Breiman and

Friedman [4], provides a method for estimating optimal trans-
formations for multiple regressions that result in a maximum
correlation between a dependent (response) random variable
and multiple independent (predictor) random variables. Such

optimal transformations can be derived by minimizing the vari-
ance of a linear relationship between the transformed response
variable and the sum of transformed predictor variables.

4.2.1. Feed-forward neural networks (NNET)

A feed forward neural network is an artificial neural network
where connections between the units do not form a directed

cycle. This is different from recurrent neural networks. The feed
forward neural network was the first and simplest type of artifi-
cial neural network devised. In this network, the information

moves in only one direction, forward, from the input nodes,
through the hidden nodes (if any) and to the output nodes.

Usually, the feed forward neural net is arranged in multiple

layers as shown in Fig. 7: Six input layers, two output layers
and more hidden layers. Each layer contains a number of
nodes (also called neuron’s processing units) which are con-
nected to each node in the preceding layer by simple weighted

links. Except for nodes in the input layer, each node multiplies
its specific input value by the corresponding weight and then
sums up all the weighted inputs. Sometimes a constant (the

‘bias’ term) can be involved in the summation. The final output
from the node is calculated by applying an activation function
(transfer function) to the sum of the weighted inputs as shown

in Eq. (4):
Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and
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yj ¼ fo aj þ
Xnh
h¼1

whjfh ah þ
Xni
i¼1

wihxi

 ! !
ð4Þ

where y is the vector of output variables, x is the vector of
input variables, 6 is the bias term, wij are the connection

weights on the link from i to j node, nh is the number of hidden
nodes, and ni is the number of input variables.

The original activation function proposed by McCulloch
and Pitts [18] is a step function, the so called threshold func-

tion (with f(x) = I (x > 0)). However, the artificial neuron
model has been expanded to include other functions such as
the sigmoid, piecewise linear, and Gaussian. In this study, a

logistic function is used as the activation function, which gives
values that range from 0 to 1 as (Eq. (5)):

fðxÞ ¼ expðxÞ
1þ expðxÞ ð5Þ

A critical aspect in a neural network is the learning process
of forcing a network to yield a particular output (response) for

a specific input (signal). For multilayer feed forward neural
networks, a more powerful supervised learning algorithm,
called back propagation, can be employed to recursively adjust

the connection weights so that the difference between the pre-
dicted and the observed outputs is as small as possible.

4.2.2. Permeability in uncored wells

Many of the Petrophysical models used for simulation studies
are based on the classical approach of cross plotting the loga-
rithms of permeability versus porosity (Fig. 8) and then, by fit-

ting a regression line on this plot, predicting the permeability
through the reservoir rock with correlation coefficient
(R2 = 0.029). This approach is critical when used to model

permeable rocks, as it implies two misleading concepts. First,
it considers the relationship between the logarithms of core
permeability versus core porosity as linear. Secondly, using
log porosities on this plot to predict the permeabilities would

imply a scaling agreement between the macroscopic level (core
plug) and the megascopic level (log data). Discretizing the
reservoir into units such as layers and blocks, and assigning

values of all pertinent physical properties to these blocks will
give a better agreement with the reservoir heterogeneity.

4.3. Classification based on stratigraphical zones

The Saharan Triassic consisted of varied continental environ-
ments, namely, fluvial, flood plain, lake, Sebkha or Evaporate,

and Eolian [3]. This Triassic is composed of three Formations:
I, II and III. At the top of Formation I, the lower series of strata
of the Triassic, there are intercalations of volcanic rocks repre-
sented by dolerites. Sedimentation interspersed with periods of

no deposition is thought to have occurred during the Triassic
continental; resulting in a deposition of ground-level strata and
the development of a more or less intense pedogenesis. At the

top of Formation II, the eruptive on the level of the lower mem-
ber IIa at the base and constituted primarily of dolerites but the
roof is primarily by a channel in a fine sandy filling. The member

IIb is characterized by fluvial facies of channels prevailing and
evolving to the top in a complex of playa or evaporates.

Formation III is characterized primarily by an evaporate
facies of sebkha type halite.
porosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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4.4. Classification based on Lithofacies: Error rate from all
classifications

The facies studies started with a core analysis, and was carried
out on the Triassic formations of the Southern Hassi R’ Mel.

This required a core analysis in the laboratory of Sonatrach
(Algiers), as well as the combination of the different well log data:
Gamma Ray, neutron and sonic log, their fittings in sequences
and their vertical evolution. The study of the sedimentary figures,

representing the hydrodynamic and physical conditions of the
sedimentation environment, was also taken into account.

Well log responses can be also partitioned using lithofacies

that are usually determined by core descriptions and thin sec-
tion analysis for all the wells (2, 4, 7, 8, 9, 11 and 12). The Field
of Hassi R’Mel can be described by 10 different lithofacies

types as shown in (Table 6).
The crossval function (Matlab 12a, 2012) can estimate the

misclassification error for both LDA (Linear Discriminant Anal-

ysis) and QDA (Quadratic Discriminant Analysis) using the
given data partition for the two wells HRS-7 and HRS-8, where
the QDA has a slightly larger cross-validation error than LDA.

5. Results

5.1. Principal component analysis

In the scatter plot (Fig. 4), the relationship between reservoir
properties and the 3 major principal components generated

from the 5 well logs can be explored. First principal compo-
Figure 4 Scatter plot of GR, DT, RLLD

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and p
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nent (PC1) appears to indicate porosity of the formation while
second principal component (PC2) shows a stronger correla-
tion with gamma ray readings.

Fig. 5a shows the projection of the well log variables on the
factors plane (1x2), where the contribution of the factor 1 is of
46.01% and 21.71% for the second factor.

For the PC1 and PC2 (Table 3a), with porosity, the compo-
nents are given by,

PC1 ¼ 0:3994GR� 0:2456LLDþ 0:4688NPHI

� 0:4329RHOB� 0:5153DT� 0:1417SW

þ 0:3328CPOR

PC2 ¼ 0:3426GR� 0:4122LLDþ 0:1544NPHI

þ 0:3402RHOBþ 0:0746DTþ 0:6803SW

� 0:3156CPOR

Fig. 5b shows the projection of the well log variables on the
factors plane (1 � 2), where the contribution of the factor 1 is

of 48.22% and 35.61% for the second factor.
For the PC1 and PC2 (Table 3b), with permeability KH,

the components are given by,

PC1 ¼ 0:4818GR� 0:2642LLDþ 0:3283NPHI

þ 0:4406RHOB� 0:1455DTþ 0:5331SWþ 0:3009KH

PC2 ¼ 0:0930GR� 0:4067LLDþ 0:4906NPHI

� 0:3862RHOBþ 0:6197DTþ 0:0280SW� 0:2259KH
, RHOB, RHOCMA and NPHI, SW.

orosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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Table 3b Eigenvector spreadsheets of Hassi R’Mel Upper

Triassic for core Permeability (KH)

Eigenvector spreadsheet Number of components is 2

Variable number Component 1 Component 2

DT (ls/ft) 1 �0.145534 0.619764

GR (API) 2 0.481838 0.093089

LLD (X mm) 3 �0.264245 �0.406760

NPHI (cc) 4 0.328384 0.490641

RHOB (g/cc) 5 0.440670 �0.386256

SW (cc) 6 0.533144 0.028047

CPERM (mD) 7 �0.300927 0.225976

Figure 5 (a) Projection of the variables on the factor-plane

(1 � 2) with porosity CPor. (b) Projection of the variables on the

factor-plane (1 � 2) with permeability KH.

8 B. Rafik, B. Kamel
5.2. Cluster analysis

The goal of the cluster analysis is to establish classes of data
groups, homogeneous and isolated from the outside on the
Table 3a Eigenvector spreadsheets of Hassi R’Mel Upper

Triassic for core Porosity (CPor).

Eigenvector spreadsheet Number of components is 2

Variable number Component 1 Component 2

GR (API) 1 0.399453 0.342616

DT (ls/ft) 2 0.491891 0.074640

RHOB (g/cc) 3 �0.432947 0.340221

RLLD (X mm) 4 �0.245687 �0.418269

NPHI (cc) 5 0.468838 0.154481

SW (cc) 6 �0.141704 0.680331

CPOR (cc) 7 0.332846 �0.315642

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and
analysis and neural network, Hassi R’Mel Field, Algeria, Egypt. J. Petrol. (2016), h
basis of a measure of similarity or dissimilarity between the
groups (Fig. 6a, b). In this study, the grouping based on a

model, a hierarchical clustering technique by agglomeration
is used.

5.3. Discriminant analysis

The observations should be allocated into the group with the
maximal posterior probability p(c/x). The discriminant analy-

sis used in this study requires prior classification (Table 4) of
the data into relatively homogenous subgroups whose charac-
teristics can be described by the statistical distributions [9] of
the grouping variables associated with each subgroup.

5.4. Permeability correlation

The optimal transformations are derived solely based on the

data sets and can be shown to result in a maximum correlation
in the transformed space. The transformations do not require a
priori assumptions of any functional form for the response or

predictor variables and thus, provide a powerful tool for
exploratory data analysis and correlation. The correlations
of vectors in matrix representing the predictor values (well

logs) and the predicted value (core permeability KH or CPerm
and core porosity CPor) are summarized in Table 5a and b.

5.5. Feed forward neural network

In this study, we used a typical feed forward model that con-
sists of one input layer, one hidden layer and one output layer.
In addition, the optimum number of hidden nodes is deter-

mined by trial and error.
This technique is applied to highly shaly sand reservoirs in

the Triassic formations of Hassi R’Mel, Sahara Algeria. Con-

ventional multiple regressions did not provide satisfactory per-
meability and porosity predictions in this field. The superior
predictive ability of our proposed approach is verified using

blind tests. We also, compared our results with the neural net-
work method for permeability and porosity prediction based
lithofacies characterization and the results are better (Fig. 7).

5.6. Permeability in uncored wells

Some flow units in Well HR-7 and the permeability porosity
relationship constructed for the unique HFUs are illustrated

in Figs. 8 and 9. The samples in the scatter plot are grouped
porosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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Figure 6 (a) Cluster analysis of facies environments (Root 1 vs Root 2). (b) Cluster analysis of facies environments (Root 1 vs Root 3).
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by HFUs after calculating FZI in uncored well using Eqs. (6)–
(11) from well log data, permeability can be determined for

each HFU (mean FZI value) using Eq. (12).
A result of calculated permeability versus core permeability

with depth in uncored wells is shown in Fig. 10. These pre-

dicted permeability profiles were obtained by assuming that
Table 4 Classification matrix rows: observed classifications column

ldaCVerr qdaCVerr

HRS-7 HFUs 0.4052 0.4125

LITHO 0.4444 0.3919

Facies 0.4450 0.3871

HRS-8 HFUs 0.4129 0.4135

LITHO 0.4444 0.3919

Facies 0.4189 0.3221

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and p
analysis and neural network, Hassi R’Mel Field, Algeria, Egypt. J. Petrol. (2016), h
this well had been logged only and did not have core data,
while in reality core data were available at well. This was done

only to check how accurately the HFU method would predict
permeability in these well if they had not been cored. As
shown, the permeability profiles of the log-derived HFU agree

with core data.
s: predicted facies classifications. Well: (HRS-7).

Perf Tr_Perf Val_Perf Test_Perf

0.7425 0.5266 1.0002 0.9255

0.7535 0.6496 1.0285 0.9622

0.7337 0.6894 0.9048 0.7693

0.7140 0.4828 0.7797 0.8358

0.7535 0.6496 1.0285 0.9622

0.1954 0.2181 0.1415 0.1439

orosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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5.7. Classification based stratigraphy

The estimation of the permeability by application of the corre-
lation equation established in each area can be applied directly
to the log responses in corresponding predefined area without

the use of discriminant analysis. All the Permeability and
porosity predictions based on the zonal classification for the
well HRS-7 as: KH (core permeability) can be shown in
Fig. 10: KH-NN (Neural permeability) and PERMC (FHU

permeability). The same results were obtained for the well
HRS-8 (Figs. 10 and 11).
Figure 7 Feed forward neu

Table 5a Correlations of vectors in matrix representing the predicto

(CPERM).

DT (ls/ft) GR (API) RLLD (X mm)

DT 1.000000 �0.089607 �0.339964

GR �0.089607 1.000000 �0.330645

RLLD �0.339964 �0.330645 1.000000

NPHI 0.571517 0.580730 �0.530421

RHOB �0.758730 0.563389 �0.011256

SW �0.224298 0.731145 �0.457333

KH 0.309288 �0.256745 0.047765

Table 5b Correlations of vectors in matrix representing the predicto

GR (API) DT (ms/ft) RHOB (g/cc)

GR 1.000000 0.619490 0.138185

DT 0.619490 1.000000 0.075433

RHOB 0.138185 0.075433 1.000000

RLLD �0.313039 �0.327866 0.002034

NPHI 0.153794 0.102853 0.998923

SW 0.150801 0.084975 0.999061

CPOR 0.275141 0.342660 0.499198

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and
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5.8. Classification based Lithofacies

The Means with error plot of core porosity and core perme-
ability, associated with the lithofacies can be shown in
Fig. 12a and b. An examination of this plot will show that vari-

ables evaporate, shale, shale dolomite, shale sand and low sand
shale are the least influential in determining the first principal
component while sands plays the most significant important
role. The predictive performance of different classifiers is

defined as an error rate which represents the fraction of train-
ing or a test set that have been misclassified. The error rates
ral net in multiple layers.

r values (well logs) and the predicted value (core permeability KH

NPHI (cc) RHOB( g/cc) SW (cc) KH (mD)

0.571517 �0.758730 �0.224298 0.309288

0.580730 0.563389 0.731145 �0.256745

�0.530421 �0.011256 �0.457333 0.047765

1.000000 0.046107 0.554921 �0.090472

0.046107 1.000000 0.708240 �0.495770

0.554921 0.708240 1.000000 �0.380541

�0.090472 �0.495770 �0.380541 1.000000

r values (well logs) and the predicted value core porosity (CPor).

(X mm) NPHI (cc) SW (cc) CPOR (%)

�0.313039 0.153794 0.150801 0.275141

�0.327866 0.102853 0.084975 0.342660

0.002034 0.998923 0.999061 0.499198

1.000000 �0.006388 �0.014186 �0.120998

�0.006388 1.000000 0.998692 0.515081

�0.014186 0.998692 1.000000 0.493719

�0.120998 0.515081 0.493719 1.000000

porosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013

http://dx.doi.org/10.1016/j.ejpe.2016.10.013


Figure 8 Core porosity/core permeability vs. Depth, HRS-7, in triassic formations of HRS. (R2 = 0.717 and Y = 0.314X2.602).
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valuated for this context are summarized in (Tables 7 and 6)

for the wells HRS-7 and HRS-8. It shows that a simpler model
may get comparable or better performance than a more com-
plicated model of other classifications (Table 7). The error rate
associated with the classification of HFUs is the highest among

all techniques considered in this study.
The quadratic discriminant analysis (QDA) for the data

used shows the computed ‘‘ldaCVerr” and the ‘‘qdaCVerr”

errors for linear and quadratic discriminant analysis and repre-
Figure 9 Scatter plot of log RQI versus log PHIZ when one

HFU is used to fit the whole data. Well: HRS-7 (R2 = 0.738 and

Y = 0.262X0.684).

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and p
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sents the expected prediction error on an independent set. To

this end, the discriminant analysis based on lithofacies data
performs worse than classifiers based on the electrofacies
information.

Among the three non-parametric methods, the ACE model

appears to be the best models in terms of their predictive of
porosity and permeability. The Neural Network model tends
to overestimate or underestimate in some intervals of the for-

mation. Especially the poor predictive performance in the
blind well HRS-8 indicates that a trained neural network will
not necessarily provide accurate predictions for the data that

were not used during training. Therefore, the GAM model
produces good results for most intervals in the blind wells.

6. Comparison for other techniques for permeability prediction

The Hydraulic Unit concept [1] was selected for subdividing
the reservoir into distinct petrophysical types. Each distinct

reservoir type has a unique Flow Zone Indicator (FZI) value.
According to [20], a hydraulic flow unit is a continuous

body over a specific reservoir volume that practically possesses
consistent petrophysical and fluid properties, which uniquely

characterize its static and dynamic communication with the
wellbore.

This technique is based on a modified Kozeny–Carman [5]

(cited in Amaefule et al. [1]) and the concept of mean hydraulic
radius (Eq. (6)):

k ¼ 1

2s2S2
g

( )
u3

e

ð1� ueÞ2
 !

ð6Þ

Sgv: may also be defining as the surface area of grains exposed

to fluid per unit volume of solid material.
Flow zone indicator depends on geological characteristics

of the material and various pore geometry of a rock mass;
hence, it is a good parameter for determining hydraulic flow
orosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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units (HFUs). Flow zone indicator is a function of reservoir
quality index and void ratio.

Amaefule et al. [1] addressed the variability of Kozeny’s

constant by dividing Eq. (1) by the effective porosity, ue and
taking the logarithm:

Defining the flow zone indictor FZI (lm) as (Eq. (7)):

FZI ¼ 1

Sgs
ffiffiffiffiffi
Fs

p ð7Þ

Reservoir quality index RQI (lm) as (Eq. (8)):

RQI ¼ 0:0314

ffiffiffiffiffi
K

ue

s
ð8Þ

Normalized porosity uz (fraction) as (Eq. (9)):

uZ ¼ ue

1� ue

� �
ð9Þ

Therefore (Eq. (10)) becomes:

RQI ¼ FZI� uZ ð10Þ
Figure 10 Permeability and porosity predictions based on the zon

Legend: Composite log of well log predictions for HR-167. U1, U2, M

Rhob [g/cm3]: density; Nphi [%]: neutron porosity; DT [ms/ft]: sonic lo

nn relates to predicted values from neural network. The horizontal arro

Bin number distributions within the Hassi R’Mel Triassic reservoir fo

permeability (CPerm); gamma ray (GR), sonic (DT), neutron porosity

(RT); Bin number: predicted values. For notations see Appendix A

complex lithology, VSND–CPX: Volume of Sandstones in complex li

CPX: Volume of Bulk Water in complex lithology.

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and
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Taking the logarithm of both sides of (Eq. (11)) yields:

LogRQI ¼ LogFZIþ LoguZ ð11Þ
On a log–log plot of RQI versus uz, all samples with similar

FZl values will lie on a straight line with unit slope, in Fig. 9,

the value of the FZI constant can be determined from the
intercept of the unit slope straight line at uz = 1. Samples that
lie on the same straight line have similar pore throat attributes

and, thereby, constitute hydraulic unit. The permeability of a
sample point is then calculated from a pertinent HFU using
the mean FZI value and the corresponding sample porosity

using the following (Eq. (12)):

K ¼ 1014� FZI2
ue

1� ueð Þ2 ð12Þ

However, it is worth-mentioning that given the true poros-

ity and true HFUs (based on core data), the predicted perme-
ability shows almost perfect agreement with the true
permeability. So, the principal difficulty appears to be the iden-

tification of hydraulic flow units in uncored wells. In Table 7,
al classification for the well HRS-7 as: KH (core permeability).

1, M2, L1, L2 and L3: in-situ formations; GR [API]: gamma ray;

g; RT [X m]: true resistivity, CPerm [mD]: permeability; subscript

ws represent the levels of samples used in the training. Fuzzy logic

r the associated (a) core porosity (CorPor or CPor) and (b) core

(Nphi), density (Rhob), water saturation (Sw) and true resistivity

and Nomenclature. VGLAUC-CPX: Volume of Glauconite in

thology, PHSW-CPX: Water volume in complex lithology, VBW-

porosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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Figure 11 Permeability and porosity predictions based on the zonal classification for the well HRS-8 as: KH (core permeability).

Legend: Composite log of well log predictions for HR-167. U1, U2, M1, M2, L1, L2 and L3: in-situ formations; GR [API]: gamma ray;

Rhob [g/cm3]: density; Nphi [%]: neutron porosity; DT [ms/ft]: sonic log; RT [Xm]: true resistivity, CPerm [mD]: permeability; subscript

nn relates to predicted values from neural network. The horizontal arrows represent the levels of samples used in the training. Fuzzy logic

Bin number distributions within the Hassi R’Mel Triassic reservoir for the associated (a) core porosity (CorPor or CPor) and (b) core

permeability (CPerm); gamma ray (GR), sonic (DT), neutron porosity (Nphi), density (Rhob), water saturation (Sw) and true resistivity

(RT); Bin number: predicted values. For notations see Appendix A and Nomenclature. VGLAUC-CPX: Volume of Glauconite in

complex lithology, VSND–CPX: Volume of Sandstones in complex lithology, PHSW-CPX: Water volume in complex lithology, VBW-

CPX: Volume of Bulk Water in complex lithology.
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the predictive performances of the four approaches are com-
pared using linear and quadratic errors for both the two wells

HRS-7 and HRS-8.
All the results of Permeability and porosity prediction are

plotted in the Fig. 12a and b where the three methods used

in this work shows the well log data correlation with porosity
and permeability calculated from the HFU (PERMC) and
others porosity/permeability as (KH-NN) from FFNET with

core data (KH).

7. Discussion and conclusion

The use of nonparametric regression methods in the Electrofa-
cies Characterization study allows more significant results in
the model clay sandstone oil reservoir. Therefore,

1. The predicted permeability profiles obtained from the data
recorded in the depth, by assuming that this well had been
logged only and did not have core data, while in reality core

data were available at well. An examination of the error
rates associated with Discriminant Analysis for core poros-
ity and core Permeability showing the summary Goodness
Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and p
analysis and neural network, Hassi R’Mel Field, Algeria, Egypt. J. Petrol. (2016), h
of Fit for uncored wells indicates that data classification
based on electrofacies characterization look more robust
compared to other methods.

2. The simplest approach uses flow zones or reservoir layer-
ing. Other approaches have used lithofacies information
identified from cores, electrofacies derived from well logs,
and the concept of HFUs.

3. Non-parametric regression offer better technical means to
better approximate the permeability in the shaly sand reser-
voirs, even in intervals where there is no relationship

between permeability and logs.
4. The best performance of permeability prediction result of

the discrimination ability of the pattern recognition and

reliability correlation models and this has, in advance;
explained the methods for predicting porosity and perme-
ability calculated from partitioning and correlation of data.

The identification of errors from HFU and lithofacies can
thus lead to incorrect results in the predictions of porosity
and permeability.
To improve further the permeability and porosity

predictions,
� The results of treatment should be checked carefully.
orosity from well log data using the nonparametric regression with multivariate
ttp://dx.doi.org/10.1016/j.ejpe.2016.10.013
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Figure 12 (a) Means with error plot of porosity versus lithology. (b) Means with error plot of permeability versus lithology.

Table 6 Facies description represented by 10 different litho-

facies types in Hassi R’Mel Triassic.

Facies number (Facino) Facies description

1. Halite

2. Shale halite

3. Sand

4. Low shale sand

5. Shale sand

6. Dolomitic shale

7. Dolomitic shale sand

8. Low dolomitic shale sand

9. Sandy shale

10. Dolerites

14 B. Rafik, B. Kamel

Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and poro
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� The number of the Hydraulic flow units must be opti-
mum in the current study.

� Calculations FZI and HFU settings must first be made.
� We need to ensure that a better quality of permeabilities

is obtained practically and good effect compaction cor-

rections have been introduced into the petrophysical a-
nalysis stage.
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Table 7 Predictive performances of different classifiers are compared using linear and quadratic errors for the two wells HRS-7 and

HRS-8.

ldaCVerr qdaCVerr Perf Tr_Perf Val_Perf Test_Perf

HRS-7 HFU 0.4052 0.4125 0.7425 0.5266 1.0002 0.9255

LITHO 0.4444 0.3919 0.7535 0.6496 1.0285 0.9622

Facies 0.4450 0.3871 0.7337 0.6894 0.9048 0.7693

HRS-8 HFU 0.4129 0.4135 0.7140 0.4828 0.7797 0.8358

LITHO 0.4444 0.3919 0.7535 0.6496 1.0285 0.9622

Facies 0.4189 0.3221 0.1954 0.2181 0.1415 0.1439
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Appendix A

K: is the permeability (lm2),

ue: is the effective porosity (fraction),
FZI: is the Flow Zone Indicator (lm),

ACE: Alternating Conditional Expectation,
GAM: General Additive Models,
DT: Sonic travel time (Delta Time, lsec/ft),
NNET: Neural Network,
PHIT: Total Effective Porosity
RHOCMA: Matrix Density

SUM: Summation
LdaCVerr: Linear discriminant CV error
QdaCVerr: Quadratic discriminant CV error

Perf: Performance
Tr_Perf: Train Performance
Val_Perf: Validation Performance
Test_Perf: Test Performance

SS: Sandstones
LS: Limestones
Dol: Dolomite

Dtf = Fluid transit time (ls/ft)
Dt = Transit time (ls/ft)
qb = Bulk density (g/cc)

qf = Fluid density (g/cc)
UNf = Neutron fluid (l.p.u.%))
UN = Neutron (l.p.u.%))

Root1 = Principal Composant Axe 1 (PC1)
Root2 = Principal Composant Axe 2 (PC2)
Root3 = Principal Composant Axe 3 (PC3)
DtMAA = Apparent matrix transit time – including shale

(ls/ft)
qMAA = Apparent matrix density – including shale (g/cc)
UTAA = Apparent total porosity – including shale (%)

CorPor (Cpor): Core Porosity (%)
CPerm: Core Permeability (mD)
KH: Core Permeability (mD)

PHIR: Porosity obtained from FHU (%)
NET-CPX: Net Volume in complex lithology
CPHI-NN: Core porosity neural network (%)
PHIS: Porosity sonic (%)

PHIT-CPX: Total porosity in complex lithology (%)
Please cite this article in press as: B. Rafik, B. Kamel, Prediction of permeability and p
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PERMC: Permeability obtained from FHU (mD)
KH-NN: Core permeability neural network (mD)
VGLAUC-CPX: Volume of Glauconite in complex
lithology

VSND–CPX: Volume of Sandstones in complex lithology
PHSW-CPX: Water volume in complex lithology
VBW-CPX: Volume of Bulk Water in complex lithology

X, Y: Coordinates (UTM)
HRS: Hassi R’Mel Southern
K: Permeability (mD)

Kv: Vertical permeability (mD)
Kh: Horizontal permeability (mD)
U: Porosity (%)

Vsh: Shale fraction (%)
Swi: Initial water saturation (%)
l: Viscosity (cp)
Vap: Apparent velocity (m/s)

Vac: Actual velocity (m/s)
P: Pressure (psi)
L: Length

DLL: Dual Laterolog (X m)
LDT: Litho density tool (Pe)
Rhob: Bulk density (g/cc)

CNL: Compensated neutron log (%)
GR, SGR: Gamma ray (API)
SGR: Spectrometry Gamma ray (API)
MSFL: Micro Spherically Focused Log (X m)

BHC: Borehole compensated (ls/ft)
CAL: Caliper (in.)
nnt: Neural network

mlr: Multi linear regression
MSE: Mean square error
MAE: Mean absolute error

MRSE: Mean root Square error
MRAE: Mean root absolute error
R2: correlation coefficient
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