
J. LOGIC PROGRAMMING 1993:15:9!-111 99

A SIMPLE TEST IMPROVES CHECKING SATISFIABILITY

ELIEZER L. LOZINSRII

D In many practical cases satisfiability of a set of clauses can be decided
before an interpretation is found that satisfies all clauses of the set. We
present a test for such an early discovery of satisfiability, EDS, and
develop an algorithm, HIP, incorporating EDS and a branching heuristics
related to this test. IDP was implemented and tested on a wide variety of
instances and showed a high performance and stability with respect to
changing the proportion of non-Horn clauses. a

1. INTRODUCTION

Deciding whether a given logical formula F is satisfiable constitutes the sutisfiabil-
@problem. Among the hard computational problems, the satisfiability problem is
very important both theoretically and practically. It plays a central role in the
complexity theory as the seed of the class of NP-complete problems [51, and
deciding satisfiability presents an inevitable and most frequently employed process
in automated reasoning, theorem proving, logic programming, deductive databases,
etc. Since NP-complete problems, many of which find significant practical applica-
tions, are reducible to the satisfiability problem in polynomial time, efficient
algorithms for deciding satisfiability are of high practical importance.

A basic form of the satisfiability problem, SAT, is to decide satisfiability of a
propositional formula presented in the conjunctive normal form (cfuusalform). Let
X be a set of propositional variables Ix,, . . . , xJ, S denote a set {C,, . . . , C,,,) of
clauses, each clause Ci be a disjunction of literuls (considered also as a set of
literals), such that each literal is a variable or its negation. An interpretation I is a
function Z : X -+ {true, fake). An interpretation I satisfies a clause C iff there is a
literal L E C such that I(L) = true. S is satisfiable iff there exists an interpretation
J satisfying all the clauses of S. Then, J is a model of S.

Address comspndence to Eliezer L. Lozinskii, Institute of Mathematics and Computer Science, The
Hebrew University, Jerusalem 91904, Israel. Email: LOZINSKI@HUMUS.HUJI.AC.IL.

Received August 1990; revised March 1992; accepted April 1992.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1993

655 Avenue of the Americas, New York, NY 10010 0743-1066/93/%5.00

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82747308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

100 ELIEZER L. LOZINSKII

2. DAVIS-PUTNAM ALGORITHM

A clause containing only one literal is a unit clause. A literal L is pure in a set of
clauses S iff L appears in a clause of S, but 7 L appears in no clause of S.

An early and still quite efficient method for solving SAT is the well-known
algorithm proposed by Davis and Putnam [71, and improved in [81 (described also in
[3, 151). Due to [B], it can be expressed in the following recursive form.

Algorithm DP (Given a set of propositional clauses S, decides its satisfiability)

(1)
(2)
(31

(3.1)

(3.2)
(3.3)
(4)

(4.1)
(4.2)
(5)
(5.1)
(5.2)

(5.3)

If S is empty, then it is satisfiable;
else if S contains an empty clause, then S is unsatisfiable;
else (*Unit Clause Rule:*) if S contains a unit clause C = IL’), then
choose L’ and do 3.1-3.3;
delete from S all clauses containing L’, obtaining a set of remaining
clauses Si;
delete from the clauses of S; all occurrences of 1 L’, obtaining a set S;;
apply DP to S;; S is satisfiable iff S; is so;
else (*Pure Literal Rule:*) if S contains a pure literal L”, then choose L”
and do 4.1-4.2;
delete from S all clauses containing L”, obtaining a set S”;
apply DP to S”; S is satisfiable iff S” is so;
else (*Splitting Rule:*) do 5.1-5.3;
choose a literal L occurring in S;
let AL denote a set of all clauses of S containing L, A ~ L stand for a set
of all clauses of S containing 7 L, A be the rest of clauses of S
containing neither L nor 7 L. Define

S,=Au{(C-(lL})lC~d_,},

S ~L=A~{(C-{L})IC~AL};

choose S, or ST L and apply DP to it; S is satisfiable iff S,_ or S_ L is
satisfiable. 0

Algorithm DP has an exponential worst-case time complexity (in particular due
to the splitting of S at Steps 5.2 and 5.3); however, in many practical cases the
average time complexity of DP is polynomial. Cook stated in [51 that he had “not
yet been able to find a series of examples showing that the procedure must require
more than polynomial time.” Goldberg, Purdom, and Brown [12, 131 provided an
0(n2> upper bound on the expected time complexity of DP for a variety of
probability distributions of clauses and literals. A polynomial average time com-
plexity of DP has been shown also in experiments carried out by Gallo and Urbani
[ll]. On the other hand, it has been proved in [21 that a simplified version of DP
requires an average time that is exponential in the number of variables n if the
number of clauses m is at least a linear function of n and the probability that a
literal appears in a clause is proportional to l/n. Recent analysis of best known
algorithms for SAT [l, 2, 14, 181 shows that for each of them there is a “hard”
distribution of the problem parameters for which the algorithm does not guarantee
a polynomial average time. So, new developments and improvements of algorithms
for SAT are intended to reduce the regions of unfavorable parameters.

A TEST FOR SATISFIAF3ILITY 101

3. LATER DEVELOPMENTS

A high practical efficiency of DP has inspired numerous efforts to further improve
its performance.

Given a set of clauses S, an execution of DP induces a binary proof tree T(S)
with its root representing S. In the course of performing DP, the set S changes as
its cardinal@ is being monotonously reduced (cf. DP, Steps 3.1, 3.2, 4.1, and 5.2).
Each node v of T(S) represents a pair (S”, r’), where S” is the current state of S
and r y is the rule applied to S”. If r” is the unit clause or pure literal rule, then
there is only one arc going out of Y, labeled by the literal chosen by r” (that is, by
L’ or L”, respectively-see Steps 3 and 4). If the splitting rule is applied at v (Step
51, then v is a branching node, since there are two outgoing arcs labeled by L and
T L. Each leaf of T(S) represents either an empty set (Step 1) and is a satisfiable

leaf or a set containing an empty clause (Step 2), and hence, is an unsatisfiable leaf.
DP starts at the root of T(S) and then examines its branches until either a
satisfiable leaf is reached or all leaves of T(S) are found unsatisfiable.

The configuration of T(S), and hence the run-time of DP, are determined by
the choices made at Steps 3, 4, 5.1, and 5.3, primarily by the branching due to the
splitting rule (Step 5). However, the original algorithm by Davis and Putnam [7]
provided no recommendation regarding the branching strategy, namely, what literal
L should be chosen at Step 5.1, and to which subset, S, or S_ L, should DP be
applied first (at Step 5.2). So, a number of heuristics have been proposed for
improving the efficiency of branching.

Let S,,S_, be subsets of clauses formed at a branching node. To prevent the
redundant work of developing the same interpretations along both branches,
Purdom [17] suggested complement searching, that is, to consider for one of the two
subsets only those interpretations that do not satisfy the other subset. So, if, for
instance, the left son of the node is assigned S,, then, its right son gets S_ L A 7 S,.
It takes additional time to transform 7 S, into clausal form. As pointed out in [17],
this branching strategy is efficient practically for sets with almost pure literals.

Monien and Speckenmeyer [16] introduced a multiwuy branching in the proof
tree of DP by selecting a shortest clause L, V v-0 v L, and producing k branches
by the following truth assignments to its literals: (1) L, = true; (2) L, = false,
L, = true,. . . , (k) L, =L, = . . . = L,_, = false, L, = true. Let l(S), r denote the
number of literals in S and in the longest clause of S, respectively. Then the
worst-case time complexity of the algorithm presented in [16] is 0(1(S). a:>, where
CY, < 2, but approaches the value of 2 very closely as r grows; for example,
cy3 = 1.62, q = 1.84, (Ye = 1.97.

Although in certain cases these branching heuristics reduce the size of the proof
tree, the experiments reported in [ll] show that on the average they do not save
significant time over DP.

Gallo and Urbani ill] presented two new algorithms for SAT utilizing the fact
that the satisfiability problem for a set of propositional Horn clauses, HORhVAT,
is solvable in linear time (e.g., by the algorithms given in [9, 193). They proposed
two relaxation schemes that map instances of SAT into instances of HORN-SAT.
Due to one of these schemes, every non-Horn clause -, p1 v 0-e v T pk v q1
V **- V qm (m > 1) is replaced by two clauses (the first is a Horn one): p1 A 0-e A\P~
+r and r+q, v -.. vq,, where r is a new atomic proposition.

This replacement transforms a given set of clauses S into S, u S,, where
S,, S, denote sets of Horn and non-Horn clauses, respectively. Now satisfiability

102 ELIEZER L. LOZINSKII

of S can be decided by the following algorithm (called HORN2 in [ll]):

(1)

(2)

(31

Decide satisfiability of S, (*in linear time*); If S, is unsatisfiable, then so is
S, else assign S’ = S,;
if S, = 0, then S is satisfiable, else select the shortest clause C from S,;
assign S, = S, -{Cl, S’ = S’ U {Cl;
decide satisfiability of S’ (*S’ contains non-Horn clauses*); If S’ is unsatisfi-
able, then so is S, else go to Step 2. 0

Performance of this algorithm is enhanced by detecting unsatisfiability of a
subset of S, which can be done just in linear time in cases when S, is unsatisfiable.
Indeed, as reported in ill], HORN2 outperformed other known algorithms. How-
ever, the authors noted that the performance of HORN2 decreases as the
proportion of non-Horn clauses in S grows.

4. EARLY DISCOVERY OF SATISFIARILI’I’Y

Let T(S) be the proof tree of a set of clauses S. The Davis-Putnam algorithm (as
well as its variants) terminates either if it discovers a satisfiable leaf or if all the
leaves of T(S) are proved unsatisfiable. Hence, the algorithm investigates most of
T(S) (or even the entire tree, if S is unsatisfiable) in order to reach the leaves.
Clearly, the run time could be shortened significantly by pruning the proof tree due
to a method that would detect satisfiability or unsatisfiability of S in advance, that
is, before reaching the leaves of T(S). The algorithms presented in [ll] (HORN2
in particular) can be viewed as such a pruning device for an early discovery of
unsatisfiability of S. However, if S is satisfiable, then still HORN2 computes an
interpretation that satisfies all the clauses of S, U S,.

So, the efficiency of algorithms for SAT can be further improved by an early
discovery of sutisfubility, EDS, of a given set of clauses.

Consider a set S of m clauses over it propositional variables. S has 2”
interpretations. Let J(S) denote the set of all interpretations falsifying S, then

where J(C) is the set of all interpretations falsifying a clause C of S. So, S is
satisfiable if and only if

where lsetl denotes the cardinality of set.
Let CT i be a subset of S containing i clauses and K(c+‘) denote the set of all

interpretations such that each one falsifies every clause of oi, and hence, falsifies
the disjunction of all clauses of gi, as well as the union of all clauses of ui
considered as sets of literals. Then,

0 if
IK(a’)(=

U C contains complementuly liter&
CEU’

2”-‘(ui) otherwise,

A TEST FOR SATISFIABILITY 103

where U C denotes the union of clauses considered as sets of literals and l(u ‘) is
the number of different literals appearing in ui. Hence,

IJ(S)I= c lK(a’)l- c IK(a2)l+**.
a’z.5 U2E.Y

= g (w c IW).
u’cs

(2)

In [14], Iwama presented an algorithm for SAT based on computing of the
inclusion-exclusion formula (2) and showed that this computation takes polynomial
average time if p*n 2 In m - c (p is the probability that a given literal appears in a
given clause, and c is a constant), however, for different parameters polynomial
average time is not guaranteed. We would like the time of EDS testing to be
absorbed by the average complexity of SAT. Since the latter has been estimated
for certain cases as O(n*> in [12, 131, we limit the computing of IJ(S)l to its linear
component:

IJ(S)jI c IK(a’)l< c 2”-l(c),
IT’CS CES

(3)

where I(C) denotes the number of literals in clause C.
Now (1) and (3) imply a test for early discovery of satisfiability, expressed by the

following proposition.

Proposition 4.1. (EDS test). A set of clauses S = {C} is satisfiable if Cc E s2-‘(c) < 1.
0

So, if at a node v of the proof tree, the current set S” contains my clauses such
that C~z”12-‘(c~) < 1, then the EDS test terminates the processing, while any
algorithm not performing EDS has to proceed until proving satisifiability of S”.
Thus, the size of the set S” pruned of the tree determines the run-time saving due
to the EDS.

The EDS test subsumes checking emptiness of a given set of clauses as at Step 1
of Algorithm DP.

5. BRANCHING STRATEGY

A node Y of T(S) is the root of a subtree T”. If T” contains a satisfiable leaf, then
T” is a sahjiable subtree; otherwise, it is an unsatisfiable one.

If S is satisfiable, then a sensible strategy is to keep the proof process all the
time (from the very start at the root of T(S)) within satisfiable subtrees. Indeed,
should this goal be achieved, it would guarantee that a satisfiable leaf of T(S) is
reached, and so the proof is terminated, without backtracking.

Let w be a branching node representing a set of clauses S” and a literal L be
chosen by the splitting rule. Then, w has two son-nodes in T(S) representing Sz
and SW_, such that (see the notation of Algorithm DP, Step 5.2):

S;=A”‘u{(C-[IL))ICEA”_.}, (4)

sy,= A’“u{(C-{L})lc~h”,}. (5)

104 ELIEZER L. LOZINSKII

Consider a clause C E S containing I(C) literals. There are 2”-@c) interpreta-
tions falsifying C, so, the probability P(C) that an arbitrary interpretation satisfies
C is

2” - 2”_KC)

P(C) = 2” = 1 - 2-K).
(6)

Now, consider a subset u c S and the probability P(CT) that an arbitrary interpreta-
tion satisfies all clauses of (+. If the clauses of u are disjoint (contain no common
variables) pairwise, then

P(a) = _nmP(C) = cJ-J(l -2-‘(C)). (7)

Formula (7) does not hold for an arbitrary set CT because of correlation among
its clauses; however, the value of P(a) computed due to (7) can serve as a
heuristic indicator of satisfiability of v relative to other subsets of S. So, if, for
instance, PCS,“) > P(SW_ L), then it is advisable to branch to S,W, or otherwise, to

ST,*
Given a set of clauses u and a literal L, let us define the ratio of L in (+ as

r(L,a) =
P(uL.L

P(9L) *

Then for a branching node w (cf. (4) and (5)):

r(L,SW) =
pw J-J (1 - 21-9

P(G) = Cgy(, - 2’-‘(Q) .

Our intention is to proceed from a branching node to a satisfiable subtree (if it
exists), so, the larger r(L,S”) is, provided r(L,S”) > 1, the stronger is our
preference for branching to S,W rather then to ST L. With this in mind we suggest
the following heuristics.

Branching Strategy BR. If the Splitting rule is applied to a set S”, then choose a
literal L such that for all literals h occurring in S”, r(L, S ‘) 2 r(h, S”) and branch
to s; (cf. (4)).

6. IDP: AN IMPROVED DAVIS-PUTNAM ALGORITHM

The Davis-Putnam algorithm can be improved by incorporating the EDS test and
the BR branching strategy in the following way.

Algorithm IDP (Given S, decides its satisfiability)

(1) If &ES 2-‘(” < 1, then S is satisfiable;
(2-4.2) the same as in Algorithm DP, but substitute IDP for DP;
(5) else do 5.1-5.5:
(5.1) find a literal L such that for all literals A occurring in S, r(L, S> 2

r(h, Sk
(5.2) the same as in Algorithm DP;

A TEST FOR SATISFIAEHLITY 105

(5.3) first apply IDP to S,; if S, is satisfiable, then S is so;
(5.4) else apply IDP to S ~ L; if S_ L is satisfiable, then S is so;
(5.5) else S is unsatisfiable. 0

The time complexity of EDS and BR is linear in the number of clauses and
variables of 5, respectively. The complexity of both these additions to DP is
actually absorbed by that of DP: C2-‘(‘) and r(A, S) are computed while looking
for a unit clause or a pure literal (Steps 3 and 4) and while updating S (Steps 3.1,
3.2, and 4.1).

7. EXPERIMENTS

The IDP has been programmed in C and run on GOULD POWER NODE under
UNIX (UTX/32.2.Za). To make performance estimation computer-independent
and comparable, the run-time has been measured in number of accesses to a single
literal, which is the most frequent elementary operation determining the run-time
of any algorithm for SAT.

The following parameters and their ranges have been chosen for the experi-
ments:

l number of propositional variables, 10 I it I 200;

l number of clauses, 10 _< m I 1000;

l number of literals Z(C) in each clause C has been determined in three
different ways:

(1) Z(C) chosen randomly (uniform distribution) in the interval 1 I Z(C) I n
(Table 1, Figures 1 and 2);

(2) Z(C) chosen randomly (uniform distribution) in the interval 5 I KC) I n/3
(Table 2, Figure 3);

(3) constant f(C) for all clauses (e.g., Z(C) = 7 in Table 3, Figure 4).

For each combination of parameters, 100 instances have been randomly gener-
ated and average measures computed. A representative sample of results is given
in Tables l-3 showing the run-time T of DP and IDP measured in thousands of
accesses to literals (cf. Figures l-4).

At any step Y of DP or IDP, the satisfiability of the original set S of m clauses
is determined by the satisfiability of a subset S” c S. Suppose that at this step, m”
clauses remained not yet satisfied. If the EDS test is performed at this step showing
satisfiability of S”, then S is satisfiable and the processing terminates. So, my

TABLE 1. T (for DP and IDP) in thousands of accesses; SC in %; 1 I 1(C) I II.

n 15 25 45 65 90 115 155 200

DP 4 30 13 117 164 203 280 342
m=200 IDP 3 17 44 43 36 29 22 14

SC 0 3 18 34 50 64 76 85

DP 5 9 117 561 1,175 1,695 2,748 3,741
m=lOOO IDP 4 8 103 484 997 1,446 1,570 1,592

SC 0 0 0 1 2 5 11 17

106 ELIEZER L. LOZINSKII

T SC

x104 % f
35- m=200

30-

25 --loo

20 -- 80

111 I I I I
0 20 40 60 80 100 120 140 160 180 200 n

FIGURE 1. 1 s 1(C) sn.

clauses are saved from any further treatment. Let SC = mu/m denote the propor-
tion of saved clauses. The larger is SC, the higher is the performance of IDP.
Average values of SC in sample experiments are given in Tables 1-3. The longer
are the clauses, the larger is SC. It is worth noting that if the length of clauses
grows with the number of variables it, then the run-time of IDP is nonmonotonic
in 12 and may even drop with increasing n, while SC approaches 100% (see Figures
1 and 3).

Algorithm IDP is equipped with EDS and BR, the means that are intended for a
fast detection of satisfiability of a given set of clauses. However, if the set is
unsatisfiable, then the overhead of computing EDS and BR is not justified and may
decrease the performance of IDP. To investigate such cases, IDP was run on
random sets containing many short clauses over relatively few variables, which are
very likely to be unsatisfiable. (As it has been pointed out in [Ml, sets with m
somewhat larger than n present particularly difficult SAT problems.) In the
experiments, all clauses of a set had the same length 1 that varied for different sets
such that 4 < 1~ 10, while 100 I m I 500 and n = 50 (see Table 4). Indeed, for

TASC

x 105 %

35-

30-

25-

20-

15-

IO--20

m=lOOO DP

IDP

__e- Aw

*
0 20 40 60 80 100 120 140 160 180 200 n

FIGURE 2. 1 I I(C) -< n.

A TEST FOR SATISFIABILITY 107

TABLE 2. T (for DP and IDP) in thousands of accesses: SC in %: 5 5 I(C) I n/3.

n 10 15 25 35 45 65 90 115 155 200

DP 17 32 51 103 144 184
m=200 IDP 13 18 22 4 1 0

SC 4 15 32 91 99 99

DP 176 403 1,048 1,856 2,804 3,819 5,605
m=1000 IDP 147 292 729 918 997 848 424 100

SC 0 1 6 16 27 45 78 96

m/n 2 8 and very short clauses, 1= 4, IDP is slower than DP. As the clauses
become longer (see Figure 51, the probability that a random set of clauses is
satisfiable grows, so IDP becomes more and more efficient until it solves SAT in a
very short constant time if I> log, m (cf. Proposition 4.1).

8. STABILITY OF IDP

It is known (e.g., see [ll]) that existing algorithms for SAT are sensitive to the
proportion of non-Horn clauses, nH, in the set being checked. These algorithms
slow down while nH grows. This is true especially for algorithms that derive their
efficiency from a Horn relaxation of SAT [ll]. On the other hand, neither the EDS
test nor the BR strategy depends on non-Homness of the clauses, so IDP must
exhibit a high stability with regard to changing nH. To investigate this property of
IDP, it has been run with changing nH and fixed n, m, l(C). Let t t denote, max, Ill,”
respectively, the maximum and the minimum run-time of an algorithm with nH
changing in a certain range while other parameters are kept fixed. The larger is the
ratio t ,,,.Jtmin, the more sensitive (less stable) is the algorithm with regard to
non-Homness of the given set of clauses. Table 5 compares the stability of three
algorithms, DP, HORN2, and IDP by showing the value of tmax/tmin for non-Horn-

ThSC

x10” %

55-

50-

45.

40-

35-

30-

25 --loo

20 -- 80

15 -- 60

lo--40

m=lOOO DP

5 ,20&F<Dp

w
0 20 40 60 80 100 120 140 160 180 200 n

FIGURE 3. 5 I I(C) I n/3.

108 ELIEZER L. LOZINSKII

TABLE 3. T (for DP and IDP) in thousands of accesses; SC in %; I(C) = 7.

n 15 25 45 65 90 11.5 155 200

DP 21 54 180 316 458 592 701 727
m=200 IDP 10 23 61 100 145 202 292 320

SC 21 33 45 50 54 57 59 60

DP 147 393 1,325 2,278 3,845 5,887 10,739 16,119
m=lOOO IDP 130 260 1,048 1,930 3,142 4,803 8.274 12,239

SC 0 0 2 3 4 5 6 I

ness varied in the range 0 I nH s 50%, for l(C) = 3 and different combinations of
n, m (the data for HORN2 are those published in [111X Indeed, IDP turns out to be
more stable than DP and HORN2.

9. SUMMARY

While the existing algorithms for SAT have an exponential worst-case time
complexity [4, 6, 101, their average complexity has been shown polynomial in many
practical cases [ll-14, 181. The latter indicates that computationally difficult cases
of SAT requiring an exponential time are rather rare. So, to achieve a high
performance, an algorithm for SAT must possess an ability to recognize special
features of any particular instance which would allow a fast check of its satisfiabil-
ity. In particular, in many cases it is possible to find out whether a given set of
clauses is satisfiable (or unsatisfiable) by examining only a subset of it. We call this
possibility an ear& discovery of satisjiability, EDS (or of unsatisJiability, EDU,
respectively). The high performance of the algorithms presented in [ll] is due to
their ability to perform certain EDU testing. On the other hand, the known
algorithms for SAT do not incorporate means for EDS. The DP and its variants, in

TASC

x104 8
70- m=200

60-

FIGURE 4. Z(C) = 7.

A TEST FOR SATJSFIAEULITY 109

TABLE 4. 7’ (for DP and IDP) in thousands of accesses; n = 50.

I 4 5 6 7 8

DP 82 16 73 69.0 65.0
m = 100 JDP 62 48 27 0.1 0.1

DP 334 216 207 193 176
m=200 IDP 197 166 131 72 0.2

DP 705 407 396 321 299
m = 300 JDP 358 305 256 187 56

9 10

61.0 58.0
0.1 0.1

171.0 164.0
0.2 0.2

287.0 271.0
0.3 0.3

DP 950 785 471 449 431 403 381.0
m = 400 IDP 1060 439 391 306 177 0.4 0.4

DP 1170 1040 660 585 556 530.0 505.0
m = 500 IDP 1575 570 521 437 296 0.5 0.5

particular, decide that a set of clauses is satisfiable only when an interpretation is
found that satisfies all clauses of the set (cf. Step 1 of DP, Section 2).

Another important factor determining run-time of an algorithm for SAT is the
adopted branching strategy, since it strongly affects the shape and size of the
proof-tree.

In this paper, we present an EDS test and suggest a branching heuristics, BR,
related to the test. An algorithm, IDP, was developed that is an improvement of
DP incorporating the EDS and BR. IDP was implemented and tested on a large
number of randomly generated instances with varying dimensions: number of
propositional variables (up to 2001, number of clauses (up to l,OOO>, size of clauses,
proportion of non-Horn clauses. In all these experiments (except a few extreme
cases shown in Table 4) IDP outperformed DP, and the higher is the probability
that a given set of clauses is satisfiable, the more efficient is IDP. It also showed a
stability with respect to changing proportion of non-Horn clauses, which is higher
than that of known algorithms.

Algorithms for SAT can be further improved by incorporating both EDU and
EDS. So, a combination of HORN2 and IDP, for instance, is quite promising.

DP, m=500
IDP, rn=%o

DP, rn=Wo
‘\ --___ -, IDP, m=3CKJ
-_ _-- *

FIGURE 5. n = 50.

4 5 6 i 4 lb 1

110 ELIEZER L. LOZINSKII

TABLE 5. The ratio I max/t,in for non-Hornness varied in the range 0 I nH 5 50%
and for I(C) = 3.

n nl DP

30 50 3.25
40 200 3.66
50 250 5.16

HORN2 IDP

3.80 2.94
5.80 3.04

14.72 3.22

Many thanks to the anonymous referee for most apt, inspiring, and benevolent comments.

REFERENCES
1. Bugrara, K., and Brown, C., On the Average Case Analysis of Some Satisfiability Model

Problems, Information Science 40:21-37 (1986).

2. Bugrara, K., Pan, Y., and Purdom, P., Exponential Average Time for the Pure Literal
Rule, SUM. J. Comput. l&409-418 (1989).

3. Chang, C.-L., and Lee, R., Symbolic Ligic and Mechanical Theorem Proving, Academic
Press, 1973.

4. Chvatal, V., and Szemeredi, E., Many Hard Examples for Resolution. J. ACM
35(4):759-768 (1988).

5. Cook, S., The Complexity of Theorem-Proving Procedures, in: Proceedings of the 3rd
ACM Symposium on Theory of Computing, 1971, pp. 151-158.

6. Cook, S., and Pitassi, T., A Feasibly Constructive Lower Bound for Resolution Proofs,
Inform. Process. Letters 34:81-85 (1990).

7. Davis, M., and Putnam, H., A Computing Procedure for Quantification Theory, J. ACM
7:201-215 (1960).

8. Davis, M., Logemann, G., and Loveland, D., A Machine Program for Theorem-Proving,
Commun. ACM 5:394-397 (1962).

9. Dowling, W., and Gallier, J., Linear-Time Algorithms for Testing the Satisfiability of
Propositional Horn Formulae, J. Logic Programming 3:267-284 (1984).

10. Galil, Z., On the Complexity of Regular Resolution and the Davis-Putnam Procedure,
Theoret. Comput. Sci. 4~23-46 (1977).

11. Gallo, G., and Urbani, G., Algorithms for Testing the Satisfiability of Propositional
Formulae, J. Logic Programming 7:45-61 (1989).

12. Goldberg, A., Average Case Complexity of the Satisfiability Problem, in: Proceedings of
the 4th Workshop on Automated Deduction, Austin, Tex., 1979, pp. l-6.

13. Goldberg, A., Purdom, P., and Brown, C., Average Time Analyses of Simplified Davis-
Putnam Procedures, Inform. Process. Letters 15:72-75 (1982).

14. Iwama, K., CNF Satisfiability Test by Counting and Polynomial Average Time, SIAM J.
Comput. X385-391 (1989).

15. Loveland, D., Automated Theorem-Proving: A Logical Basis, North-Holland, 1978.

A TEST FOR SATISRABILITY 111

16. Monien, B., and Speckenmeyer, E., Solving Satisfiability in Less Than 2” Steps, Discrete
Appl. Math. 10~287-295 (1985).

17. Purdom, P., Solving Satisfiability with Less Searching, IEEE Trans. Pattern Anal. and
Mach. Intell. 6:510-515 (1984).

18. Purdom, P., and Brown, C., The Pure Literal Rule and Polynomial Average Time, SL4M
J. Cornput. 14:943-953 (1985).

19. Scutella, M., A Note on Dowling and Gallier’s Top-Down Algorithm for Propositional
Horn Satisfiability, J. Logic Programming 8:265-273 (1990).

