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Abstract

In this work we deal with the characteristic polynomial of the Laplacian of a graph. We
present some general results about the coefficients of this polynomial. We present families of
graphs, for which the number of edgesm is given by a linear function of the number of vertices
n. In some of these graphs we can find certain coefficients of the above-named polynomial as
functions just of n.
© 2002 Published by Elsevier Science Inc.
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1. Introduction

A comprehensive treatment of spectral graph theory is given in [1–4]. In Section
2, we describe how the coefficients of the characteristic polynomial of the Laplacian
of a graph G, pL(G)(λ), are related to spanning forests. In Section 3 we provide an
algebraic expression for q2 and q3, the third and fourth coefficients of pL(G)(λ), re-
spectively. In the last section we calculate q2 and q3 for graphs in certain (a, b)-linear
classes as functions of n, a and b.
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2. The Laplacian of a graph

Let G be a graph with n vertices. The Laplacian of G is defined as the n× n
matrix

L(G) = � − A, (2.1)

where A is the (0, 1)-adjacency matrix of G and � is the diagonal matrix whose
elements are the degrees of the vertices of G. We call � the matrix of degrees of G
or simply the matrix of degrees. The matrix L(G) can be associated with a positive
semidefinite quadratic form. We can see it in the following proposition for which the
proof is in [7].

Proposition 2.1. IfG is a graph and the quadratic form related to L(G) is given by

q(x) = xL(G)xt, x ∈ Rn,

then q is a positive semidefinite quadratic form.

Consider ω(G), the number of connected components of G. The next result (for
which the proof can also be found in [7]) shows a relation between ω(G), the number
of vertices in G, and the rank of L(G).

Proposition 2.2. The rank of the Laplacian matrix is

rank(L(G)) = n− ω(G).
The polynomial

pL(G)(λ) = det(λI − L(G)) = λn + q1λ
n−1 + · · · + qn−1λ+ qn (2.2)

is called the characteristic polynomial of L(G). Its spectrum is

ζ(G) = (λ1, . . . , λn), (2.3)

where ∀i, 1 � i � n, λi is an eigenvalue of L(G) and λ1 � · · · � λn.

According to Propositions 2.1 and 2.2, ∀i, 1 � i � n, λi is a non-negative real
number; ifG is connected then λn−1 = 0 and λn = 0 whether or notG is connected.

Before introducing the first theorem, we have to consider the following defini-
tions: For each i ∈ {1, . . . , n}, let si be the number of spanning forests in G with
i edges. Let these spanning forests be �if (1 � f � si), and let p(�if ) be the
product of the numbers of vertices of the trees in �if . Theorem 2.1 links the coeffi-
cients of the pL(G)(λ) to the spanning forests in G and its proof can be found in [1,
Theorem 7.5].

Theorem 2.1. The coefficients of the characteristic polynomial of L(G) are given
by
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Fig. 1. H1 and H2 are spanning forests in G.

(−1)iqi =
si∑
f=1

p(�if ), 1 � i � n.

It follows from Theorem 2.1 that q0 = 1; qn = 0 and q1 = −2m, where m is
the number of edges of G. Furthermore, qn−1 = (−1)n−1nS(G), where S(G) is the
number of spanning trees inG. In the next section we calculate algebraic expressions
for q2 and q3. These expressions provide us with q2 and q3 as functions of m, n, the
degree sequence of vertices and the adjacency matrix of G.

3. The third and fourth coefficients of pL(G)(λ)

From Theorem 2.1 we have

(−1)2q2 =
s2∑
f=1

p(�2f ), (3.1)

where each �2f is a spanning forest in G with only two edges. We define an H1-
spanning forest inG as a spanning graph with two connected components isomorphic
to P2 and (n− 4) components isomorphic to K1. We also define an H2-spanning
forest in G as a spanning graph with only one component isomorphic to P3 and
(n− 3) components isomorphic to K1. Each �2f is isomorphic to either an H1- or
an H2-spanning forest in G, as displayed in Fig. 1.

The next theorem identifies the third coefficient q2 of pL(G)(λ).

Theorem 3.1. Let G be a graph with m edges and let d = (d1, . . . , dn) be its non-
increasing degree sequence. The third coefficient in pL(G)(λ) is

q2 = 2m2 −m− 1
2

n∑
i=1

d2
i .
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Proof. From the hypotheses above and expression (3.1) we have

q2 = 4 ξH1(G)+ 3 ξH2(G), (3.2)

where for j = 1, 2 , ξHj (G) is the number of Hj -spanning forests in G.
When we calculate ξH2(G), we observe that each vertex i with di � 2 contributes(

di
2

)
towards the number of H2-spanning forests, while the remaining vertices do not

contribute at all. So,

ξH2(G) =
n∑
i=1

(
di

2

)
.

After some algebraic manipulations and, considering
∑n
i=1di = 2m we find

ξH2(G) = 1
2

n∑
i=1

d2
i −m. (3.3)

To calculate ξH1(G) it is enough to use the number of all two-edge combinations.
It follows that

ξH1(G) = m(m− 1)

2
− ξH2(G).

Consequently,

ξH1(G) = m2 +m− ∑n
i=1 d

2
i

2
. (3.4)

By substituting (3.3) and (3.4) into (3.2) we obtain

q2 = 2m2 −m− 1
2

n∑
i=1

d2
i . �

Corollary 3.1. If � is the matrix of degrees in G then

q2 = 1
2

[
(tr�)2 − tr� − tr(�2)

]
.

Proof. We obtain this result straight from Theorem 3.1, if we consider
∑n
i=1 di =

tr[�] and
∑n
i=1 d

2
i = tr[�2]. �

In order to obtain an algebraic expression for q3, the fourth coefficient in pL(G)(λ),
we need to count all spanning forests �3f with exactly three edges inG. Each �3f is
isomorphic to one of the four graphs displayed in Fig. 2, which we call Hj -spanning
forests in G, 3 � j � 6. Let ξHj (G) be the number of such forests (3 � j � 6).

Theorem 3.2. Let G be a graph with m edges and let A be its adjacency matrix.
Consider d = (d1, . . . , dn) its non-increasing degree sequence. Then,
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Fig. 2. H3, H4, H5 and H6 are spanning forests of G.

q3 = 1
3

{
− 4m3 + 6m2 + 3m

n∑
i=1

d2
i −

n∑
i=1

d3
i − 3

n∑
i=1

d2
i + tr(A3)

}
.

Proof. From Theorem 2.1 and considering the forests displayed in Fig. 2, we
have

(−1)3q3 =
s3∑
f=1

p(�3f ), (3.5)

and

(−1)3q3 = 8ξH3(G)+ 6ξH6(G)+ 4(ξH4(G)+ ξH5(G)). (3.6)

In order to determine q3, we need to find ξHj (G) for j = 3, 4, 5 and 6.
The procedure to calculate ξH4(G) is analogous to the one used in calculating

ξH2(G), if we consider di � 3. Then, we have

ξH4(G) = 1

6

( n∑
i=1

(d3
i − 3d2

i + 2di)

)
. (3.7)

In order to evaluate ξH6(G) it is necessary to find the number of all spanning
graphs with three edges that contain the path P3. This value is

ξH2(G)(m− 2), (3.8)
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when ξH2(G) is given by (3.3). After that, we need to subtract all the spanning graphs
with triangles of which there are 1/6tr(A3) [5], and all the spanning forests H4(G),
given by (3.7), and H5(G). We do not need to find the number of H5(G), as it will
be eliminated in the calculations afterwards. So,

ξH6(G) = ξH2(G)(m− 2)− 1
2 tr(A3)− 3ξH4(G)− 2ξH5(G). (3.9)

Finally to determine ξH3(G) we need to obtain the number of all spanning graphs
in G with three edges, discarding the ones that contain a triangle, or an H4, H5 or
H6. Thus we arrive at

ξH3(G)= 1
6 [m(m− 1)(m− 2)] − ξH4(G)− ξH5(G)

− ξH6(G)− 1
6 tr(A3). (3.10)

By substituting (3.7), (3.9) and (3.10) into (3.6) and after some manipulations, we
obtain an expression for q3:

q3 = 1

3

{
− 4m3 + 6m2 + 3m

n∑
i=1

d2
i −

n∑
i=1

d3
i − 3

n∑
i=1

d2
i + tr(A3)

}
. �

Corollary 3.2. If � is the matrix of degrees in G, then

q3 = − 1
6 (tr�)

3 + 1
2 (tr�)

2 + 1
2 (tr� − 2)tr(�2)− 1

3 tr(�3)+ 1
3 tr(A3).

Proof. Straightfowardly from Theorem 3.2 and considering
∑n
i=1 d

k
i = tr(�k), for

k � 1. �

4. The coefficients q2 and q3 of pL(G)(λ) for graphs in (a, b)-linear classes

Given a and b ∈ Q+, we define the (a, b)-linear class, denoted by L(a, b), to be
the set of all connected graphs such that m = an− b. The (1, 1)-linear class coin-
cides with the set of all trees and L(1, 0) characterizes the set of connected graphs
with only one cycle. Since the maximal outerplanar graphs (mops) havem = 2n− 3,
they all belong to the (2, 3)-linear class. Nevertheless, this class does not only contain
mops. Fig. 3 displays three mops and Fig. 4 shows a graph that is not a mop, but
belongs to L(2, 3).

In [6] we can find other well-known families of graphs in different (a, b)-linear
classes, for specific pairs of rational numbers (a, b). For example, if a = k/2, k ∈ N ,
n � k + 1 and b = 0, the class L(k/2, 0) contains the set of all k-regular graphs,
while L(3, 6) contains all maximal planar graphs.

For some graphs in the classes above, we can obtain q2 and q3 in terms of the
number of vertices, directly from Theorems 3.1 and 3.2. For example:
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Fig. 3. Mops in L(2, 3).

Fig. 4. A graph which is not a mop.

1. Consider Pn ∈ L(1, 1). Then,

q2 = 2n2 − 7n+ 6 and q3 = 1
3 (−4n3 + 30n2 − 74n+ 60).

2. Consider Cn ∈ L(1, 0). Then for n � 4,

q2 = 2n2 − 3n and q3 = 1
3 (−4n3 + 18n2 − 20n).

3. For Kn ∈ L((n− 1)/2, 0), then

q2 = 1
2 (n

4 − 3n3 + 2n2) and q3 = −n6

6 + n5 − 11n4

6 + n3.

4. Let G be k-regular. Then G ∈ L(k/2, 0), and

q2 = 1
2 [k2n2 − n(k2 + k)]

and

q3 = 1
3

[ − k3

2 n
3 + 3

2n
2(k2 + k3)− n(k3 + 3k2)+ tr(A3)

]
.

5. For Fan graphs Fn ∈ L(2, 3), displayed in Fig. 5, we calculate q2 and q3 as func-
tions of n. Although it is easy to find these expressions a few other considerations
might come in handy, such as: Fn has m = 2n− 3 and its number of triangles
is n− 2. Morever, its non-increasing degree sequence is (n− 1, 3, . . . , 3, 2, 2)
and consequently we have

∑n
i=1 d

2
i = n2 + 7n− 18 and

∑n
i=1 d

3
i = n3 −

3n2 + 30n− 66. Applying all these results into Theorems 3.1 and 3.2 we find

q2 = 15
2 n

2 − 59
2 n+ 30

and

q3 = −9n3 + 67n2 − 168n+ 144.
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Fig. 5. Fan graph Fn.

Fig. 6. Streamer graph S10.

6. If n is even and n � 6, Streamer graphs, Sn, are mops whose non-increasing
degree sequence is d = (4, 4, . . . , 4, 3, 3, 2, 2). Fig. 6 shows an S10.

We can find q2 and q3 for the pL(Sn)(λ). It is enough to substitute the specific
values for Sn: 1/6tr(A3) = n− 2,

∑n
i=1 d

2
i = 16n− 38;

∑n
i=1 d

3
i = 64n− 186

and m = 2n− 3, into the general expressions for q2 and q3 given by Theorems
3.1 and 3.2, respectively. Then, we obtain

q2 = 8n2 − 34n+ 40

and

q3 = 1/3[−32n3 + 264n2 − 766n+ 792].
Proposition 4.1 provides upper bounds for q2 and q3 when G ∈ L(a, b).

Proposition 4.1. If G ∈ L(a, b), then

q2 � 2[a2n2 − (2ab + a)n+ b2 + b]
and

q3 � 1
3

{
8a3n3 + (10a2 − 24a2b)n2 + (24ab2 − 20ab − 10a)n

+ (−8b3 + 10b2 + 10b)
}
.

Proof. For G ∈ L(a, b), we have that

m = an− b;
n∑
i=1

di �
n∑
i=1

d2
i �

n∑
i=1

d3
i ,

n∑
i=1

d2
i �

n∑
i=1

di

n∑
i=1

di

and

tr(A3) �
n∑
i=1

d2
i − 2m.

After some manipulations, we obtain the result. �
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5. Conclusions

In order to find the third coefficient q2 in pL(G)(λ), all one needs to do is to count
the number of H2-spanning forests in G. On the order hand, determining q3 is not
that easy. It is necessary to calculate the number of several kinds of spanning forests
in G, as shown in the proof of Theorem 3.2. This result, although dependent on
adjacency matrix, allows a direct evaluation of q3. If we only deal with graphs with
no triangles, such as bipartite graphs, the expression of q3 becomes quite handy. For
certain graphs in (a, b)-linear classes we found expressions of q2 and q3 simply in
terms of the number of vertices of G. Finally, for graphs in L(a, b), we found upper
bounds for q2 and q3.
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