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SUMMARY

Ghrelin receptor (GhrR) is a promising drug target
because of its central role in energy homeostasis.
GhrR, known for high constitutive activity, is thought
to display multi-state conformations during activa-
tion and signaling. We used genetically encoded
unnatural amino acids and bioorthogonal labeling
reactions to engineer multiple fluorescent donor-
acceptor pairs to probe ligand-directed structural
changes in GhrR. We demonstrate how conforma-
tional dynamics of a G-protein-coupled receptor
can be measured in reconstituted systems.

INTRODUCTION

Ghrelin receptor (GhrR), a rhodopsin-like G-protein-coupled re-

ceptor (GPCR), is central to various physiological processes,

including glucose and lipid metabolism, appetite control, and

food intake (Kojima and Kangawa, 2005; Mokrosinski and Holst,

2010). GhrR and its endogenous ligand, ghrelin, have been es-

tablished as drug targets for metabolic disorders such as obesity

and type 2 diabetes mellitus (Cong et al., 2010). However,

several ghrelin antagonists have failed to advance as anti-

obesity therapeutics due to adverse side effects and lack of

efficacy (Chollet et al., 2009). Alongwith unusually high ligand-in-

dependent (constitutive) activity (Holst et al., 2003), GhrR is

particularly notable for its propensity for biased signaling through

Gaq/11, Gai, Ga12/13, and b-arrestin (Sivertsen et al., 2013; Evron

et al., 2014). As GPCRs are highly dynamic membrane proteins

with different functionally relevant conformational states, biased

signaling is thought to arise from the ligand-specific conforma-

tions of active receptors (Manglik and Kobilka, 2014; Shukla

et al., 2014). GhrR thus provides a useful platform to study the re-

lationships between constitutive activity and ligand-induced sta-

bilization of receptor conformations that are relevant to drug

design and discovery.

Various techniques have been used to study the conforma-

tional dynamics of GPCRs including nuclear magnetic reso-
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nance, electron paramagnetic resonance, and Fourier-trans-

form infrared spectroscopy (Manglik and Kobilka, 2014).

Compared with these methods, fluorescence techniques pro-

vide superior sensitivity when considering studies of engineered

membrane proteins. The application of fluorescence methods,

however, has been technically challenging due the lack of gen-

eral and specific chemistries to label receptors with small

organic fluorescent tags, and perturbations caused by the large

sizes of fluorescent protein fusion tags (Lohse et al., 2012;

Huber and Sakmar, 2014). Using GhrR as a model, we devel-

oped a novel fluorescence approach that employs resonance

energy transfer (RET) between a site-specifically tagged fluoro-

phore on a minimally engineered GhrR and either a fluorescent

ligand or an europium cryptate (EuK)-conjugated monoclonal

antibody (mAb), which is sensitive to functional and conforma-

tional changes in GhrR.
RESULTS AND DISCUSSION

GhrR Remains Functionally Active after Genetic
Encoding of azF
To create a panel of GhrR variants with a site-specific handle for

subsequent fluorescent labeling, we introduced an unnatural

amino acid, p-azido-L-phenylalanine (azF), to various sites in

GhrR expressed in mammalian cells using amber codon sup-

pression technology (Ye et al., 2008; Huber and Sakmar, 2014)

(Figure 1A). Full-length azF-modified GhrR variants were only ex-

pressedwhen azFwas present in the culturemedium (Figures 1B

and S1). We next assessed the azF-encoded GhrR-mediated

functional properties in cell-based assays with readouts like

cellular ligand uptake andGq-mediated inositol phosphate accu-

mulation upon ligand stimulation (Figures 1C and 1D; Table S1).

We observed that the potency (EC50) of ghrelin agonism in

azF-GhrR mutants mostly remained comparable with that of

wild-type (wt)-GhrR. We also found that Emax values positively

correlated with the cell-surface expression level of receptor var-

iants (Table S1). Immunofluorescence studies of GhrR modified

with azF at position 158 revealed that its ligand-independent and

ligand-dependent trafficking profiles were similar to those of wt-

GhrR (Figure S1).
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Figure 1. Pharmacological Characterization and Site-Specific Bioorthogonal Labeling on azF-EncodedGhrR Variants Expressed inMamma-

lian Cells

(A) Schematic of GhrR with sites for azF tagging (black circles) and a labeling workflow with Alexa fluorophore (red star) conjugated to DIBO (brown).

(B) Immunoblot analysis for azF-GhrR mutants. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was used as a loading control.

(C) GhrR-mediated peptide ligand uptake. After the incubationwith 1 mMs-ghr-Fl for 30min, cells were lysed and the relative fluorescence intensity of internalized

s-ghr-Fl in cell lysate was determined as a measure of receptor functionality. The specificity was confirmed by the complete reduction in fluorescence intensity

when wt-GhrR was simultaneously treated with s-ghr-Fl and a saturating concentration of unlabeled ghrelin (ghr) (see inset graph). Each data point represents

mean ± SEM (n = 3).

(D) Ghrelin-induced inositol phosphate (IP) accumulation. %Emax and EC50 values of representative azF-encoded receptors, azF162- and azF180-GhrR, were

expressed as mean ± SEM (n = 3).

(E) In-gel fluorescence images of labeled GhrR variants. Alexa 647-labeled GhrR receptors were enriched by 1D4mAb (C-terminal 1D4 epitope; upper panel) and

further by M2 FLAG mAb (N-terminal FLAG epitope; lower panel).

See also Figures S1–S3 and Table S1.
AzF-GhrR Variants Were Fluorophore-Tagged via
Bioorthogonal SpAAC Reaction
Selected functional azF-GhrR variants were then labeled with

alkyne-bearing Alexa-dibenzocyclooctyne (DIBO) fluorophore

(Figure S2) using strain-promoted [3 + 2] alkyne-azide cycloaddi-

tion (SpAAC), which allows high specificity (Debets et al., 2011;

Huber et al., 2013; Tian et al., 2014). The labeling reactions

were carried out in crude plasma membrane preparations to

target properly folded cell-surface-expressed receptors and

provide a native-like environment over the course of reaction.

By doing so, the harsh denaturing/renaturing procedures used

in previous biophysical studies for GhrR (Damian et al., 2012,

2015; Mary et al., 2012) can be avoided. Using optimized condi-

tions (Figure S2), azF-GhrR variants were labeled with Alexa 647-

DIBO. The labeled receptors were solubilized and then enriched

using 1D4 mAb against the C-terminal 1D4 epitope (Figure 1E,

upper panel) and further using M2 FLAG mAb against the N-ter-

minal FLAG tag (Figure 1E, lower panel). These in-gel fluores-

cence images showed distinct fluorescent bands corresponding

to the purified Alexa 647-labeled receptors. The relative ratios of

label to receptor (Alexa 647-fluorescent band/1D4 band) indi-
1432 Chemistry & Biology 22, 1431–1436, November 19, 2015 ª2015
cated that azF tags on GhrR variants could be bioorthogonally

labeled with suitable fluorophores while wt-GhrR exhibited min-

imal background labeling (Figure S2).

FRET Signal Serves as a Measure of the Functionality of
Labeled GhrR
We measured fluorescence resonance energy transfer (FRET)

between Alexa 647-labeled GhrR and s-ghr-Fl, a stabilized ghre-

lin analog with fluorescein at Lys-20 (Figure S3), to monitor

the formation of receptor-ligand complex in detergent micelles.

In pilot experiments, six azF-GhrR variants with Alexa 647 fluo-

rophore at different sites on the extracellular loops were evalu-

ated for FRET efficiency (Figure 2A). The extent of FRET was

calculated as a ratio of fluorescence intensity of Alexa 647 at

665 nm (F665, acceptor) normalized to the fluorescence intensity

at 525 nm (F525, donor) after excitation of the fluorescein donor

at 488 nm. Labeled GhrR variants showed an increased FRET

response of up to 61% of that of wt-GhrR (Figure 2B). By

comparing relative FRET ratios among the six mutants in the

presence and absence of excess unlabeled ghrelin, we identified

position 180 as the most suitable and non-perturbing Alexa 647
Elsevier Ltd All rights reserved



Figure 2. FRET Readouts as a Measure of Ligand-Receptor Complex Formation

(A) The principle of FRET between a donor (fluorescein of s-ghr-Fl) and an acceptor (Alexa 647 tagged on GhrR).

(B) Relative FRET ratio change (%) of Alexa 647-GhrR variants was calculated in the presence and absence of excess unlabeled ghrelin (ghr).

(C) Specificity and reproducibility of FRET signal for azF180-Alexa647-GhrR. Competition with 100-fold excess ghr abolished the FRET response. The statistical

significance was evaluated by t-test, and the corresponding p values (**p < 0.01) relative to wt-GhrR were obtained using GraphPad Prism 5.0.

(D) Representative normalized emission spectra of azF180-Alexa647-GhrR (denoted as R). Emission spectra of azF180-Alexa647-GhrR were obtained when

alone, in the presence of s-ghr-Fl, or in presence of both s-ghr-Fl and the excessive unlabeled ghrelin.

(E) Dose-dependent FRET reduction of azF180-Alexa647-GhrR with unlabeled ghrelin (ghr). Each data point represents mean ± SEM performed in duplicate

(n = 3) and is fitted by non-linear curve fitting using ‘‘log (inhibitor) versus response (three parameter)’’ in GraphPad Prism 5.0.

See also Figures S2 and S3, and Table S2.
tagging site to monitor ligand binding. Using azF180-Alexa647-

GhrR as a model system, we validated the reproducibility and

specificity of FRET reads (Figures 2C and 2D). We further con-

firmed the specificity of FRET response by demonstrating that

unlabeled ghrelin displaced the fluorescent donor, s-ghr-Fl,

with pKi of 8.2 (Figure 2E). This value is in a good agreement

with pKi reported in the previous literature and also with pKi

derived from a radioligand competition assay in this study

(7.8–8.1 and 8.4, respectively) (Table S2). These experiments

demonstrate the proof of concept that a bioorthogonally labeled

GhrR expressed in mammalian cells in culture can be used for

RET-based ligand binding assays.

HTRF Signal Reflects the Structural Integrity of
Labeled GhrR
Next, we established a complementary assay based on homo-

geneous time-resolved fluorescence (HTRF) technology to

evaluate the structural integrity of labeled GhrR variants regard-

less of the fluorophore location. We adapted our previously re-

ported HTRF assay (Knepp et al., 2011), which utilized the

dual-wavelength detection of donor (615 nm) and acceptor

(665 nm) fluorescence after excitation of EuK at 320 nm. We

used EuK-labeled 1D4 mAb (1D4-EuK; donor) and a fluorescent

ligand, substance P analog labeled with Atto647N fluorophore

(Atto647N-SPA; acceptor, Figure S3) as a RET pair (Figure 3A).

The simultaneous binding of 1D4-EuK and Atto647N-SPA to

GhrR ensures that the HTRF signals are only obtained from

full-length functional receptors. By demonstrating the dynamic
Chemistry & Biology 22, 1431–143
range of HTRF changes over increasing concentration of recep-

tor, we first showed that Atto647N-SPA binds to wt-GhrR in a

saturable and specific manner (Figure 3B). We then chose posi-

tion 162 at the end of transmembrane (TM) 4 for Alexa 488

tagging, because it was tolerant to azF incorporation and faces

away from the RET pair, thus preventing any potential interfer-

ence with HTRF signals. We subsequently demonstrated that

the HTRF response from azF162-Alexa488-GhrR was compara-

ble with that of wt-GhrR (Figure 3C) with only a 3-fold difference

in KD of Atto647N-SPA (Table S3).

We validated the specificity of HTRF readouts by competition

experiments using a nonapeptide (C9) that competes for binding

of 1D4-EuK to the engineered GhrR (Figure 3D). The RET signals

of wt-GhrR and selected Alexa 488-labeled variants represent-

ing each topological domain in GhrR (positions 162, 180, 203,

and 243) decreased as the concentration of C9 increased (Fig-

ures 3E and 3F). Noticeably, the C9 peptide exhibited a wide

range of IC50 values (0.8–6.3 mM),whichwe attribute to the varied

cell-surface expression level of azF-GhrR variants (i.e., the

amount of receptor tested in each experiment). Nevertheless,

these results show that labeled GhrR variants have normal func-

tional activity with respect to ligand binding.

HTRF Signal Features Ligand-Directed Structural
Changes in Labeled GhrR
We next reconfigured the HTRF assay for monitoring ligand-spe-

cific conformational changes in GhrR. To do so, we directly

anchored the acceptor fluorophore (Alexa 647) to GhrR instead
6, November 19, 2015 ª2015 Elsevier Ltd All rights reserved 1433



Figure 3. HTRF Assay of GhrR Function

Various HTRF assay formats were designed to evaluate receptor function and conformational changes upon ligand addition.

(A–C) Binding of Atto647N-SPA to serially diluted wt-GhrR and azF162-Alexa488-GhrR. HTRF signals only occur when Atto647N-SPA (acceptor) binds to

functioning receptors with full length recognized by 1D4-EuK (donor). Data were fitted by non-linear regression analysis, assuming a single binding site.

(D–F) Validation of specificity of HTRF response using C9. The C9 peptide competes against the interaction between 1D4-EuK and receptor.

(G and H) An HTRF format for monitoring ligand-induced conformational changes in GhrR. Receptors were treated with 5 mM ligands and HTRF changes were

monitored. At least three independent experiments in duplicate were carried out, and data are expressed asmean ± SEM. Non-linear regression analysis for curve

fitting and statistical analysis using the t-test with corresponding p values (*p < 0.05, **p < 0.01) were performed in GraphPad Prism 5.0.

Bottom right panel shows color-coded symbols for (A), (D), (G), and (H). See also Figures S2 and S3, and Table S3.
of the ligand (Figure 3G). We first tested position 146 in intra-

cellular loop (ICL) 2, because the ICLs are known to undergo

structural change during receptor interaction with G proteins

(Venkatakrishnan et al., 2013). Also, position 146 has been

subjected to bimane labeling with intact functionality (Mary

et al., 2012). The RET responses of azF146-Alexa647-GhrR

were measured upon addition of the agonist ghrelin and a

small-molecule inverse agonist, Abbott-13d (Figure S3). When

ghrelin was added, a significantly lower RET signal was

observed compared with the signal for ligand-free receptor

(8.2% decrease). On the other hand, the addition of Abbott-

13d caused little change in the RET signal (Figure 3H). The

RET responses of three additional variants labeled at ICLs sup-

ported that distinct HTRF signals reflect specific conformations

of GhrR induced by ligands (Figure S2). Since the RET acceptor

tag is in ICLs and the donor 1D4-EuK binds to the C-terminal 1D4

epitope, the agonist-specific RET signal suggests structural

changes involving either ICLs or the C-terminal tail. Previously,

the C terminus of b2 adrenergic receptor (b2AR) in a purified

form was shown to experience ligand-specific conformational

changes, possibly by moving away from the core of the receptor

(Granier et al., 2007). Furthermore, it has been established that
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TM domains and the cytosolic surface of the agonist-occupied

b2AR rearrange conformationally upon receptor activation,

creating a binding interface for Gas protein (Venkatakrishnan

et al., 2013). Regulatory functions of the C terminus of GhrR

have been also suggested during basal or agonist-induced inter-

nalization (Holliday et al., 2007). Our data from HTRF assays are

in agreement with the previous studies, providing evidence that

the C-terminal tail of GhrR may undergo ligand-directed struc-

tural changes with its potential role in cellular signaling.

SIGNIFICANCE

We present a novel strategy to introduce a site-specific fluo-

rescent tag to GhrR inmammalian cell membranes, which in-

volves amber codon suppression to genetically incorporate

azF in GhrR followed by bioorthogonal labeling with a fluoro-

phore using SpAAC. The labeling method is site specific but

general, since in principle any location on the GhrR can be

labeled. Themost ideal site for a fluorescent probe, however,

will be where the probe is informative while not perturbing

underlying receptor function. Using labeled GhrR in com-

bination with a panel of fluorescent peptide ligands, we
Elsevier Ltd All rights reserved



developed a robust FRET-based ligand binding assay and

HTRF assays that can be used to monitor ligand binding

and ligand-dependent conformational changes. Our strategy

complements previous biophysical methodologies used to

study GhrR, because the labeling reaction is carried out un-

der gentle conditions in a nativemembrane and also because

the modified receptor can be studied in cell-based assays

in parallel. Some promising applications of the present

approach include: (1) monitoring dynamic intra- and inter-

molecular interactions of GhrR with other GPCRs or sig-

nalosome components (e.g., G proteins, G-protein-coupled

receptor kinases, b-arrestin) in a ligand-independent and

-dependent manner; (2) screening drug candidates including

allosteric modulators (e.g., manipulating the orthosteric site

for endogenous ligands) and functionally biased ligands

(e.g., monitoring RET responses from a GPCR coupled to a

certain G protein); and (3) identifying and preparing uniformly

labeled GhrR suitable for single-molecule fluorescence

studies. The approach described here should be transferable

to any expressed GPCR that is amenable to amber codon

suppression.

EXPERIMENTAL PROCEDURES

azF Tagging on GhrR

GhrR azF mutants were expressed in mammalian cells as previously reported

(Ye et al., 2008) with a slight modification. In brief, the amber stop codon (TAG)

was introduced into selected sites of GhrR using site-directed mutagenesis.

The ratio of DNA in micrograms was optimized at 1:1:1 = pcDNA.GhrR-amb/

pSVB.Yam/pcDNA.AzRS to obtain high expression. For wt-GhrR, 10-fold

less pcDNA.GhrR-wt was transfected, but the total amount of DNA was main-

tained at the same level using an empty expression vector, pcDNA-3.1(+). See

Supplemental Methods for detailed procedure.

Labeling on azF-Encoded GhrR Variants

50 mMAlexa-DIBO fluorophore of choice was added to eachmembrane extract

and the labeling mixture was incubated at 4�C overnight on a nutator. On the

following day, the labeling reaction was stopped and unreacted dye was

removedbyultracentrifugationat200,0003g for25minat4�C.After twowashes

with buffer A (see Supplemental Methods for its composition), the labeledmem-

branes were resuspended, aliquoted, and stored at�20�C prior to use.

Plate-Based FRET Measurements

For FRET measurements, fluorescence emission spectra from 500 to 700 nm

with 1-nm increments were recorded after excitation at 488 nm (fluorescein) us-

ing a BioTek SynergyNeo. Samples in black-bottom 384-well microplates were

uniformlymixedat room temperaturebeforemeasurements. For the competitive

inhibition FRET setup, s-ghr-Fl and unlabeled ghrelin with 100-fold higher con-

centration were added simultaneously. The FRET ratio was obtained by calcu-

lating ratio of emission of Alexa 647 (665 nm) to fluorescein (525 nm). The

FRET ratio was converted to relative FRET ratio (%) by normalizing it to that of

wt-GhrR using the following equation: relative FRET ratio (%) = (F665sample/

F525sample – F665wt-GhrR/F525wt-GhrR)/(F665wt-GhrR/F525wt-GhrR)3 100. SeeSup-

plemental Methods for detailed procedures of sample preparation.

Plate-Based HTRF Assay Design

Preparation of 1D4-EuK, assay setup, and fluorescence measurements were

carried out as previously reported (Knepp et al., 2011) with a slight modification.

Dual-channel fluorescence of samples in black opaque-bottom 384-well micro-

plates was measured using an Envision (PerkinElmer) with excitation at 320 nm

(5,000 flashes per measurement per well) and emission collection in ten 200-ms

windows (emission filters at 615 and 665 nm). Normalized F665/F615 was

defined as (F665sample/F615sample � F665negative/F615negative)/(F665negative/

F615negative), where negative control values were obtained from the mixed
Chemistry & Biology 22, 1431–143
labeled components in the absence of receptor and then expressed as a per-

centage. See Supplemental Methods for detailed sample preparations.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Methods, three figures, and

three tables and can be found with this article online at http://dx.doi.org/10.

1016/j.chembiol.2015.09.014.
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