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Abstract

In this paper, we consider a food-limited population model with impulsive effect. Several explicit suffi-
cient conditions are established for oscillation and nonoscillation of solutions of the equations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

The theory of impulsive delay differential equation is emerging as an important area of in-
vestigation, since it is a lot richer than the corresponding theory of delay differential equations
without impulse effects. Moreover, such equations may describe several real world phenomena
in physics, biology, engineering, etc. In recent years, oscillation theory of impulsive delay dif-
ferential equations attracts attention of many mathematicians and numerous papers have been
published on this class of equations (see [2,5,9,10] and references therein). For oscillation theory
of nonimpulsive delay differential equations, we refer the reader to the references [3,4,6–8].
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L. Berezansky and E. Braverman [1] investigated oscillation of the nonautonomous food-
limited equation with nonconstant delay:

Ṅ(t) = r(t)N(t)
K − N(h(t))

K + s(t)N(g(t))
, t � 0, h(t) � t, g(t) � t, (1.1)

which is a generalization of the equations in [2–4,6,8,11].
The purpose of this paper is to derive sufficient conditions for oscillation and nonoscillation

about K of generalized food-limited equation with impulsive effects⎧⎪⎨
⎪⎩

Ṅ(t) = r(t)N(t)
K − N(h(t))

K + ∑m
i=1 pi(t)N(gi(t))

,

N
(
t+k

) − N(tk) = bk

(
N(tk) − K

) (1.2)

under the following assumptions:

(A1) 0 � t1 < t2 < · · · < tk < · · · are fixed points with limk→∞ tk = ∞, k = 1,2, . . . ;
(A2) bk > −1, k = 1,2, . . . , K is a positive constant;
(A3) r(t) and pi(t) are Lebesgue measurable locally essentially bounded functions, r(t) � 0

and pi(t) � 0, i = 1,2, . . . ,m;
(A4) h,gi : [0,∞) → R are Lebesgue measurable functions, h(t) � t , gi(t) � t ,

limt→∞ h(t) = ∞, limt→∞ gi(t) = ∞, i = 1,2, . . . ,m.

The results of this are generalizations of those of (1.1) in [1].
We consider the impulsive differential equation⎧⎨

⎩ ẏ(t) = −r(t)y
(
h(t)

) 1 + y(t)

1 + ∑m
i=1 pi(t)[1 + y(gi(t))] ,

y
(
t+k

) − y(tk) = bky(tk),

t � T0 � 0, bk > −1, (1.3)

and the initial value problem

y(t) = ϕ(t) � 0, ϕ(T0) > 0, t ∈ [T −, T0]. (1.4)

Here for any T0 � 0, T − = min1�i�m inft�T0(gi(t), h(t)), ϕ : [T −, T0] → R+ is a Lebesgue
measurable function.

Definition 1.1. For any T0 � 0 and ϕ(t), a function y : [T −,∞) → R is said to be a solution
of (1.3) on [T0,∞) satisfying the initial value condition (1.4), if the following conditions are
satisfied:

(i) y(t) satisfies (1.4);
(ii) y(t) is absolutely continuous in each interval (T0, tk), (tk, tk+1), tk > T0, k � k0, y(t+k ),

y(t−k ) exist and y(t−k ) = y(tk), k > k0;
(iii) y(t) satisfies the former equation of (1.3) a.e. in [T0,∞)\{tk} and satisfies the latter equation

for every t = tk , k = 1,2, . . . .

For any t � 0, consider the nonlinear delay differential equation

ẋ(t) = −r(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
x
(
h(t)

)

· 1 + (
∏

T0�tk<t (1 + bk))x(t)

1 + ∑m
pi(t)[1 + (

∏
(1 + bk))x(gi(t))] . (1.5)
i=1 T0�tk<gi(t)
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Definition 1.2. A solution of (1.3) or (1.5) is said to be nonoscillatory if it is either eventually
positive or eventually negative. Otherwise, it is called oscillatory. A solution N(t) of (1.2) is said
to be nonoscillatory about K if N(t) − K is either eventually positive or eventually negative.
Otherwise, it is called oscillatory about K .

It is easy to see that the change of variable y(t) = N(t)
K

− 1 reduces (1.2) to (1.3). Thus we
have the following lemma.

Lemma 1.3. Assume that (A1)–(A4) hold, then the solution N(t) of (1.2) oscillates about K if
and only if the solution y(t) of (1.3) oscillates about zero.

Lemma 1.4. Assume that (A1)–(A4) hold. For any T0 � 0, y(t) is a solution of (1.3) on [T0,∞)

if and only if

x(t) =
( ∏

T0�tk<t

(1 + bk)

)−1

y(t) (1.6)

is a solution of nonimpulsive delay differential equation (1.5).

The proof of Lemma 1.4 is similar to that in [9, Theorem 1] and will be omitted.

Remark 1.5. By Lemmas 1.3 and 1.4 we see that the solution N(t) of (1.2) is oscillatory about
K if and only if the solution y(t) of (1.3) is oscillatory.

2. Main results

In this paper, consider only such solutions of (1.3) for which the following condition holds:

1 + y(t) > 0 for t � T0, (2.1)

and hence, in view of (1.6),

1 +
( ∏

T0�tk<t

(1 + bk)

)
x(t) > 0 for t � T0. (2.2)

Since y(t) = N(t)
K

− 1 and (2.1), (2.2), it follows that

N(t) = K

(
1 +

∏
T0�tk<t

(1 + bk)x(t)

)
> 0, t � T0.

Thus for the initial condition N(t) = ϕ(t) : [T −, T0] → R+, ϕ(T0) > 0, the solution of (1.2) is
positive on [T0,∞).

We begin with the following lemma.

Lemma 2.1. Assume that (A1)–(A4) hold,

∞∫
r(t)

1 + ∑m
i=1 pi(t)

dt = ∞ (2.3)
0
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and ∏
T0�tk<t

(1 + bk) is bounded and lim inf
t→∞

∏
T0�tk<t

(1 + bk) > 0. (2.4)

If y(t) is a nonoscillatory solution of (1.3), then limt→∞ y(t) = 0.

Proof. Suppose first y(t) > 0 for t � T1 � 0. From (1.6) and (A2), x(t) > 0 for t � T1. Then
there exists T2 � T1 such that

h(t) � T2, gi(t) � T2, i = 1,2, . . . ,m, (2.5)

for t � T2. Denote

u(t) = − ẋ(t)

x(t)
, t � T2. (2.6)

Then u(t) � 0, t � T2,

x(t) = x(T2) exp

{
−

t∫
T2

u(s) ds

}
, t � T2. (2.7)

Let c = x(T2), we have

u(t) = r(t)

x(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
x
(
h(t)

)

· 1 + (
∏

T0�tk<t (1 + bk))x(t)

1 + ∑m
i=1 pi(t)(1 + (

∏
T0�tk<gi(t)

(1 + bk))x(gi(t)))

� r(t)

x(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
x(t)

1

1 + ∑m
i=1 pi(t)(1 + ∏

T0�tk<gi(t)
(1 + bk)c)

= r(t)

1 + ∑m
i=1 pi(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)

· 1 + ∑m
i=1 pi(t)

1 + ∑m
i=1 pi(t)(1 + ∏

T0�tk<gi(t)
(1 + bk)c)

� r(t)

1 + ∑m
i=1 pi(t)

· 1

(
∏

h(t)�tk<t (1 + bk))(1 + ∑m
i=1 pi(t)(1 + ∏

T0�tk<gi(t)
(1 + bk)c))

.

Then, by (2.3) and (2.4),
∫ ∞
T2

u(t) dt = ∞.
Now suppose −1 < y(t) < 0. Hence in view of (2.1), −1 <

∏
T0�tk<t (1+bk)x(t) < 0, t > T1.

Then there exists T2 > T1 such that (2.5) holds for t > T2. Suppose u(t) is denoted by (2.6) and
c = x(T2). Then from (1.5) and (2.2) u(t) � 0, −1 < c < 0, we obtain
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u(t) = r(t)

x(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
x
(
h(t)

)

· 1 + (
∏

T0�tk<t (1 + bk))x(t)

1 + ∑m
i=1 pi(t)(1 + (

∏
T0�tk<gi(t)

(1 + bk))x(gi(t)))

� r(t)

x(h(t))

( ∏
h(t)�tk<t

(1 + bk)
−1

)
x
(
h(t)

)1 + (
∏

T0�tk<t (1 + bk))c

1 + ∑m
i=1 pi(t)

=
( ∏

h(t)�tk<t

(1 + bk)
−1

)(
1 +

( ∏
T0�tk<t

(1 + bk)

)
c

)
· r(t)

1 + ∑m
i=1 pi(t)

.

Then by (2.2)–(2.4), again
∫ ∞
T2

u(t) dt = ∞.
Equation (2.7) implies limt→∞ x(t) = 0. Use (1.6), then limt→∞ y(t) = 0. �

Theorem 2.2. Assume that (A1)–(A2), (2.3) and (2.4) hold and for some ε > 0, all solutions of
the linear equation

ẋ(t) + (1 − ε)
∏

h(t)�tk<t

(1 + bk)
−1 r(t)

1 + ∑m
i=1 pi(t)

x
(
h(t)

) = 0 (2.8)

are oscillatory. Then all solutions of (1.3) are oscillatory.

Proof. Suppose y(t) is an eventually positive solution of (1.3). Then x(t) is an eventually posi-
tive solution of (1.5). Lemma 2.1 implies that there exists T1 � 0 such that

0 <

( ∏
T0�tk<t

(1 + bk)

)
x(t) < ε for t � T1.

We suppose (2.5) holds for t � T2, we have

(1 + ∑m
i=1 pi(t))(1 + (

∏
T0�tk<t (1 + bk))x(t))

1 + ∑m
i=1 pi(t)[1 + (

∏
T0�tk<t (1 + bk))x(gi(t))]

� 1 + ∑m
i=1 pi(t)

1 + ∑m
i=1 pi(t)(1 + ε)

� 1 + ∑m
i=1 pi(t)

(1 + ε)(1 + ∑m
i=1 pi(t))

= 1

1 + ε
� 1 − ε. (2.9)

Equation (1.5) implies

ẋ(t) + (1 − ε)
∏

h(t)�tk<t

(1 + bk)
−1 r(t)

1 + ∑m
i=1 pi(t)

x
(
h(t)

)
� 0, t � T2. (2.10)

By a known result (see [7, p. 67]), (2.8) has a positive solution, which is a contradiction.
Now we suppose −ε < (

∏
T0�tk<t (1+bk))x(t) < 0 for t � T1 and (2.3) holds for t � T2 � T1.

Then for t � T2, we also get

(1 + ∑m
i=1 pi(t))(1 + (

∏
T0�tk<t (1 + bk))x(t))

1 + ∑m
i=1 pi(t)(1 + (

∏
T0�tk<t (1 + bk))x(gi(t)))

� (1 + ∑m
i=1 pi(t))(1 − ε)

1 + ∑m
p (t)

= 1 − ε. (2.11)

i=1 i
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So we easily know that (2.8) has a nonoscillatory solution and we again obtain a contradiction
which completes the proof. �

From Theorem 2.2 and [7, Theorem 3.4.1], we have result

Corollary 2.3. Assume that (A1)–(A4), (2.3) and (2.4) hold and if

lim inf
t→∞

t∫
h(t)

∏
h(s)�tk<s

(1 + bk)
−1 r(s)

1 + ∑m
i=1 pi(s)

ds >
1

e
, (2.12)

then all solutions of (1.3) are oscillatory.

Theorem 2.4. Assume that (A1)–(A4) hold and∏
T0�tk<t

(1 + bk) is convergent. (2.13)

Moreover, for some ε > 0 there exists a nonoscillatory solution of the linear delay differential
equation

ẋ(t) + (1 + ε)
∏

h(t)�tk<t

(1 + bk)
−1 r(t)

1 + ∑m
i=1 pi(t)

x
(
h(t)

) = 0, (2.14)

then there exists a nonoscillatory solution of (1.3).

Proof. Suppose that x(t) > 0 for t > T0 is a solution of (2.14). Then by (1.5) and [7, Corol-
lary 3.1.2], there exist T0 � 0 and w0(t) � 0, t � T0;w0(t) = 0, T −

0 � t � T0 such that

w0(t) � (1 + ε)
r(t)

1 + ∑m
i=1 pi(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
exp

{ t∫
h(t)

w0(s) ds

}
. (2.15)

Since
∏

T0�tk<t (1 + bk) is convergent constant, there exists a positive constant c such that
0 < c(

∏
T0�tk<t (1 + bk)) < ε, and consider two sequences:

wn(t) = r(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
exp

{ t∫
h(t)

wn−1(s) ds

}

· 1 + c(
∏

T0�tk<t (1 + bk)) exp{− ∫ t

T0
vn−1(s) ds}

1 + ∑m
i=1 pi(t)(1 + c(

∏
T0�tk<gi(t)

(1 + bk)) exp{− ∫ gi (t)

T0
wn−1(s) ds})

,

n = 1,2, . . . ;

vn(t) = r(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
exp

{ t∫
h(t)

vn−1(s) ds

}

· 1 + c(
∏

T0�tk<t (1 + bk)) exp{− ∫ t

T0
wn−1(s) ds}

1 + ∑m
i=1 pi(t)(1 + c(

∏
T0�tk<gi(t)

(1 + bk)) exp{− ∫ gi(t)

T0
vn−1(s) ds})

,

n = 1,2, . . . , (2.16)
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where w0 was defined above and v0 ≡ 0. We have

w1(t) = r(t)

1 + ∑m
i=1 pi(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)
exp

{ t∫
h(t)

w0(s) ds

}

· (1 + ∑m
i=1 pi(t))(1 + c(

∏
T0�tk<t (1 + bk)))

1 + ∑m
i=1 pi(t)(1 + c(

∏
T0�tk<gi(t)

(1 + bk)) exp{− ∫ gi(t)

T0
w0(s) ds})

� r(t)

1 + ∑m
i=1 pi(t)

( ∏
h(t)�tk<t

(1 + bk)
−1

)

· exp

{ t∫
h(t)

w0(s) ds

}
(1 + ∑m

i=1 pi(t))(1 + ε)

1 + ∑m
i=1 pi(t)

� w0(t). (2.17)

It is evident that v1(t) � v0(t), w0(t) � v0(t).
Hence by induction,

0 � wn(t) � wn−1(t) � · · · � w0(t),

vn(t) � vn−1(t) � · · · � v0(t) = 0, n = 1,2, . . . , (2.18)

and wn(t) � vn(t).
There exist pointwise limits of nonincreasing nonnegative sequence wn(t) and of nonde-

creasing sequence vn(t). If we denote w(t) = limn→∞ wn(t), v(t) = limn→∞ vn(t), then by the
Lebesgue Convergence Theorem, we conclude that

w(t) = r(t)

( ∏
h(t)�tk<t

(1 + bk)

)
exp

{ t∫
h(t)

w(s) ds

}

· 1 + c(
∏

T0�tk<t (1 + bk)) exp{− ∫ t

T0
v(s) ds}

1 + ∑m
i=1 pi(t)(1 + c(

∏
T0�tk<gi(t)

(1 + bk)) exp{− ∫ gi (t)

T0
w(s)ds})

,

v(t) = r(t)

( ∏
h(t)�tk<t

(1 + bk)

)
exp

{ t∫
h(t)

v(s) ds

}

· 1 + c(
∏

T0�tk<t (1 + bk)) exp{− ∫ t

T0
w(s)ds}

1 + ∑m
i=1 pi(t)(1 + c(

∏
T0�tk<gi(t)

(1 + bk)) exp{− ∫ gi(t)

T0
v(s) ds})

, (2.19)

we fix b � T0 and define operator T :L∞[T0, b] → L∞[T0, b] by the following equality:

(T u)(t) = r(t)

( ∏
h(t)�tk<t

(1 + bk)

)
exp

{ t∫
h(t)

u(s) ds

}

· 1 + c(
∏

T0�tk<t (1 + bk)) exp{− ∫ t

T0
u(s) ds}

1 + ∑m
i=1 pi(t)(1 + c(

∏
T0�tk<gi(t)

(1 + bk)) exp{− ∫ gi(t)

T0
u(s) ds})

, (2.20)

where L∞[T0, b] is the space of all essentially bonded on [T0, b] functions with the usual norm.
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For every function u from the interval v � u � w, we have v � T u � w. The result of
[2, Lemma 3] implies that operator T is a compact operator on the space L∞[T0, b]. Then by
Schauder’s fixed-point theorem there exists a nonnegative solution of equation u = T u.

Denote

x(t) =
{

c exp{− ∫ t

T0
u(s) ds}, t � T0,

c, T − � t < T0.
(2.21)

Then x(t) is a nonoscillatory solution of (1.5). Thus by Lemma 1.1,

y(t) =
( ∏

T0�tk<t

(1 + bk)
−1

)
x(t)

is a nonoscillatory solution of (1.3) which completes the proof of Theorem 2.4. �
By Theorem 2.4 and [8, Theorem 3.3.1] we have the following result.

Corollary 2.5. Assume that (A1)–(A4) and (2.13) hold and if there exists a constant ε > 0 such
that

(1 + ε)

t∫
h(t)

∏
h(s)�tk<s

(1 + bk)
−1 r(s)

1 + ∑m
i=1 pi(s)

ds � 1

e
, (2.22)

then (1.3) has a nonoscillatory solution.

Now we consider the impulsive delay logistic equation (1.2). From Lemma 1.3 and Corollar-
ies 2.3 and 2.5, we have the following results.

Corollary 2.6. Assume that (A1)–(A4), (2.3), (2.4) and (2.12) hold, then all solutions of (1.2)
are oscillatory about K .

Corollary 2.7. Assume that (A1)–(A4), (2.13) and (2.22) hold, then (1.2) has a nonoscillatory
solution about K .

Remark 2.8. Similarly, we can study oscillation and nonoscillation about K for the following
models:⎧⎪⎨

⎪⎩
Ṅ(t) = r(t)N(t)

K − N(h(t))|N(h(t))|l−1

K + ∑m
i=1 pi(t)N(gi(t))|N(gi(t))|l−1

,

N
(
t+k

) − N(tk) = bk

(
N(tk) − K

)
,

(2.23)

⎧⎪⎪⎨
⎪⎪⎩

Ṅ(t) =
n∑

j=1

rj (t)N(t)
K − N(hj (t))

K + ∑m
i=1 pij (t)N(gij (t))

,

N
(
t+k

) − N(tk) = bk

(
N(tk) − K

)
,

(2.24)

and some relevant models.
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