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The main result of this paper is a tensor product theorem for irreducible
representations of the quantum general linear group GL,(n) where g is a
primitive /th root of unity, / being an even integer. For odd /, an analogous
result was proved by Parshall and Wang [PW]. Lusztig [L] proved a
tensor product theorem for representations of quantized enveloping
algebras, again where / is odd.

We prove that if / is divisible by 4, there is an isomorphism of GL (n)-
modules

Lé(4o+ (I/2) A1) = LU(A6) ® L(4,)"", (0)

where L9(4) is the irreducible GL, (n)-module of highest weight 4, L(4,)""
is the GL (n)-module given by the Frobenius //2 twist of the irreducible
module L(4,) for the (non-quantized) general linear group GL(n) of
highest weight 4, if 4, is //2-restricted. (All these terms are defined below.)
The Frobenius map is defined by sending elements x,; of the coordinate
ring of GL(n) to the !'th power ij in the coordinate ring K[GL, (n)],
where /' =1/2.

This is in analogy with the tensor product Theorem 9.2.2 of [PW],
except that we are using /'=//2 instead of /. The elements X fj are not
central in K[GL,(n)], unlike the Ith powers used in [PW], and so our
proof is different than that in [PW7. It is easy to see that our proof can
be used to prove Steinberg’s tensor product theorem for reductive (non-
quantized) algebraic groups at prime characteristic.

If / is even but not divisible by 4, then (0) still holds, except that L(4,)"
should be replaced by the Frobenius //2 twist L~ '(4,)'" of the irreducible
module L '(4,) for the quantum group GL ,(n) with parameter g = — 1.
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We are concerned with the quantum linear group GL,(n), as defined in
[RTF, M, PW1]. (See also [TT].) There is really no such group, but there
is a coordinate ring K[GL,(n)] where K is a field and ¢ is a non-zero
element of K. One first defines the coordinate ring of quantum nxn
matrices over K, denoted K[M,(n)], to be the associative K-algebra
generated by the »n? variables X ;, where i and j are between 1 and »n, subject
to the relations

i

Xrinqu“erjXris l.<j (1)
XriXyi=q‘leini’ r<s (2)
X, Xy=X,X,, if r<s and i>j (3)

X,iXXj—ijX,iz(q’l—q)Xs,.X if r<s and i<} (4)

rj»

The quantum determinant D is defined by

D=3% (—q¢) """ X1, X202) * Xnotm) (5)

aeS,

where [ is the standard length function on the symmetric group S,. This
element D is a central element of K[M (n)], cf. [PW, 4.6.1]. Then
K[GL,(n)] is defined to be the localization of M (n) at D, and is a Hopf
algebra, with co-multiplication defined by

4:K[GL,(q)1 - K[GL()I1®K[GL,(q)],  A(Xy)= ) Xu®X,

k=1

and co-unit ¢ and antipode y defined by
e(X;)=0;  nX;)=(—g) "4(i)D™",

where A(ji) is the quantum determinant of the (n—1)x (n—1) matrix
obtained by deleting row j and column i of the matrix (X} (see [PW,
Chap. 5]).

A closed subgroup H of GL,(n) has, by definition, a coordinate
ring K[GL,(n)]/a, where a is a Hopf ideal of K[GL,(n)]. We have the
following Hopf ideals, and closed subgroups:

b’ generated by all X; with i > j, K[B,]1=K[GL,(n)]/b’
t generated by all X; with i #, K[T,}=K[GL,(n)]/L

(We are using the notation of [PW] for the quantum Borel group B, of
upper triangular matrices; in this paper we do not need to use the lower
quantum Borel group B, of [PW].)
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One of the main tools in [PW] is the Frobenius morphism
F.GL,(n) - GL(n), defined in terms of the /th powers of elements of
K[GL,(n)]. Two of its most important properties are implied by the
following to facts, if / is odd,

X! is a central element of K[GL,(n)], (6)
and

AX) =3 X, ®X (7)
k=1

[PW, 7.2.2 and 7.2.3]. When / is even, then (6) still holds, but (7) is false.
To repair this we replace / in (6) and (7) by !’ =//2. Then the analogue of
(7) is now true, but the analogue of (6) is not.

To define ¢g-binomial coefficients (see, for example, [L, PW, Sect. 7]), we
define, for positive integers m < n,

_q" -1 nl [n],[n-1],---[n—m+1], nl
e [m]‘ (ml, Im—11, (13, [0],,"1'

PROPOSITION 1. Let | be an even integer, and set I'=1/2. Let q be a
primitive Lth root of unity in K. We have in K{M ,(n)]

XX, ==X, X!, if i#j (8)
XiXu= =X, X}, if r#s (9)
XZX,S=X,XXZ if i#r and r#s. (10)
Proof. Since q is a primitive 2/'-root of unity, then ¢ =q¢ "= —1. To

prove (8), suppose that i <j; then (1) implies

Xi;'er: 7I‘erX£;'= —erXf';
If i > we get the same equation, but with ¢'" instead of ¢ =*" It is clear that
(9) follows in the same way, from (2). If r<sand i>j, orif r>sand i<},
then (10) follows from (3). If r<s and i<, we use the following result
from [PW, 7.2b]:

) k )
X{;er—erX:;=(q l_q)lil]zXl'j ]Xierj'

q

Take k=1; then [I'],.=(¢* —1)/(g—1)=0, so X, commutes with X,,.
This is also true if » > s and i>j. This completes the proof.
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At this point, in order to simplify the exposition, we make the following
assumption, which holds until the last paragraph.

Assumption. The integer / is divisible by 4, I’ =1{/2, and g is a primitive
/th root of unity in K.

PrOPOSITION 2. The subalgebra K[ M ,(n)]" of K[ M (n)] generated by
X fj, where i and j are between | and n, is a commutative algebra isomorphic
to the (non-quantized) coordinate ring K[ M(n)] of nx n matrices over K.

Proof. From (8), we have
XOXE= (D) XUXG i it

and (—1)"=1 since we are assuming that /' is even. Similarly, X/
commutes with X, by (9), and X, commutes with X/, by (10). This
completes the proof.

ProrosiTiON 3. We have
AXy) =3, Xy, ®X|,
k=1

Proof. As in the proof of [PW, 7.2.2], we have for any integer r
between 1 and n

(Z X.»:®Xs,-)'= io [,;] (X,,®X,j)"'<

szr m=

Z Xis®ij) ‘

If t=1"then [, ],=0 for 0 <m<!’, which gives the result.
We now have a Frobenius map F*: K[GL(n)] - K[GL,(n)], a Hopf
algebra homomorphism defined by
F*(x;)=X}.
PrROPOSITION 4. Let d be the ordinary determinant in K[ M(n)]. Then
F*(d)=D".
Proof. The proof is similar to [PW, 7.2.3]. As shown there,

D=3 (=q)" D XGAG) = ¥ (- D) XA

j=1 j=1

where the last equation holds because ¢’ = —1. If n=2 the result is
proved; for bigger n use induction as indicated in [PW, 7.3.2].
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We do not get a covering in the sense of [PW, 1.8], since the image of
F* is not central. We may define the Frobenius kernel as in [PW], whose
coordinate ring K[GL,(n)] is by definition the factor ring of K[GL,(n)]
by the two-sided ideal 7 generated by all X{, for i#, and by all X/ —1,
where i and j are between 1 and n. If /#j, then X; commutes with 1 but
anti-commutes with X/, so it follows that the image of X, in K[GL,(n),]

i
is 0; indeed

Xy (X — D)+ (X, - 1) Xy= =2X

P

and since the characteristic of the field K is not 2 (since K has a primitive
even root of unity) then X e/ if i#j. Thus K[GL, (n),] is much too small
to be useful. We define K[GL,(n),-T] to be the factor ring K[GL,(n)]
modulo the ideal generated by the Xf] for i#j. Then K[GL,(n), -T]
behaves much as in [PW], since every X,, either commutes or
anti-commutes with X f] . Similarly we have the factor ring K[(B;),-T] of
K[B,] by the ideal generated by X7, for i<}

A GL (n)-module M is by definition a K[GL, (n)]-comodule; it has a
structure map 7, M —>M® K[GL,(n)] which satisfies (1, ®@1)cty =
(1®d)e1,. The restriction of M to any closed subgroup H of GL,(n) is
the K[ H]-comodule whose structure map is given by (1 ® {*)-1,,, where
{* is the natural epimorphism from K[GL (n)] to its factor ring K[H].
If M is a T~module and if an element m of M satisfies 1,,(m)=
m®@ie M@ K[T,], where A=]T, X7 for some integers n,, then m is called
a weight vector and 1 is called a weight. The set of weights, denoted by
X(T,), is an abelian group, and will as usual be written additively. A
GL,(n)-module M which has a unique B/-stable line is called a highest
weight module; the weight of a generator m of this line is called the highest
weight of M, and x is called a maximal vector. From [PW, 8.2.2], any
irreducible GL, (n)-module is a highest weight module, and any two such
irreducibles with the same highest weight are isomorphic. An irreducible
GL,(g)module with highest weight 4 is denoted L9(1).

We say that a weight A is /"-restricted if A=3"7_, r,w; with 0 < r; <’ for
each i, where w, is the fundamental dominant weight X, X5, --- X;.

For a rational GL(n)-module M, we can form a GL(n)-module by using
the composition (1 ® F*)-1,, from M to M@ K[GL,(n)], giving a G (n)-
module MY, called the Frobenius twist of the module M. We let B’ denote
the Borel subgroup of GL(n) of upper triangular matrices; we have a
Frobenius map F*:K[B']— K[B,], and we have Frobenius twists of
rational B’-modules.

If His a closed subgroup of GL,(n) and M is an H-module, an element
m of M is said to be fixed by Hif 1,,(m)=m® 1e M® K[ H]. The H-fixed
elements of M are denoted by M*. In [PW] it is shown that if / is odd,
the (B'),-fixed points of a B-module are the Frobenius twist of some



A TENSOR PRODUCT THEOREM 571

B’-module, using an elegant argument [PW, 2.10.2] (similar to one in
[T]) which seems to depend on the centrality of F*K[B'] in K[ B,]. Our
next two results serve as replacements.

LemMMA 5. Let x be a (B)), - T-fixed element of K[ B,]. Then x is in the
image of the Frobenius map from K[B'] to K[ B,].

Proof. 1t follows from [PW, 3.5.1] that K[B,] has a K-basis of the
form

33:{]—[ Xilt,eZ,1,20if i<j},
i<j
where the products are formed with respect to some fixed order of the Xs.
Let us fix an order: say that X;; < X,,if j<sorj=sand i <r. We will write
m=m(t;) if we need to emphasize the values of the exponents ¢, for some
me.

Write x as a linear combination

x= Y ¢.m, c.ek
me#
Let supp x (the support of x) be the subset of those m € & for which c,, # 0.
Since x is (B;)- T-fixed, then (1®{*)-4(x)=x® 1, where (*: K[B,]
K[(B,),-T] is the natural map, and 4: K[B,] — K[B,J® K[B,] is the
comultiplication. To compute (1® {* ) 4(m) for m e supp x, first apply 4,
giving

H(i X,»k®Xk,>", (11)

i<j Nk=i

expand this as a linear combination of elements of the form m, ® m,, with
m,, m, in A, then apply (* to each m,, which amounts to deleting
m, @ m, if m,=m,(r;) has some exponent r;>!" if i#j, and then collect
terms. When expanding (11), because of the order we have chosen on the
X;/s, to get elements m, in # we only use relations (1), (2), and (3), and
never use relation (4). When expanding (11) for some me 4, if we take
from each factor (3, X, ® X;)" the summand X;® X; and raise this to
the power ¢;, then multiply over all i, j, we get a term of the form

[Hxyellx) (12)
i iJ
and this is equal to m® 1, since x is (B;), - T-fixed. Therefore for each j we

have
t”+t2}+ "'+tﬂ=0- (13)
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Suppose that for some mesupp x, there is a pair (r, s) with r<s for
which ¢, is not divisible by /'. Expand (11) for this m as in (12), except
that instead of taking X7 ® X! from the expansion of the factor

L X, ® X)), consider for some integer 4 with r<h<s,

(th ® th)(er® X.rs)lm !
+ (er®Xss)(th ® th)(er® Xss)’miz

+ e + (X”@X“)t”71 (th®XhJ)'
Since /& < s, this gives us
(T+@*+g"+ - + g7 X @ X)X, @ X,) "

We have (1+¢°+4q*+ --- + ¢ Y)=[1,,]1, which is not 0, since ¢,, is
not divisible by /’. It follows that in the expansion of A(m) we get a
non-zero multiple of

[T XyrexiXx,0X)X,0Xx,)~"' [] Xiexp
(i )< (r.5) (i, J) > (rys)
This gives us a non-zero multiple of m, ® m, where m, =X, X', and m,
looks exactly like m, except that the power of X, in m is precisely one
more than in m,, and the power of X,, in m is one less than in m,; write
this symbolically as m, ~mX ' X,,. The term m, ® m, is a function f of m,
r, s, and hA.

For all m(z,,) e supp x for which !/’ does not divide ¢,,, pick r to be mini-
mal. Let m(z;) be an element of supp x for which ., is not divisible by /',
for some s, for this smallest ». We must have » <, since by (13) if /' does
not divide ¢, it also does not divide ¢,, with r <s, and r is minimal.

Now for this m, pick any s with r<h <s, and let m, @ m, = f(m, r, s, h).
This term m, ® m, does not get deleted when we apply {* to m,. So a non-
zero multiple of m, ® m, must occur when we apply 4 to some other
monomial m’(z};) in supp x, in order for these occurrences of m, @ m, to
cancel out. The only way this can happen is that m ®m,=f(m', r’, s", h')
for some integers 7', £, and s' with r' <A’ <s’ and with ¢, not divisible by
!'. Then

m2 = thX;sl = Xh’s'X;’s}
so s=s" and A= /. Further,

-1 ~1
mo~mX_'X,,, my~m'X_ X,
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Since m # m’, then r’ #r. By minimality of r, we have r<r’. Then r<r’' <
h <s. We picked & to be any number such that r <h <s. If we pick h=r,
we obtain r < r’' < h=r, which is impossible.

Therefore ¢ is divisible by [’ for all mesupp x and all i, j. This means
that each m € supp x is in the image of the Frobenius map, and so is x. This
completes the proof.

LEMMA 6. Let M be a B-module, and suppose that M is generated by
weight O vectors x€ M which are (B)), - T-fixed. Then M= N'") for some
B’-module N.

Proof. From [PW, 28.1 and 2.8.2], M embeds in a direct sum
@, K[ B,] of copies of K[ B,]. For one of the weight 0 generators x of M,
x embeds as (x;) where each x, is a (B,)- T-fixed element of K[ B;]. Then
Lemma S tells us that each x; is the Frobenius applied to an element y, of
K[ B’]. Let N be the submodule of &; K[ B'] generated by all the elements
y={(y;). Then M= N®.

ProposiTioN 7. If Ae X(T,) is I"-restricted, then the irreducible GL ,(n)-
module L9(A) is still irreducible as a GL,(n), - T-module.

Proof. 1n 9.3.4 of [PW], it is shown (for odd /) that the restriction of
L%(4) to GL (n), is irreducible, if 4 is L-restricted (where GL,(n), is defined
as the /th power Frobenius kernel). This certainly fails in our situation, but
the proof of 9.3.4 in [PW] shows that in our case, the restriction of L9(1)
to GL,(n), - T is irreducible, provided that we can show that L%(1) has a
unique (By), - T-stable line. The proof of 9.3.2 in [PW], that L9(4) has a
unique (B;);-stable line in the odd case, goes through for our situation,
except that we cannot use equation [PW, (9.3a)] about the fixed point
dimension of M ® (—u)'%", where u is a weight of M= L%1), since
K{(B,),] is too small, as we are using the //2-Frobenius. Consider all the
vectors x which generate (B,), - T-stable lines of M of weight u, and define
M(u) to be the B -submodule of M ® (—pu) generated by the vectors
x® (—u). It follows from the previous lemma that M(u) is a B’-module.
Then the proof of 9.3.2 of [PW] goes through, to show that L9(1)
indeed has a unique (B)), - T-stable line. This completes the proof of
Proposition 7.

LemMMa 8. Let M'V be the Frobenius twist of a rational GL(n)-module.
Then the restriction of M'" to GL,(n), - T is a direct sum of one-dimensional
submodules.

Proof. The module M'" can be embedded in a submodule of a
direct sum of copies of F*K[GL(n)]. We have A(X})=¥%, X, ® X}, by
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Proposition 3. Letting {*: K[GL,(n)]— K[GL,(n),-T] be the natural
map, we have (1®{*)-4(X]))= X! ® X/, It follows that the restriction to
GL,(n),-T of the module F*K[GL,(n)] is a direct sum of one-dimen-
sional submodules. This is also true for M ‘"),

THEOREM. Let g be a primitive Ith root of 1, where | is divisible by 4, and
let I'=1{2. Let A=Aq+1'A, be a dominant weight in X(T,) such that A, is
U'-restricted. Then there is an isomorphism of GL (n)-modules

LAA) = Lé(40) ® L(4,)",
where L(A,) is the irreducible rational GL(n)-module of highest weight 4,.

Proof. We show that LY1,)® L(4,)"" is irreducible. As GL,(n), -
T-module, L(4,)"!) is a direct sum of one-dimensional submodules, and
L9(A,) 1is irreducible. Then the restriction of L9(iy)® L(1,)'" 1o
GL,(n), - T is completely reducible, with isotypic components N(u), where

N() = L4o) ® L4,

where L(4,),, is the u weight space of L(4,). An irreducible GL (n), - T-sub-
module Y of N(u) has highest weight 4,4+ /'y and has a maximal vector of
the form x ® y where x is a maximal vector of L4(4,) and y is a vector in
L(4,){". Then Y is equal to LY(4,)® y, and any GL,(n), - T-submodule of
N(p) has the form L7(4,)® U for some K-subspace U of L(4,)'"). Suppose
that M is a non-zero GL,(n)-submodule of LA,)® L(4,)"". Then as
GL,(n), - T-module, M is the direct sum of its intersections with the
isotypic components N(y), and thus M equals L7(4,)® V for some
K-subspace V of L(4,)"). Since M is a GL (n)-submodule of L¥(/,)®
L(4;)" we claim that this forces ¥ to be a GL,(n)-submodule of L(4,)'".
To see this, pick K-bases {w,} of L%4,) and {v,, v,, .., v,,} of L(4,)""
where the first r vectors {v,,..,v,} are a K-basis of V. Take elements
we L9(4y), w#0, ve V. Suppose that

TL‘i(/lo)(w)=Z Wi ® ay, TV(U):Z v;®b;,
k i

where each a,e K[GL,(n)] and each b,e F*K[GL(n)]=K[GL,(n)].
Then we have

TLq()ﬂ)lg,L(;‘l)ll)(W'@U) = Z w&'k®v,-®akbi.
k,i
Since w®uv is an element of the GL,(n) submodule L%(1,)® V, then
a.b,=0 if i>r. Since a, cannot be 0 for all &, it follows that b,=0 if
i>r, which proves that V is indeed a GL,(n)-submodule of L(4,)"".



A TENSOR PRODUCT THEOREM 575

Since L(4,)" is irreducible, then ¥V = L(2,)"", hence L9(A,)® L(4,)'" is
irreducible.

Since L4(4,)® L(A,)"" has a B-stable line of highest weight A,+/'4,, it
foliows that

L)@ LAV = LY Ag+1'2y).
This completes the proof.

Now assume that / is even but not divisible by 4. Proposition 2 must be
changed, since (—1)"' = —1, so the subalgebra K[M,(n)]" of K[M,(n)]
generated by the /'th powers of the X,’s is no longer commutative: X/,
anti-commutes with X if /#j, and X}, anti-commutes with X! if r #s. It
follows that K[ M (n)}" is isomorphic to the coordinate ring K[M _,(n)]
of quantum matrices at the parameter ¢ = — 1. Then the Frobenius map is
defined by taking /'th powers of elements X, of the coordinate ring
K[GL _,(n)] of the quantum general linear group at g = — 1. Our tensor
product theorem still holds, except that the Frobenius twist is applied not
to GL(n)-modules but to GL _,(n)-modules. We omit the details. The
tensor product theorem for / twice an odd number is mentioned in
[PW, 10.5.6], using the co-algebra isomorphism [PW, 10.5.4] between
K[GL,(n)] and K[GL ,(n)].
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