A Tensor Product Theorem for Quantum Linear Groups at Even Roots of Unity*

GERALD CLIFF

Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1

Communicated by Robert Steinberg

Received May 7, 1992

The main result of this paper is a tensor product theorem for irreducible representations of the quantum general linear group $GL_q(n)$ where q is a primitive lth root of unity, l being an even integer. For odd l, an analogous result was proved by Parshall and Wang [PW]. Lusztig [L] proved a tensor product theorem for representations of quantized enveloping algebras, again where l is odd.

We prove that if l is divisible by 4, there is an isomorphism of $GL_q(n)$ modules

$$L^{q}(\lambda_0 + (l/2)\lambda_1) \cong L^{q}(\lambda_0) \otimes L(\lambda_1)^{(1)}, \tag{0}$$

where $L^q(\lambda)$ is the irreducible $GL_q(n)$ -module of highest weight λ , $L(\lambda_1)^{(1)}$ is the $GL_q(n)$ -module given by the Frobenius l/2 twist of the irreducible module $L(\lambda_1)$ for the (non-quantized) general linear group GL(n) of highest weight λ , if λ_0 is l/2-restricted. (All these terms are defined below.) The Frobenius map is defined by sending elements x_{ij} of the coordinate ring of GL(n) to the l'th power $X_{ij}^{l'}$ in the coordinate ring $K[GL_q(n)]$, where l'=l/2.

This is in analogy with the tensor product Theorem 9.2.2 of [PW], except that we are using l' = l/2 instead of l. The elements $X_{ij}^{l'}$ are not central in $K[GL_q(n)]$, unlike the lth powers used in [PW], and so our proof is different than that in [PW]. It is easy to see that our proof can be used to prove Steinberg's tensor product theorem for reductive (non-quantized) algebraic groups at prime characteristic.

If l is even but not divisible by 4, then (0) still holds, except that $L(\lambda_1)^{(1)}$ should be replaced by the Frobenius l/2 twist $L^{-1}(\lambda_1)^{(1)}$ of the irreducible module $L^{-1}(\lambda_1)$ for the quantum group $GL_{-1}(n)$ with parameter q=-1.

^{*} This research was supported in part by a grant from NSERC of Canada.

We are concerned with the quantum linear group $GL_q(n)$, as defined in [RTF, M, PW]. (See also [TT].) There is really no such group, but there is a coordinate ring $K[GL_q(n)]$ where K is a field and q is a non-zero element of K. One first defines the coordinate ring of quantum $n \times n$ matrices over K, denoted $K[M_q(n)]$, to be the associative K-algebra generated by the n^2 variables X_{ij} , where i and j are between 1 and n, subject to the relations

$$X_{ri}X_{ri} = q^{-1}X_{ri}X_{ri}, i < j (1)$$

$$X_{ri}X_{si} = q^{-1}X_{si}X_{ri}, \qquad r < s$$
 (2)

$$X_{ri}X_{sj} = X_{si}X_{ri}$$
, if $r < s$ and $i > j$ (3)

$$X_{ri}X_{si} - X_{si}X_{ri} = (q^{-1} - q)X_{si}X_{ri}$$
, if $r < s$ and $i < j$. (4)

The quantum determinant D is defined by

$$D = \sum_{\sigma \in S_n} (-q)^{-l(\sigma)} X_{1\sigma(1)} X_{2\sigma(2)} \cdots X_{n\sigma(n)}$$
 (5)

where l is the standard length function on the symmetric group S_n . This element D is a central element of $K[M_q(n)]$, cf. [PW, 4.6.1]. Then $K[GL_q(n)]$ is defined to be the localization of $M_q(n)$ at D, and is a Hopf algebra, with co-multiplication defined by

$$\Delta : K[GL_n(q)] \to K[GL_n(q)] \otimes K[GL_n(q)], \qquad \Delta(X_{ij}) = \sum_{k=1}^n X_{ik} \otimes X_{kj}$$

and co-unit ε and antipode γ defined by

$$\varepsilon(X_{ii}) = \delta_{ii}, \qquad \gamma(X_{ii}) = (-q)^{j-i} A(ji) D^{-1},$$

where A(ji) is the quantum determinant of the $(n-1)\times(n-1)$ matrix obtained by deleting row j and column i of the matrix (X_{kl}) (see [PW, Chap. 5]).

A closed subgroup H of $GL_q(n)$ has, by definition, a coordinate ring $K[GL_q(n)]/a$, where a is a Hopf ideal of $K[GL_q(n)]$. We have the following Hopf ideals, and closed subgroups:

b' generated by all
$$X_{ij}$$
 with $i > j$, $K[B'_q] = K[GL_q(n)]/b'$
t generated by all X_{ij} with $i \neq j$, $K[T_q] = K[GL_q(n)]/t$.

(We are using the notation of [PW] for the quantum Borel group B_q' of upper triangular matrices; in this paper we do not need to use the lower quantum Borel group B_q of [PW].)

One of the main tools in [PW] is the Frobenius morphism $F: GL_q(n) \to GL(n)$, defined in terms of the *l*th powers of elements of $K[GL_q(n)]$. Two of its most important properties are implied by the following to facts, if *l* is odd,

$$X_{ii}^{l}$$
 is a central element of $K[GL_{a}(n)],$ (6)

and

$$\Delta(X_{ij}^l) = \sum_{k=1}^n X_{ik}^l \otimes X_{kj}^l \tag{7}$$

[PW, 7.2.2 and 7.2.3]. When l is even, then (6) still holds, but (7) is false. To repair this we replace l in (6) and (7) by l' = l/2. Then the analogue of (7) is now true, but the analogue of (6) is not.

To define q-binomial coefficients (see, for example, [L, PW, Sect. 7]), we define, for positive integers $m \le n$,

$$[n]_q = \frac{q^n - 1}{q - 1},$$
 $\begin{bmatrix} n \\ m \end{bmatrix}_q = \frac{[n]_q [n - 1]_q \cdots [n - m + 1]_q}{[m]_q [m - 1]_q \cdots [1]_q},$ $\begin{bmatrix} n \\ 0 \end{bmatrix}_q = 1.$

PROPOSITION 1. Let l be an even integer, and set l' = l/2. Let q be a primitive l th root of unity in K. We have in $K[M_q(n)]$

$$X_{ri}^{l'}X_{ri} = -X_{ri}X_{ri}^{l'} \qquad \text{if} \quad i \neq j \tag{8}$$

$$X_{ri}^{l'}X_{si} = -X_{si}X_{ri}^{l'} \qquad if \quad r \neq s \tag{9}$$

$$X_{ii}^{l'}X_{rs} = X_{rs}X_{ii}^{l'} \qquad if \quad i \neq r \quad and \quad r \neq s. \tag{10}$$

Proof. Since q is a primitive 2l'-root of unity, then $q'' = q^{-l'} = -1$. To prove (8), suppose that i < j; then (1) implies

$$X_{ri}^{I'}X_{rj} = q^{-I'}X_{rj}X_{ri}^{I'} = -X_{rj}X_{ri}^{I'}$$

If i > j we get the same equation, but with $q^{t'}$ instead of $q^{-t'}$. It is clear that (9) follows in the same way, from (2). If r < s and i > j, or if r > s and i < j, then (10) follows from (3). If r < s and i < j, we use the following result from [PW, 7.2b]:

$$X_{ij}^{k} X_{rs} - X_{rs} X_{ij}^{k} = (q^{-1} - q) \begin{bmatrix} k \\ 1 \end{bmatrix}_{q^{2}} X_{ij}^{k-1} X_{is} X_{rj}.$$

Take k = l'; then $[l']_{q^2} = (q^{2l'} - 1)/(q - 1) = 0$, so X''_{ij} commutes with X_{rs} . This is also true if r > s and i > j. This completes the proof.

At this point, in order to simplify the exposition, we make the following assumption, which holds until the last paragraph.

Assumption. The integer l is divisible by 4, l' = l/2, and q is a primitive lth root of unity in K.

PROPOSITION 2. The subalgebra $K[M_q(n)]^T$ of $K[M_q(n)]$ generated by X_{ij}^T , where i and j are between 1 and n, is a commutative algebra isomorphic to the (non-quantized) coordinate ring K[M(n)] of $n \times n$ matrices over K.

Proof. From (8), we have

$$X_{ri}^{l'}X_{ri}^{l'} = (-1)^{l'}X_{ri}^{l'}X_{ri}^{l'}$$
 if $i \neq j$

and $(-1)^{l'} = 1$ since we are assuming that l' is even. Similarly, $X_{ri}^{l'}$ commutes with $X_{si}^{l'}$ by (9), and $X_{ij}^{l'}$ commutes with $X_{rs}^{l'}$ by (10). This completes the proof.

Proposition 3. We have

$$\Delta(X_{ij}^{l'}) = \sum_{k=1}^{n} X_{ik}^{l'} \otimes X_{kj}^{l'}.$$

Proof. As in the proof of [PW, 7.2.2], we have for any integer r between 1 and n

$$\left(\sum_{s\geqslant r}X_{is}\otimes X_{sj}\right)^t=\sum_{m=0}^t\begin{bmatrix}t\\m\end{bmatrix}_{q^2}(X_{ir}\otimes X_{rj})^m\left(\sum_{s>r}X_{is}\otimes X_{sj}\right)^{t-m}.$$

If t = l' then $\begin{bmatrix} l \\ m \end{bmatrix}_{q^2} = 0$ for 0 < m < l', which gives the result.

We now have a Frobenius map $F^*: K[GL(n)] \to K[GL_q(n)]$, a Hopf algebra homomorphism defined by

$$F^{\#}(x_{ii}) = X_{ii}^{I'}.$$

PROPOSITION 4. Let d be the ordinary determinant in K[M(n)]. Then $F^*(d) = D^{I'}$.

Proof. The proof is similar to [PW, 7.2.3]. As shown there,

$$D^{I'} = \sum_{i=1}^{n} (-q)^{I'(i-j)} X_{ij}^{I'} A(ij)^{I'} = \sum_{i=1}^{n} (-1)^{I'(i-j)} X_{ij}^{I'} A(ij)^{I'},$$

where the last equation holds because q'' = -1. If n = 2 the result is proved; for bigger n use induction as indicated in [PW, 7.3.2].

We do not get a covering in the sense of [PW, 1.8], since the image of F^* is not central. We may define the Frobenius kernel as in [PW], whose coordinate ring $K[GL_q(n)_1]$ is by definition the factor ring of $K[GL_q(n)]$ by the two-sided ideal I generated by all $X_{ij}^{l'}$, for $i \neq j$ and by all $X_{ii}^{l'} - 1$, where i and j are between 1 and n. If $i \neq j$, then X_{ij} commutes with 1 but anti-commutes with $X_{ii}^{l'}$, so it follows that the image of X_{ij} in $K[GL_q(n)_1]$ is 0; indeed

$$X_{ii}(X_{ii}^{l'}-1)+(X_{ii}^{l'}-1)X_{ii}=-2X_{ii}$$

and since the characteristic of the field K is not 2 (since K has a primitive even root of unity) then $X_{ij} \in I$ if $i \neq j$. Thus $K[GL_q(n)_1]$ is much too small to be useful. We define $K[GL_q(n)_l \cdot T]$ to be the factor ring $K[GL_q(n)]$ modulo the ideal generated by the $X_{ij}^{l'}$ for $i \neq j$. Then $K[GL_q(n)_1 \cdot T]$ behaves much as in [PW], since every X_{kl} either commutes or anti-commutes with $X_{ij}^{l'}$. Similarly we have the factor ring $K[(B_q')_1 \cdot T]$ of $K[B_q]$ by the ideal generated by $X_{ij}^{l'}$ for i < j.

A $GL_q(n)$ -module M is by definition a $K[GL_q(n)]$ -comodule; it has a structure map $\tau_M\colon M\to M\otimes K[GL_q(n)]$ which satisfies $(\tau_M\otimes 1)\circ \tau_M=(1\otimes A)\circ \tau_M$. The restriction of M to any closed subgroup H of $GL_q(n)$ is the K[H]-comodule whose structure map is given by $(1\otimes \zeta^{\#})\circ \tau_M$, where $\zeta^{\#}$ is the natural epimorphism from $K[GL_q(n)]$ to its factor ring K[H]. If M is a T_q -module and if an element m of M satisfies $\tau_M(m)=m\otimes \lambda\in M\otimes K[T_q]$, where $\lambda=\prod_i X_{ii}^{n_i}$ for some integers n_i , then m is called a weight vector and λ is called a weight. The set of weights, denoted by $X(T_q)$, is an abelian group, and will as usual be written additively. A $GL_q(n)$ -module M which has a unique B'_q -stable line is called a highest weight module; the weight of a generator m of this line is called the highest weight of M, and X is called a maximal vector. From [PW, 8.2.2], any irreducible $GL_q(n)$ -module is a highest weight module, and any two such irreducibles with the same highest weight are isomorphic. An irreducible $GL_n(q)$ -module with highest weight λ is denoted $L^q(\lambda)$.

We say that a weight λ is l'-restricted if $\lambda = \sum_{i=1}^{n} r_i \omega_i$ with $0 \le r_i < l'$ for each i, where ω_i is the fundamental dominant weight $X_{11} X_{22} \cdots X_{ii}$.

For a rational GL(n)-module M, we can form a $GL_q(n)$ -module by using the composition $(1 \otimes F^*) \circ \tau_M$ from M to $M \otimes K[GL_q(n)]$, giving a $G_q(n)$ -module $M^{(1)}$, called the Frobenius twist of the module M. We let B' denote the Borel subgroup of GL(n) of upper triangular matrices; we have a Frobenius map $F^*: K[B'] \to K[B'_q]$, and we have Frobenius twists of rational B'-modules.

If H is a closed subgroup of $GL_q(n)$ and M is an H-module, an element m of M is said to be fixed by H if $\tau_M(m) = m \otimes 1 \in M \otimes K[H]$. The H-fixed elements of M are denoted by M^H . In [PW] it is shown that if l is odd, the $(B')_1$ -fixed points of a B'_q -module are the Frobenius twist of some

B'-module, using an elegant argument [PW, 2.10.2] (similar to one in [T]) which seems to depend on the centrality of $F^*K[B']$ in $K[B'_q]$. Our next two results serve as replacements.

LEMMA 5. Let x be a $(B'_q)_1 \cdot T$ -fixed element of $K[B'_q]$. Then x is in the image of the Frobenius map from K[B'] to $K[B'_q]$.

Proof. It follows from [PW, 3.5.1] that $K[B'_q]$ has a K-basis of the form

$$\mathcal{B} = \left\{ \prod_{i \leq i} X_{ij}^{t_{ij}} | t_{ij} \in \mathbf{Z}, t_{ij} \geqslant 0 \text{ if } i < j \right\},\,$$

where the products are formed with respect to some fixed order of the X_{ij} 's. Let us fix an order: say that $X_{ij} < X_{rs}$ if j < s or j = s and i < r. We will write $m = m(t_{ij})$ if we need to emphasize the values of the exponents t_{ij} for some $m \in \mathcal{B}$.

Write x as a linear combination

$$x = \sum_{m \in \mathcal{M}} c_m m, \qquad c_m \in K.$$

Let supp x (the support of x) be the subset of those $m \in \mathcal{B}$ for which $c_m \neq 0$. Since x is $(B'_q) \cdot T$ -fixed, then $(1 \otimes \zeta^{\#}) \circ \Delta(x) = x \otimes 1$, where $\zeta^{\#} \colon K[B'_q] \to K[(B'_q)_1 \cdot T]$ is the natural map, and $\Delta \colon K[B'_q] \to K[B'_q] \otimes K[B'_q]$ is the comultiplication. To compute $(1 \otimes \zeta^{\#}) \circ \Delta(m)$ for $m \in \text{supp } x$, first apply Δ , giving

$$\prod_{i \leq j} \left(\sum_{k=i}^{j} X_{ik} \otimes X_{kj} \right)^{t_{ij}}, \tag{11}$$

expand this as a linear combination of elements of the form $m_1 \otimes m_2$, with m_1, m_2 in \mathcal{B} , then apply ζ^* to each m_2 , which amounts to deleting $m_1 \otimes m_2$ if $m_2 = m_2(r_{ij})$ has some exponent $r_{ij} \geq l'$ if $i \neq j$, and then collect terms. When expanding (11), because of the order we have chosen on the X_{ij} 's, to get elements m_2 in \mathcal{B} we only use relations (1), (2), and (3), and never use relation (4). When expanding (11) for some $m \in \mathcal{B}$, if we take from each factor $(\sum_k X_{ik} \otimes X_{kj})^{i_{ij}}$ the summand $X_{ij} \otimes X_{jj}$ and raise this to the power t_{ij} , then multiply over all i, j, we get a term of the form

$$\prod_{i,j} X_{ij}^{ij} \otimes \prod_{i,j} X_{ij}^{ij} \tag{12}$$

and this is equal to $m \otimes 1$, since x is $(B'_q)_1 \cdot T$ -fixed. Therefore for each j we have

$$t_{1i} + t_{2i} + \cdots + t_{ii} = 0.$$
 (13)

Suppose that for some $m \in \text{supp } x$, there is a pair (r, s) with r < s for which t_{rs} is not divisible by l'. Expand (11) for this m as in (12), except that instead of taking $X_{rs}^{t_{rs}} \otimes X_{ss}^{t_{rs}}$ from the expansion of the factor $(\sum_{k} X_{rk} \otimes X_{ks})^{t_{rs}}$, consider for some integer h with $r \leq h < s$,

$$(X_{rh} \otimes X_{hs})(X_{rs} \otimes X_{ss})^{t_{rs}-1}$$

$$+ (X_{rs} \otimes X_{ss})(X_{rh} \otimes X_{hs})(X_{rs} \otimes X_{ss})^{t_{rs}-2}$$

$$+ \cdots + (X_{rs} \otimes X_{ss})^{t_{rs}-1} (X_{rh} \otimes X_{hs}).$$

Since h < s, this gives us

$$(1+q^2+q^4+\cdots+q^{2(t_{rs}-1)})(X_{rh}\otimes X_{hs})(X_{rs}\otimes X_{ss})^{t_{rs}-1}.$$

We have $(1+q^2+q^4+\cdots+q^{2(t_{rs}-1)})=[t_{rs}]_{q^2}$ which is not 0, since t_{rs} is not divisible by l'. It follows that in the expansion of $\Delta(m)$ we get a non-zero multiple of

$$\prod_{(i,j)<(r,s)} X^{ty}_{ij} \otimes X^{ty}_{ij} (X_{rh} \otimes X_{hs}) (X_{rs} \otimes X_{ss})^{t_{rs}-1} \prod_{(i,j)>(r,s)} X^{ty}_{ij} \otimes X^{ty}_{ij}.$$

This gives us a non-zero multiple of $m_1 \otimes m_2$ where $m_2 = X_{hs} X_{ss}^{-1}$, and m_1 looks exactly like m, except that the power of X_{rs} in m is precisely one more than in m_1 , and the power of X_{rh} in m is one less than in m_1 ; write this symbolically as $m_1 \sim m X_{rs}^{-1} X_{hr}$. The term $m_1 \otimes m_2$ is a function f of m, r, s, and h.

For all $m(t_{rs}) \in \text{supp } x$ for which l' does not divide t_{rs} , pick r to be minimal. Let $m(t_{ij})$ be an element of supp x for which t_{rs} is not divisible by l', for some s, for this smallest r. We must have r < s, since by (13) if l' does not divide t_{ss} , it also does not divide t_{rs} with r < s, and r is minimal.

Now for this m, pick any h with $r \le h < s$, and let $m_1 \otimes m_2 = f(m, r, s, h)$. This term $m_1 \otimes m_2$ does not get deleted when we apply ζ^* to m_2 . So a non-zero multiple of $m_1 \otimes m_2$ must occur when we apply Δ to some other monomial $m'(t'_{ij})$ in supp x, in order for these occurrences of $m_1 \otimes m_2$ to cancel out. The only way this can happen is that $m_1 \otimes m_2 = f(m', r', s', h')$ for some integers r', h', and s' with $r' \le h' < s'$ and with $t'_{r's'}$ not divisible by l'. Then

$$m_2 = X_{hs} X_{ss}^{-1} = X_{h's'} X_{s's'}^{-1}$$

so s = s' and h = h'. Further,

$$m_1 \sim m' X_{r's}^{-1} X_{r'h}, \qquad m_1 \sim m' X_{rs}^{-1} X_{rh}.$$

Since $m \neq m'$, then $r' \neq r$. By minimality of r, we have r < r'. Then $r < r' \le h < s$. We picked h to be any number such that $r \le h < s$. If we pick h = r, we obtain $r < r' \le h = r$, which is impossible.

Therefore t_{ij} is divisible by l' for all $m \in \text{supp } x$ and all i, j. This means that each $m \in \text{supp } x$ is in the image of the Frobenius map, and so is x. This completes the proof.

LEMMA 6. Let M be a B'_q -module, and suppose that M is generated by weight 0 vectors $x \in M$ which are $(B'_q)_1 \cdot T$ -fixed. Then $M \cong N^{(1)}$ for some B'-module N.

Proof. From [PW, 2.8.1 and 2.8.2], M embeds in a direct sum $\bigoplus_i K[B'_q]$ of copies of $K[B'_q]$. For one of the weight 0 generators x of M, x embeds as (x_i) where each x_i is a $(B'_q) \cdot T$ -fixed element of $K[B'_q]$. Then Lemma 5 tells us that each x_i is the Frobenius applied to an element y_i of K[B']. Let N be the submodule of $\bigoplus_i K[B']$ generated by all the elements $y = (y_i)$. Then $M \cong N^{(1)}$.

PROPOSITION 7. If $\lambda \in X(T_q)$ is l'-restricted, then the irreducible $GL_q(n)$ -module $L^q(\lambda)$ is still irreducible as a $GL_q(n)_1 \cdot T$ -module.

Proof. In 9.3.4 of [PW], it is shown (for odd l) that the restriction of $L^{q}(\lambda)$ to $GL_{q}(n)_{1}$ is irreducible, if λ is *l*-restricted (where $GL_{q}(n)_{1}$ is defined as the 1th power Frobenius kernel). This certainly fails in our situation, but the proof of 9.3.4 in [PW] shows that in our case, the restriction of $L^{q}(\lambda)$ to $GL_q(n)_1 \cdot T$ is irreducible, provided that we can show that $L^q(\lambda)$ has a unique $(B'_q)_1 \cdot T$ -stable line. The proof of 9.3.2 in [PW], that $L^q(\lambda)$ has a unique $(B'_q)_1$ -stable line in the odd case, goes through for our situation, except that we cannot use equation [PW, (9.3a)] about the fixed point dimension of $M \otimes (-\mu)^{(B'_q)_1}$, where μ is a weight of $M = L^q(\lambda)$, since $K[(B'_a)_1]$ is too small, as we are using the l/2-Frobenius. Consider all the vectors x which generate $(B'_q)_1$. T-stable lines of M of weight μ , and define $M(\mu)$ to be the B'_q -submodule of $M \otimes (-\mu)$ generated by the vectors $x \otimes (-\mu)$. It follows from the previous lemma that $M(\mu)$ is a B'-module. Then the proof of 9.3.2 of [PW] goes through, to show that $L^q(\lambda)$ indeed has a unique $(B'_q)_1 \cdot T$ -stable line. This completes the proof of Proposition 7.

LEMMA 8. Let $M^{(1)}$ be the Frobenius twist of a rational GL(n)-module. Then the restriction of $M^{(1)}$ to $GL_q(n)_1 \cdot T$ is a direct sum of one-dimensional submodules.

Proof. The module $M^{(1)}$ can be embedded in a submodule of a direct sum of copies of F # K[GL(n)]. We have $\Delta(X_{ij}^{l'}) = \sum_k X_{ik}^{l'} \otimes X_{kj}^{l'}$ by

Proposition 3. Letting $\zeta^{\#}: K[GL_q(n)] \to K[GL_q(n)_1 \cdot T]$ be the natural map, we have $(1 \otimes \zeta^{\#}) \circ A(X_{ij}^{l'}) = X_{ij}^{l'} \otimes X_{jj}^{l'}$. It follows that the restriction to $GL_q(n)_1 \cdot T$ of the module $F^{\#}K[GL_q(n)]$ is a direct sum of one-dimensional submodules. This is also true for $M^{(1)}$.

THEOREM. Let q be a primitive lth root of 1, where l is divisible by 4, and let l' = l/2. Let $\lambda = \lambda_0 + l'\lambda_1$ be a dominant weight in $X(T_q)$ such that λ_0 is l'-restricted. Then there is an isomorphism of $GL_q(n)$ -modules

$$L^q(\lambda) \cong L^q(\lambda_0) \otimes L(\lambda_1)^{(1)},$$

where $L(\lambda_1)$ is the irreducible rational GL(n)-module of highest weight λ_1 .

Proof. We show that $L^q(\lambda_0) \otimes L(\lambda_1)^{(1)}$ is irreducible. As $GL_q(n)_1 \cdot T$ -module, $L(\lambda_1)^{(1)}$ is a direct sum of one-dimensional submodules, and $L^q(\lambda_0)$ is irreducible. Then the restriction of $L^q(\lambda_0) \otimes L(\lambda_1)^{(1)}$ to $GL_q(n)_1 \cdot T$ is completely reducible, with isotypic components $N(\mu)$, where

$$N(\mu) = L^{q}(\lambda_0) \otimes L(\lambda_1)_{\mu}^{(1)},$$

where $L(\lambda_1)_{\mu}$ is the μ weight space of $L(\lambda_1)$. An irreducible $GL_q(n)_1 \cdot T$ -submodule Y of $N(\mu)$ has highest weight $\lambda_0 + l'\mu$ and has a maximal vector of the form $x \otimes y$ where x is a maximal vector of $L^q(\lambda_0)$ and y is a vector in $L(\lambda_1)_{\mu}^{(1)}$. Then Y is equal to $L^q(\lambda_0) \otimes y$, and any $GL_q(n)_1 \cdot T$ -submodule of $N(\mu)$ has the form $L^q(\lambda_0) \otimes U$ for some K-subspace U of $L(\lambda_1)_{\mu}^{(1)}$. Suppose that M is a non-zero $GL_q(n)$ -submodule of $L^q(\lambda_0) \otimes L(\lambda_1)^{(1)}$. Then as $GL_q(n)_1 \cdot T$ -module, M is the direct sum of its intersections with the isotypic components $N(\mu)$, and thus M equals $L^q(\lambda_0) \otimes V$ for some K-subspace V of $L(\lambda_1)^{(1)}$. Since M is a $GL_q(n)$ -submodule of $L^q(\lambda_0) \otimes L(\lambda_1)^{(1)}$ we claim that this forces V to be a $GL_q(n)$ -submodule of $L(\lambda_1)^{(1)}$. To see this, pick K-bases $\{w_k\}$ of $L^q(\lambda_0)$ and $\{v_1, v_2, ..., v_m\}$ of $L(\lambda_1)^{(1)}$ where the first V vectors $\{v_1, ..., v_r\}$ are a V-basis of V. Take elements $V \in L^q(\lambda_0)$, $V \in V$. Suppose that

$$\tau_{L^{q}(\lambda_0)}(w) = \sum_k w_k \otimes a_k, \qquad \tau_{\nu}(v) = \sum_i v_i \otimes b_i,$$

where each $a_k \in K[GL_q(n)]$ and each $b_i \in F^*K[GL(n)] \subset K[GL_q(n)]$. Then we have

$$\tau_{L^{q}(\lambda_{0})\otimes L(\lambda_{1})^{(1)}}(w\otimes v)=\sum_{k,\,i}w_{k}\otimes v_{i}\otimes a_{k}b_{i}.$$

Since $w \otimes v$ is an element of the $GL_q(n)$ submodule $L^q(\lambda_0) \otimes V$, then $a_k b_i = 0$ if i > r. Since a_k cannot be 0 for all k, it follows that $b_i = 0$ if i > r, which proves that V is indeed a $GL_q(n)$ -submodule of $L(\lambda_1)^{(1)}$.

Since $L(\lambda_1)^{(1)}$ is irreducible, then $V = L(\lambda_1)^{(1)}$, hence $L^q(\lambda_0) \otimes L(\lambda_1)^{(1)}$ is irreducible.

Since $L^q(\lambda_0) \otimes L(\lambda_1)^{(1)}$ has a B'_q -stable line of highest weight $\lambda_0 + l'\lambda_1$, it follows that

$$L^q(\lambda_0) \otimes L(\lambda_1)^{(1)} \cong L^q(\lambda_0 + l'\lambda_1).$$

This completes the proof.

Now assume that l is even but not divisible by 4. Proposition 2 must be changed, since $(-1)^l = -1$, so the subalgebra $K[M_q(n)]^l$ of $K[M_q(n)]$ generated by the l'th powers of the X_{ij} 's is no longer commutative: X_{ri}^l anti-commutes with X_{si}^l if $i \neq j$, and X_{ri}^l anti-commutes with X_{si}^l if $i \neq s$. It follows that $K[M_q(n)]^l$ is isomorphic to the coordinate ring $K[M_{-1}(n)]$ of quantum matrices at the parameter q = -1. Then the Frobenius map is defined by taking l'th powers of elements X_{ij} of the coordinate ring $K[GL_{-1}(n)]$ of the quantum general linear group at q = -1. Our tensor product theorem still holds, except that the Frobenius twist is applied not to GL(n)-modules but to $GL_{-1}(n)$ -modules. We omit the details. The tensor product theorem for l twice an odd number is mentioned in [PW, 10.5.6], using the co-algebra isomorphism [PW, 10.5.4] between $K[GL_q(n)]$ and $K[GL_{-q}(n)]$.

REFERENCES

- [L] G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989), 59-78.
- [M] YU. I. MANIN, "Quantum Groups and Non-commutative Geometry," Université de Montréal, 1988.
- [PW] B. PARSHALL AND J.-P. WANG, Quantum linear groups, Mem. Amer. Math. Soc. 439 (1991).
- [RTF] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Fadeev, Quantization of Lie groups and Lie algebras, *Leningrad Math. J.* 1 (1990), 193–225.
- [TT] E. TAFT AND J. TOWBER, Quantum deformation of flag schemes and Grassmann schemes. I. A q-deformation of the shape-algebra for GL(n), J. Algebra 142 (1991), 1-36
- [T] M. TAKEUCHI, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7 (1972), 251-270.