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Primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL, LT) is the most aggressive type of primary
cutaneous B-cell lymphoma. In a recent study on 12 patients it was found that inactivation of CDKN2A by either
deletion of 9p21.3 or promoter hypermethylation is correlated with a worse prognosis. In the present EORTC
multicenter study, skin biopsies of 64 PCLBCL, LT patients were analyzed by multiplex ligation-dependent probe
amplification to validate these previous results and to fine-map the losses in this region. Although no minimal
common region of loss could be identified, most homozygous loss was observed in the CDKN2A gene (43 of 64;
67%) encoding p16 and p14ARF. Promoter hypermethylation of p16 and p14ARF was found in six and zero cases,
respectively. Survival was markedly different between patients with versus without aberrations in the CDKN2A
gene (5-year disease-specific survival 43 versus 70%; P¼ 0.06). In conclusion, our results confirm that deletion of
chromosome 9p21.3 is found in a considerable proportion of PCLBCL, LT patients and that inactivation of the
CDKN2A gene is associated with an unfavorable prognosis. In most patients the deletion involves a large area of
at least several kilobase pairs instead of a small minimal common region.
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INTRODUCTION
Primary cutaneous diffuse large B-cell lymphoma, leg type
(PCLBCL, LT) is the most aggressive type of primary
cutaneous B-cell lymphoma (CBCL). It is generally character-
ized by rapidly growing tumors that present on the leg(s), but
in a minority of patients skin lesions can also arise at other
sites. Histologically it is defined as a tumor with a
predominance or confluent sheets of large, atypical B cells
(resembling centroblasts and immunoblasts), which generally
express Bcl-2 and MUM-1. The disease has an intermediate
prognosis with a 5-year survival rate of only 50% (Willemze
et al., 2005). As it is recognized that this disease represents a
distinct type of CBCL, it will be included as a separate entity
in the forthcoming WHO 2008 classification.

In a recent study by our group, using array-based
comparative genomic hybridization (aCGH), it was found
that inactivation of the CDKN2A region, encoding for the
tumor suppressor genes p16 and p14ARF, by either deletion
of chromosome 9p21.3 or promoter hypermethylation, is
associated with a worse prognosis. However, these results
were based on only 12 cases (Dijkman et al., 2006).

Multiplex ligation-dependent probe amplification (MLPA)
has recently been described as a new method for relative
quantification of multiple different DNA sequences in a
single reaction, requiring only small amounts of DNA
(Schouten et al., 2002). Moreover, the application of this
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technique on DNA isolated from formalin-fixed, paraffin-
embedded (FFPE) material has previously been reported to be
reliable and less sensitive to DNA degradation (Natte et al.,
2005; Takata et al., 2005; van Dijk et al., 2005). Targeted
MLPA probe panels are commercially available including a
set of probes targeting the chromosomal region of 9p21
containing several known genes (CDKN2A, coding for p16
and p14ARF, CDKN2B, coding for p15 and MTAP).

In the present study, MLPA was used to confirm that
deletion of CDKN2A is an unfavorable prognostic marker in a
large patient group and to further fine-map the 9p21.3 region
in order to determine a possible minimal common region.

RESULTS
Testing the reliability of the MLPA technique

We first investigated whether results generated by MLPA
were in accordance with our previous aCGH results
(Dijkman et al., 2006). In addition, we aimed to obtain more
information on the precise location of deletions as the MLPA
technique has a much higher spatial resolution than the
aCGH technique applied previously (Figure 1) (Dijkman
et al., 2006). To that end, we subjected available isolated
DNA from 12 patients (9 PCLBCL, LT and 3 primary
cutaneous follicle center lymphomas (PCFCL)) previously
investigated by aCGH to MLPA. We were indeed able to
confirm chromosomal aberrations in 9p21.3 as detected by
aCGH in all patients, with homozygous loss in 4 of 12
patients and hemizygous loss in 2 of 12 patients using MLPA
(Figure 2). Moreover, in 3 of the 6 patients that did not show
loss in the aCGH analysis (3 PCLBCL, LT and 3 PCFCL),
MLPA allowed detection of hemizygous loss (and in one
patient even homozygous loss) of individual probes within
the complete set (2 PCLBCL, LT and 1 PCFCL) (Figure 2). This
demonstrates the higher sensitivity of the MLPA technique as
compared to the aCGH platform previously used. However,

we could not detect a minimal common region of deletion
within the CDKN2A gene region.

As a considerable part of our samples was derived from
FFPE material, it was felt important to test the claim that
MLPA can be applied as reliably to DNA isolated from FFPE
material as to DNA isolated from frozen material (van Dijk
et al., 2005). To accomplish this, we analyzed DNA from
fresh-frozen samples and FFPE material taken simultaneously
from the same tumor. This was performed in 2 patients from
whom at 3 different time points biopsy material was collected
(primary tumor, first skin relapse, and second skin relapse).
We observed full concordance of the results as depicted for
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Figure 1. Schematical representation of 9p21.3 showing the spatial

resolution of different techniques. MLPA can be used to fine-map the
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one patient in Figure 3, thereby demonstrating the applic-
ability of this technique on partly degraded DNA. In addition,
it was noted that the genetic lesions in the 9p21.3 region
showed a stable pattern over time and did not alter with
disease progression and treatment.

Allelic loss at the 9p21.3 locus

Having confirmed that MLPA can reliably detect genetic
lesions in frozen as well as in FFPE material, we subjected the
whole study group to MLPA. In total, tumor biopsies from 64
patients with a diagnosis of PCLBCL, LT were included in the
final study group. This included the 9 patients previously
analyzed by aCGH and in addition 55 new patients. The
overall MLPA results for these patients are depicted in
Figure 4. It was found that 45 patients (70%) showed
homozygous loss of one or multiple probes within the
9p21.3 region. Hemizygous loss was found in 14 patients and
5 patients did not show any detectable loss in this region.

Most chromosomal aberrations were localized in the
CDKN2A gene. Homozygous loss within this region was
found in 43 of 64 cases (67%). Homozygous losses in the
coding regions for p16 (exon 1a, 2, and 3) and p14ARF (exon
1b and 2), as well as both promoter regions, were found in 40
of 64 (63%) and 37 of 64 (58%) cases, respectively. Specific
probes, most often lost were located in exon 1a coding for
p16 and exon 2 coding for both p16 and p14ARF (both
probes were lost in 31 of 64 cases; 48%). In most patients
however, the deletion covered a large part of chromosome

9p21.3 instead of a smaller minimal common region
(Figure 4).

Analysis of p16 and p14ARF promoter methylation status

From 20 of 21 patients without homozygous loss in
CDKN2A, sufficient DNA was available to determine the
promoter methylation status of p16 and p14ARF. In none of
the samples methylation of the p14ARF promoter was found.
However, methylation of the p16 promoter was detected in 6
of 20 samples. Five of these samples showed hemizygous loss
within the p16 coding and promoter region in MLPA analysis
and one sample had no loss within this region.

Correlation with survival

Survival analysis revealed a clear correlation between
homozygous loss in chromosome 9p21.3 and reduced
survival. Patients without homozygous loss in this region
had an actuarial 5-year disease-specific survival (DSS) of
68%, whereas patients with loss of at least one probe in this
region had a 5-year DSS of 39% (P¼0.06). Although
statistically not significant, these results are in line with the
findings described by Dijkman et al. (2006). As most loss
occurred in the CDKN2A region, we also performed survival
analysis for losses specific to this region and in addition also
for loss in areas coding specifically for p14ARF and p16
separately. Loss in the CDKN2A region was most strongly
correlated with prognosis. Five-year DSS for patients with or
without loss in this region was 38 versus 69% (P¼0.03)
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(Figure 5). Differences in 5-year DSS between patients with or
without losses in the regions coding p14ARF or p16 were not
or borderline significant, respectively.

Finally, we tested whether inclusion of the methylation
data affected the survival analysis. In the complete study
group a total of 48 patients can be considered to have an
inactivated CDKN2A gene (43 patients with homozygous loss
in the CDKN2A gene and 5 patients with a methylated p16
promoter combined with hemizygous loss in CDKN2A). Five-
year DSS for patients with and those without inactivation of
CDKN2A are 70 and 43%, respectively (P¼0.059) (Figure 6).

DISCUSSION
In this study we aimed to confirm recently reported data
describing that loss of 9p21.3 and more specifically,
inactivation of CDKN2A is commonly found and associated
with inferior prognosis in PCLBCL, LT (Dijkman et al., 2006).
By using MLPA we were able to confirm loss of 9p21.3,
including the CDKN2A gene, on a large group of patients
with PCLBCL, LT. We observed full concordance with the
results as obtained by aCGH, and, in addition, detected small
areas of loss in three patients. So comparison between aCGH
and MLPA confirms the higher sensitivity of the latter
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technique and its ability to fine-map larger areas of loss as
found by genome-wide analyses such as aCGH using BAC
clones as in the previous study. It was found that in most
patients the deletion covers a substantial part (up to several
tens of thousands of base pairs) of this chromosomal region.
Although no minimal common region of loss could be
detected, most chromosomal aberrations converged on the
CDKN2A gene.

An additional advantage of the MLPA technique is that it
can be applied reliably on FFPE material of CBCL patients.
Comparison between DNA derived from fresh-frozen and
FFPE sections, obtained from the same tumor in two patients,
showed identical results. Moreover, comparison of skin
biopsy specimens obtained from consecutive tumors in these
two patients, demonstrated identical chromosomal aberra-
tions, indicating that these losses can display a stable pattern
over time.

Loss or inactivation of the CDKN2A gene either by
deletion or promoter hypermethylation has been extensively
reported in hematological malignancies, including B-cell
non-Hodgkin lymphomas (Dreyling et al., 1998; Baur et al.,
1999; Sanchez-Beato et al., 2001; Raschke et al., 2005).
CDKN2A codes for p16 and p14ARF, both of which are
tumor suppressor genes and are negative regulators of cell-
cycle progression. In our study group, inactivation of
CDKN2A was mostly due to (homozygous) deletion. Promo-
ter hypermethylation of p16 was found in a minority of cases,
which is in accordance with the results of previous studies in
CBCL (Gronbaek et al., 2000; Belaud-Rotureau et al., 2008).
Promoter hypermethylation of p14 was never detected.

Besides confirming the loss in this chromosomal region we
further wanted to validate the prognostic significance of the
findings as reported previously. Although less striking than the
results reported by Dijkman et al. (2006), loss or inactivation of
CDKN2A, was still associated with reduced survival (Figures 5
and 6), which is also consistent with previous reports of others
(Gronbaek et al., 2000; Child et al., 2002; Belaud-Rotureau
et al., 2008). Even though the results described herein show a
clear, and borderline significant, correlation with reduced
survival, loss of CDKN2A cannot be used as the sole tool to
optimize management in individual patients.

In our study group there are several patients with deletions
in 9p21.3, but have a favorable clinical course thus far. More
importantly, 5 of 21 patients without inactivation of CDKN2A
died of lymphoma 6–54 months (median 27 months) after
diagnosis. Especially this latter group runs the risk of being
undertreated when management would be solely based on
CDKN2A status.

In conclusion, in a large part of PCLBCL, LT patients
chromosomal loss is seen in 9p21.3. In most patients these
losses are concentrated on the CDKN2A gene coding for p16
and p14ARF. Inactivation of this gene is caused by homo-
zygous deletion or, less commonly, by promoter hypermethy-
lation and is associated with a worse prognosis. However,
caution is warranted before these results are incorporated
into clinical decision making.

MATERIALS AND METHODS
Sample collection

Cases were collected from centers collaborating in the EORTC

Cutaneous Lymphoma Group. Tumor DNA from pretreatment skin

biopsies of 80 patients were initially submitted for the study. Patients

with incomplete staging investigations (minimum requirements

being routine laboratory screening, CT scans of chest and abdomen,

and bone marrow biopsy) or follow-up of less than 12 months (unless

caused by death due to lymphoma) were excluded from further

analysis (n¼ 6). In addition, of all submitted cases hematoxylin and

eosin sections were reviewed for morphological reference and

estimation of percentage tumor- and admixed-reactive cells. In case

of doubt about the percentage of tumor cells, we reviewed stainings

for CD3 and CD20. If these were not available, the case was

excluded. Combined with information on the expression of Bcl-2,

MUM-1, and FOXP1, a diagnosis of PCLBCL, LT was confirmed or

discarded. Cases in which a diagnosis of PCLBCL, LT could not be

confirmed and cases with more than 30% admixed reactive T cells
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were excluded (n¼ 5). Finally, five cases could not be analyzed due

to poor quality DNA. The final study group consisted of 64 patients

with a diagnosis of PCLBCL, LT. The study group contained 25 men

and 39 women (male–female ratio: 0.6), with a median age at

diagnosis of 78 years (range 47–92 years) and a median duration of

follow-up of 34 months (range 2–158 months). Clinical character-

istics and treatment data are presented in Table 1. In addition, three

patients with a diagnosis of PCFCL were included in the experiment

validating the MLPA technique. A total of 12 of the above described

patients (9 PCLBCL, LT and 3 PCFCL) were formerly analyzed with

aCGH (Dijkman et al., 2006). Genomic DNA was extracted from

either fresh-frozen material, or FFPE sections, using local protocols.

This study was performed in accordance with the Dutch code

and Leiden University Medical Center guidelines on leftover

material. Patient informed consent was not required because this

code considers human tissue left over from surgery or diagnostic

procedures as discarded material. The study was conducted

according to the Helsinki guidelines.

Fine-mapping chromosomal loss at 9p21.3 using MLPA

A commercially available MLPA Kit (SALSA MLPA Kit P024B; MRC-

Holland, Amsterdam, the Netherlands) targeting the 9p21 region

was used according to the manufacturer’s protocol. The P024B kit

contains 23 probes of which 9 probes are specific for the CDKN2A

region, 3 probes for the CDKN2B region, and 3 probes for the MTAP

gene, whereas 8 probes hybridize to regions flanking these genes.

For the experiments we used 60–80 ng of genomic DNA and normal

control DNA (a DNA mix of 15 healthy donors) was always included

in the same reaction. The principles of the MLPA technique are

concisely described by Vorstman et al. (2006), whereas detailed

methodology can be found in the paper by Schouten et al. (2002).

Briefly, genomic DNA diluted in 5ml of Tris-EDTA 10 mM, was

denatured at 95 1C for 5 minutes, mixed with the probe set and the

MLPA buffer, and incubated for 16 hours at 60 1C. After probe

hybridization, products were ligated for 15 minutes at 54 1C. The

ligase enzyme was then inactivated by incubation for 5 minutes at

98 1C. The ligation products were subsequently amplified by PCR

using universal FAM-labeled primers. All these reactions were carried

out in a PTC-200 Thermal cycler with heated lid (MJ Research,

Waltham, MA). The resulting products were separated according to

size on an ABI Prism 3730 DNA analyzer (Applied Biosystems,

Nieuwerkerk aan den IJssel, the Netherlands) by the inclusion of

GeneScan ROX 500 as internal size standard (Applied Biosystems).

Resulting fragment analysis chromatograms were sized to standard

fragment lengths by GeneMapper v3.7 (Applied Biosystems).

Promoter hypermethylation analysis

As promoter hypermethylation can be involved in gene inactivation,

we also evaluated the methylation status of the CpG islands, located

in the promoter regions of p16 and p14ARF, in patients without

homozygous loss of (parts of) the CDKN2A gene. Promoter

methylation status was determined by performing melting curve

analysis of bisulfite-converted and PCR-amplified tumor DNA, as

described previously (Worm et al., 2001). Tumor DNA was modified

with sodium bisulfite by using the EZ Methylation Kit (Zymo

Research Corporation, Orange, CA). PCR primers were designed to

anneal to bisulfite-converted DNA as template which amplified a

region of the p16 and p14ARF gene promoter CpG islands (Table 2).

PCR amplification of bisulfite-treated DNA and subsequent melting

curve analysis in the presence of SYBRGReen (MyiQ Real-time PCR

Detection System; Bio-Rad Laboratories BV, Veenendaal, the

Netherlands) allowed detection of methylation present in the sample

DNA, by generating a peak with a higher melting temperature as

compared to unmethylated DNA. Ratios for methylated versus

unmethylated DNA in each sample were determined by dividing the

total area under the melting temperature curve(s) by the area under

the methylation specific peak. All samples showing a ratio above 0.3

were considered to contain methylated tumor DNA.

Table 1. Clinical and treatment characteristics of 64
patients with PCLBCL, LT
Total number of patients 64

Age (years) (median (range)) 78 (47–92)

Sex

Male 25

Female 39

Male:female ratio 0.6

Site of skin lesions (%)

Head/neck 2 (3%)

Trunk 7 (11%)

Arm(s) 2 (3%)

Leg(s) 59 (92%)

Extent of skin lesions (%)

Solitary 26 (41%)

Regional 30 (47%)

Multifocal 8 (13%)

Treatment (%)

Radiotherapy 32 (50%)

Chemotherapy 15 (23%)

Chemotherapy and radiotherapy 9 (14%)

Surgery 3 (5%)

Surgery and radiotherapy 2 (3%)

Rituximab 1 (2%)

Other 2 (3%)

Result of treatment (%)

Complete remission 54 (84%)

Partial remission 6 (9%)

No response 3 (5%)

Progressive disease 1 (2%)

Status at last follow-up (%)

Alive and well 23 (36%)

Alive with disease 6 (9%)

Died of lymphoma 30 (47%)

Died of other cause 5 (8%)
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Data analysis and statistical methods
Analysis of MLPA results was carried out upon the transfer of

GeneMapper results to Coffalyser software, a data analysis tool which

was designed by MRC-Holland for normalization of MLPA fragment

data files. With this program, DNA copy number ratios of test

samples can be computed, by comparison and normalization to a

control sample (for full description see: http://www.mlpa.com/

coffalyser/). As sample DNA is compared against a normal control

sample, a ratio of 0.5 would ideally indicate hemizygous loss and

zero would indicate homozygous loss. However, considering the fact

that our samples contained a maximum of 30% admixed reactive

cells, ratios between 0.4 and 0.7 were considered as hemizygous

loss, whereas ratios below 0.4 were considered as homozygous loss.

For analysis of clinical data and performing survival analyses,

SPSS 14.0 (SPSS Inc., Chicago, IL) was used. DSS was calculated

from the date of diagnosis until death from lymphoma (including

therapy-related death) or last follow-up without event. Survival

curves were estimated using the method of Kaplan and Meier and

statistical comparison between curves was performed by log-rank

testing.
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GGTTGGGAGTAGGGAGGTCG

p14ARF GAGGGGAGTTAGGAATAAAATAAGG 10 �413, 268 145

CTAAAACGCAACTCCAAACAAC
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