frequently highlight geometrical inaccuracies in an image-guided radiation therapy environment.

Conclusion: The developed end-to-end test is quick, cost-effective and easy to implement clinically. It allows to frequently highlight geometrical inaccuracies in an image-guided radiation therapy environment.

EP-1920
Harmonising the clinical trials QA group reports on phantom measurements around the globe

C. Clark^1, C. Field^2, D. Followill^3, A. Haworth^4, S. Ishikura^5, J. Iezwiska^6, C. Hurkmans^7

1NCRI Radiotherapy Trials, QA Group, London, United Kingdom
2NCIC Clinical Trials, QA group, Kingston, Canada
3Imaging and Radiation Oncology Core, QA group, Houston, United States
4Trans-Tasman Radiation Oncology, QA Group, Newcastle, Australia
5Japan Clinical Oncology, QA Group, Tokyo, Japan
6International Atomic Energy Agency, Dosimetry Laboratory, Vienna, Austria
7European Organisation on Research and Treatment of Cancer, QA Group, Brussels, Belgium

Purpose or Objective: The Global Harmonisation Group was created in 2009 to harmonise and improve the quality assurance (QA) of radiation therapy implemented worldwide in multi-institutional clinical trials. The aim is to achieve a consistent platform to provide and share QA processes in multi-institutional clinical trials. The aim is to achieve a consistent platform to provide and share QA processes in multi-institutional clinical trials.

Material and Methods: A survey was created to find a list of core information which could be included in future dosimetry credentialing reports. Answers were requested to give opinion from each group as to what should be included as a minimum in these reports. Some QA groups use site visits or postal phantoms, whereas some use a virtual phantom (i.e., local QA measurement) and others use both. The questions were divided to allow responses for both types. Questions were circulated amongst the groups beforehand and all comments and contributions were incorporated.

Results: All seven current member groups replied. Results were divided into three categories, 1) information which all groups agreed should be included in all reports, 2) information which the majority of groups agreed should be included in all reports, and 3) information which the majority of groups agreed should be included in all reports.

Table 1 Agreed information in clinical trial QA group reports

<table>
<thead>
<tr>
<th>Information which all groups agreed should be included in all reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic information about the patient and the planned treatment</td>
</tr>
<tr>
<td>Technique details</td>
</tr>
<tr>
<td>Equipment and dosimetry data</td>
</tr>
</tbody>
</table>

Information which the majority of groups agreed should be included in all reports

<table>
<thead>
<tr>
<th>Information which the majority of groups agreed should be included in all reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA process details</td>
</tr>
<tr>
<td>Radiation oncologist comments</td>
</tr>
</tbody>
</table>

Information which the majority of groups agreed should be included in all reports

<table>
<thead>
<tr>
<th>Information which the majority of groups agreed should be included in all reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA process details</td>
</tr>
<tr>
<td>Radiation oncologist comments</td>
</tr>
</tbody>
</table>

Conclusion: The survey showed that there is a wide variation in the information currently provided in the reports from the various QA organisations, which may hamper their mutual acceptance. Following discussion there were several pieces of information which were agreed should always be included and these constitute the beginning of an agreed list of included core information. There are several more pieces of information which the majority always include and the others use often or sometimes. These could be discussed to understand when and why they are not used and perhaps considered for inclusion. There are some others where not all members use the information because they do not use a gamma index analysis, however these could be included for those who do use the gamma index. There is also some information which sometimes included, but which is always included when needed. These cases will be discussed and decided if these should be included in specific cases, perhaps including a flowchart to aid standardisation. Some groups have already reviewed or are in the process of reviewing their reports to ensure inclusion of core information.

EP-1921
Novatis certification of stereotactic radiation therapy programs: methodology and current status

J. Robar^1, T. Gevaert^2, M. Todorovic^3, T. Solberg^4

1Dalhousie University, Radiation Oncology, Halifax, Canada
2University of Pennsylvania, Department of Radiation Oncology, Philadelphia, USA
3University Medical Center Hamburg-Eppendorf UKE, Department of Radiotherapy and Radio-Oncology, Hamburg, Germany
4University of Pennsylvania, Department of Radiation Oncology, Philadelphia, USA

Purpose or Objective: To present an overview and the current status of Novatis Certification, which provides a comprehensive and independent assessment of safety and quality in stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT), ensuring the highest standards and consistency of practice.

Material and Methods: The Novatis Certification program includes a review of SRS/SBRT program structure, adequacy of personnel resources and training, appropriateness and use of technology, program quality management, patient-specific quality assurance and equipment quality control. Currently ten auditors support the program, with six in North America, three in Europe and one in Asia, each bringing a minimum of a decade of experience in stereotactic practice. Centres applying for Novatis Certification complete a self-study 30 days prior to a scheduled one-day site visit by one to two reviewers. Reviewers generate a descriptive 77-point report which is reviewed and voted on by a multidisciplinary expert panel of 3 medical physicists, 2 radiation oncologists and 2 neurosurgeons. Outcomes of reviews may include mandatory
Comparing MLC positioning errors in Clinac and Truebeam standards-based approach is capable of highlighting while recognizing high calibre of practice internationally. The review program assessing safety and quality in SRS and SBRT, ranging from programmatic to technical in nature.

Conclusion: Novalis Certification is a unique and active peer review program assessing safety and quality in SRS and SBRT, while recognizing high calibre of practice internationally. The standards-based approach is capable of highlighting outstanding requirements and providing recommendations to enhance both new and established programs.

EP-1922
Comparing MLC positioning errors in Clinac and Truebeam Linacs by analysing log files
J. Olasolo, L. Garcia, J. Gago, A. Vazquez, S. Pellejero, C. Eito, M. Ayala, P. Ensunza
1Clinica IMQ Zorrotzaurre, Radiation Therapy, Bilbao, Spain
2Centro de Investigación Biomédica de La Rioja, Medical Physics, Logroño, Spain
3Complejo Hospitalario de Navarra, Medical Physics, Pamplona, Spain

Purpose or Objective: Log files contain information about Varian accelerators deliveries of dynamic treatments. This information includes actual and expected leaf positions throughout the treatment. Log files have been proposed by several authors to evaluate leaf position errors. In this study, log files of Clinac (dynalogs) and Truebeam (trajectory log files) accelerators have been analyzed to compare leaf positioning errors of dynamic treatments in different generations of clinical linear accelerators.

Material and Methods: More than 30000 log files have been analyzed, coming from four Clinac accelerators (one Trilogy, two Clinac 21EX, one Clinac 2100CD equipped with Millennium 120MLC) and one Truebeam accelerator (Truebeam STx 2.0 equipped with HD 120 MLC) of three different institutions. Analyzed Truebeam log files correspond to VMAT and dIMRT treatments whereas Clinac log files only correspond to dIMRT treatments.

Clinac accelerators control system has approximately a 50ms delay (one control cycle time). At each control cycle, MLC controller computes the planned to the actual positions. But in this comparison, the actual position is delayed 50 ms from the planned one. This effect causes that measured positions appear in dynalogs one cycle out of phase with respect to the planned positions. Therefore, error statistics present an error component proportional to leaf speed. A recent research of our group has studied this effect and, as a result, we have proposed to calculate error statistics without time delay effect to evaluate the MLC positioning deviations. In Truebeam accelerators this effect does not exist due to the proactive design of the MLC control system.

Leaf positioning RMS errors and 95th percentile errors were calculated to evaluate MLC positioning performance with and without time delay effect. Log files were analyzed using an in-house Matlab program.

Results: In Clinac accelerators, the mean RMS error was 0.35, 0.34, 0.33 and 0.29 mm for each linac. The mean 95th percentile error was 0.62, 0.61, 0.62 and 0.58 mm. Without time delay effect, the mean RMS error was 0.046, 0.043, 0.040 and 0.026 mm for each linac. The mean 95th percentile error was 0.07 mm. For IMRT treatments, the mean RMS error and the mean 95th percentile were 0.027 mm and 0.052 mm.

Conclusion: Truebeam MLC positioning errors are substantially lower than those of Clinac machine models, mainly due to the proactive design of Truebeam control system. However error statistics without time delay effect in Clinac machines, have the same order of magnitude of Truebeam ones.

EP-1923
Regular assessment of isocentre and positioning accuracy in image guided stereotactic radiotherapy
C. Heinz, S. Neppel, W. Haimert, C. Belka, M. Reiner
1Ludwig-Maximilians-University, Department of Radiation Oncology, Munich, Germany

Purpose or Objective: As the number of stereotactic radiotherapy applications is increasing and image guided techniques are superseding frame based solutions in cranial as well as in extracranial stereotactic applications the need to include imaging and positioning devices in the regular quality management is obvious. A very common test to check the deviation between the radiation isocentre and the room lasers is the Winston-Lutz test. However, this test lacks significance in combination with image guided stereotactic treatment since the patient is positioned by the image guidance devices rather than by the room lasers. The purpose of this project was, to implement a practical workflow to assess the isocentre and positioning accuracy of image guided stereotactic applications.

Material and Methods: The concept of our approach is based on the Winston-Lutz test except that positioning is done automatically by the image guidance devices rather than by the room lasers. Therefore a pelvis phantom including a metal sphere is roughly positioned on the treatment couch. By the use of an image guidance device (e.g. CBCT, non-coplanar imaging) translational and rotational correction values are acquired and sent to a 6-DOF robotic couch. After the phantom position is adjusted by movements of the robotic couch, the metal sphere inside the phantom should be positioned exactly at the radiation isocentre of the linear accelerator. The result of the image guided positioning is recorded by portal images. For this purpose a small radiation field (2x2 cm²) is applied from up to 8 different gantry angles. Afterwards the radiation field isocentre, the isocentre position of the metal sphere as well as the deviation is calculated by a software that was developed in-house.

Results: This end-to-end test provides quantitative information on the achievable positioning accuracy of an image guided stereotactic application in the clinical situation. Besides, the deviations of the radiation isocentre from the mechanical isocentres of the gantry, collimator and couch can be analyzed using the same setup. The test is not restricted to a specific image guidance modality.

Conclusion: A regular assessment of all systems included in stereotactic patient positioning is highly recommended. Due to the short execution time this test is suitable for regular assessments in the QA routine.

EP-1924
Implementation of a safety checklist to improve quality and safety of physician plan review process
L. Fong de los Santos, S. Park, K. Olivier
1Mayo Clinic, Radiation Oncology, Rochester, USA

Purpose or Objective: The physician review of the treatment plan upon completion by the treatment planner is a critical clinical process, since it is during this exchange where the physician verifies and confirms the treatment intent. Several near misses in our practice raised the awareness of our group regarding the quality and safety of this process. Moreover, there was no standardization of the review process and no additional safety barrier to detect if the prescription defined by the physician matches the treatment intent. Our goal is to use a safety checklist to improve the quality and safety as