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We introduce the notion of an edge-end and characterize those countable graphs
which have edge-end-faithful spanning trees. We also prove that for a natural class
of graphs, there always exists a tree which is faithful on the undominated ends and
rayless over the dominated does. � 1997 Academic Press

1. INTRODUCTION

The notion of ends��equivalence classes on the set of rays (one-way
infinite paths)��of a graph is one of the most studied topics in infinite
graph theory. An introduction to this theory and basic results can be found
in Halin [3]. Halin defined two rays to be equivalent if no finite set of
vertices can separate an infinite part of the first ray from an infinite part of
the second one. In particular, Halin proved that in a countable connected
graph G, the end-structure can be represented by a kind of spanning tree
that he called faithful. Such a tree is defined by the property that from any
given end of G it contains exactly one ray originating at x, for any
x # V(G)).

A natural and, as will be seen in this paper, very useful property of ends
is the domination property. An end : is dominated if for some ray R (and
so for all rays) in : there exists a vertex x which cannot be separated from
an infinite part of R by any finite set of vertices. Intuitively, undominated
rays are those one normally has in mind when thinking about infinite paths
as ``going to infinity,'' whereas dominated rays appear to be ``trapped'' by
the vertices that dominate them (and thus are not ``really'' rays).
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In this paper we study the end-structure in the case where ray equiv-
alence is defined in terms of edge-separation instead of vertex-separation.
That is, two rays will be edge-equivalent if no finite set of edges can
separate an infinite part of the first one from an infinite part of the second
one. The resulting equivalence classes will be called edge-ends (or E-ends).
In order to distinguish edge-ends from the ends defined by Halin, we shall
refer to the latter as vertex-ends (or V-ends). Further, we shall speak of
V-domination instead of domination, and, by analogy, we shall define
E-domination in terms of separation by finite sets of edges rather than
vertices. Edge-ends appear to have a more ``stable'' structure with respect
to the domination property in the sense that unlike in the case of
V-domination and vertex-ends, there is an intimate relationship between
E-equivalent rays and their E-dominating vertices.

Unfortunately, even for countable graphs, edge-end structure cannot
always be represented by an E-faithful spanning tree (see Figure 1 for a
counterexample). The main result of this paper (Theorem 5) gives a
characterization of graphs having an E-faithful spanning tree. In fact, we
give three equivalent characterizations of such graphs, the most natural
one being what we call end-correlatedness, meaning that the relations of
V-equivalence and E-equivalence coincide on V-undominated rays. As for
the proof of our main result, we have been unable to make use of the type
of argument used by Halin in the vertex case. We have shown instead that
the existence of an E-faithful spanning tree is closely related to the existence
of another type of spanning tree (called U-faithful) in graphs containing no
E-dominated V-undominated rays. Such spanning trees represent the
vertex-end structure of the V-undominated rays only; no V-dominated
end may have a ray in a U-faithful subgraph.

Ends which are V-undominated are in a sense inevitable: we show that
any spanning tree of any connected graph (possibly uncountable) must
contain at least one ray from every V-undominated vertex-end. U-faithful
spanning trees are therefore the ``as rayless as possible'' spanning subgraphs.

Again, not all countable graphs have U-faithful spanning trees (see [4]
for counterexamples). However, we prove that they exist for countable
graphs having no E-dominated V-undominated rays (Theorem 4). In view
of the connection between E-faithful spanning trees and E-faithful spanning
trees mentioned earlier, Theorem 4 is the key element in the proof of
Theorem 5.

2. PRELIMINARIES

For the purposes of this paper we assume all graphs to be infinite,
connected and simple, unless otherwise stated. A ray in a graph is a one-way
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infinite path [ai : i<|]. Each sub-path [ai : j�i<|] will be called a tail
of the ray.

Let G be an infinite graph and let P and Q be two rays in G. We say that
P and Q are vertex-equivalent [edge-equivalent], denoted by Ptv [PtE q],
if for any finite set of vertices [edges] S, some tails of P and Q lie in the
same component of G&S[G"S]. Here G&S is the graph obtained from
G by the removal of the vertices of S and all incident edges in the case
where S is a set of vertices; while G"S is obtained by the removal of all
edges of S (retaining all vertices), in the case where S is a set of edges.
For a subgraph H of G, G&H and G"H denote G&V(H) and G"E(H),
respectively.

We note that both tv and te are equivalence relations. The equivalence
classes are called ends if no confusion is likely, otherwise we speak of
vertex-ends and edge-ends. The set of vertex-ends of a graph G is denoted
by V (G), the set of edge-ends by E (G). If P and Q are not equivalent, then
there is a finite set S of vertices [or edges] which separates tails of P
and Q. In this case we also say that S separates P and Q.

We note that two vertex-equivalent rays are also edge-equivalent (and,
hence, every edge-end is a union of vertex-ends) but that the converse
is usually false, see Figure 1. There is a close relationship between

Fig. 1. The rays P, Q and the Ri 's are edge-equivalent but not vertex-equivalent. Such
a graph cannot have an E-faithful spanning tree since any spanning tree must contain two
disjoint edge-equivalent rays, the first one being vertex-equivalent in G to the ray P and the
second one vertex-equivalent to the ray Q.
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edge-equivalence in G and vertex-equivalence in its line-graph, as given by
the following lemma. Let L(G) be the line-graph of G and let P be a ray
in G. Then L(P) is the ray in L(G) defined by the edges of P.

Lemma 1. Let P and Q be rays in an infinite graph G and let L(G) be
the line-graph of G. Then P and Q are edge-equivalent in G if and only if
L(P) and L(Q) are vertex-equivalent in L(G).

Proof. Clearly a finite set S of edges of G separates tails of P and Q if
and only if S, viewed as a set of vertices of L(G), separates tails of L(P)
and L(Q). K

Vertex-equivalence is a concept much studied since its introduction by
Halin [3]. Halin's paper gives��among many other things��a characteriza-
tion of vertex-equivalent rays. Two rays P and Q are vertex-equivalent in
G if and only if there are infinitely many pairwise (vertex-) disjoint paths
connecting them; trivial (one-vertex) paths are allowed. We shall give an
analogous characterization of edge-equivalence.

Let X and Y be disjoint sets of vertices in a graph G. An XY-path P is
a path whose one endpoint lies in X and the other in Y. A linking L(X, Y )
between X and Y is an infinite set of pairwise edge-disjoint XY-paths.
A linking L(X, Y ) is X-strong (respectively Y-strong) if all endpoints of its
paths which belong to X (respectively Y) are distinct. If a linking is both
X-strong and Y-strong, we simply say that it is a strong linking. Clearly,
if L(X, Y ) is a strong linking then both X and Y are infinite. For
convenience, we shall abreviate L(V(H), V(K)) by L(H, K) when H and K
are two subgraphs of G and [x] by x.

Strong linkings are related to edge-equivalence in the following way.

Lemma 2. Two rays P and Q in G are edge-equivalent if and only if there
is a strong linking L(P, Q).

Proof. It is obvious that Pte Q when there is a strong linking L(P, Q).
On the other hand, the construction of such a linking is straightforward
when Pte Q. First take any PQ-path, say W1 . Since Pte Q, we have that
the tails of P and Q lie in the same component of G"W1 ; let us take in
G"W1 any PQ-path, say W2 which does not have the same endpoints as
W1 . Again, E(W1 _ W2) cannot separate tails of P and Q, and so we may
choose any PQ-path W3 in G"(W1 _ W2) which does not have the same
endpoints as W1 and W2 . Continuing in this manner ad infinitum will give
the desired strong linking. K

One might think that problems of edge-equivalence reduce simply to
those of vertex-equivalence. This, however, is not the case: there are rays
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in line-graphs which do not correspond to rays in the original graphs.
Consider, for example, an infinite star and its line graph.

The ideas of quotient of a graph and of vertex-domination, as used in
[4] and [8] for problems on vertex-equivalence, turn out to be useful in
the present setting together with the notion corresponding to domination
for edge-end.

Let H be a spanning subgraph of G (possibly with isolated vertices), and
let K any subgraph of G. We denote by K�H the graph whose vertex set is
the set of all connected components of H meeting K and where H0 H1 is an
edge of K�H if and only if H0 {H1 and there exists an edge of K incident
with both a vertex of H0 and a vertex of H1 . The graph K�H is called the
quotient graph of K by H (or, as in [8], the contraction of K along H). Note
that we will not always require that H be spanning since the completion
to a spanning subgraph will canonically be assumed by adding isolated
vertices to H.

A ray P is said to be V-dominated [E-dominated] in G if there exists a
vertex x # V(G) which cannot be separated from a tail of P by the removal
of finitely many vertices of V(G)"[x] [finitely many edges of G] or, equiv-
alently, if there is a linking L(x, P) whose paths pairwise intersect in x only
[which is strong on V(P)]. If P is a ray V-dominated [E-dominated] by
x and if Qtv P [Qte P], then so is Q. This allows us to say that a
(vertex- or edge-) end is dominated whenever one ray of it is. We shall also
say that a vertex-end is strictly edge-dominated, or, simply, strictly dominated,
if it is E-dominated but not V-dominated.

Note that it is immediate from the definition of V- and E-domination
that if a vertex V-dominates some vertex-end :, then it will E-dominate the
edge-end which contains :.

Remark 1. There is an important distinction between V-domination
and E-domination in the sense that a vertex can E-dominate at most
one edge-end, whereas the number of V-dominated vertex ends can be
arbitrarily large. The reason for this is an underlying transitivity between
E-equivalent rays, their E-dominating vertices and the vertices infinitely
linked to them.

The close relationship between edge-equivalence in a graph G and
vertex-equivalence in its line graph also extends to E-domination in G and
V-domination in L(G), as shown in the following lemma.

Lemma 3. Let G be a graph and P a ray of G. Then P is E-dominated
in G if and only if L(P) is V-dominated in L(G).

Proof. If a vertex x E-dominates P in G, then it is easy to see that any
edge e incident with x will V-dominate L(P) in L(G). Indeed, if we
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cannot separate x from a tail of P by deleting finitely many edges of G we
will also be unable to separate the vertex e from a tail of L(P) by deleting
finitely many vertices of L(G). On the other hand, if L(P) is V-dominated
by some e=xy # V(L(G)), any infinite family of e L(P)-paths of L(G),
pairwise intersecting in e only, will induce an infinite family of finite
pairwise edge-disjoint connected subgraphs of G, each of which contains at
least one of the vertices x, y and at least one edge of P. Without loss of
generality suppose that x belongs to infinitely many of these subgraphs.
Construct a linking L(X, P) which is strong on P by choosing a path from
each of infinitely many of these subgraphs in such a way that their
endpoints on P are distinct. K

The end structure of a graph (see [1] for an excellent survey) is best
studied by considering a faithful representation of it in a simpler subgraph.
More precisely, a subgraph H of a graph G is called V-faithful [E-faithful]
if there is a bijection f : V (H) � V (G)[ g : E (H) � E (G)] such that for
every : # V (H) [; # E (H)] we have :� f (:)[;�g(;)]. The faithful
subgraphs most frequently studied are trees.

For vertex-ends, Halin showed that for countable graphs such a
representation in simpler subgraphs always exists.

Theorem (Halin [3]). Every countable graph has a V-faithful spanning
tree.

There is also the following result which characterizes the existence of a
rayless spanning tree (i.e., a subgraph representing no end at all).

Theorem (Polat [5] and S8 ira� n� [8]). A countable graph G has a rayless
spanning tree if and only if every ray in G is V-dominated.

3. DOMINATION PROPERTIES

As we shall see, rays that are not V-dominated (shortly, V-undominated
rays) play a prominent part in the existence of spanning trees with some
specific properties. One of the best examples of this fact is the following
lemma of [4]. We give here a different, more direct, proof.

Lemma 4. Let G be a connected graph, T a spanning tree of G. Then T
contains a ray of any given V-undominated vertex-end of G.

Proof. Fix x0 # V(G), take any V-undominated ray R=x0 x1 . . . of G
and define T0 as the subtree of T which is the union of all x0R-paths in T.
We claim that T0 is locally finite. By way of contradiction, suppose that
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there exists a vertex x of infinite degree in T0 and let T1=T0&[x]. Since
T0 is a tree, T1 must have infinitely many connected components, one for
each edge of T0 incident with x. By the construction of T0 we have that
every component of T1 must contain a vertex of R. Hence it is easy to
construct a linking L(x, R) whose paths pairwise intersect on x only, which
contradicts the fact that R is not V-dominated. The tree T0 is therefore
locally finite and, since it is infinite, it must contain a ray, say R0 . Now,
R0tv R in G, because by the construction of T0 , any finite subset of V(T0)
can be included in a finite union of xR-paths in T. Thus such a finite subset
can only separate the vertices of a tail of R from a finite subgraph of T0

whereas R0 is an infinite subgraph of it. K

An interesting and useful consequence of Lemma 4 is:

Corollary 1. Let A be an infinite set of vertices of a connected graph G.
Then there exists either a vertex x # V(G) and a linking L(x, A) inter-
secting at x only, or a ray R and a linking L(R, A) consisting of pairwise
vertex-disjoint ( possibly trivial ) paths.

Proof. Construct a graph H by adding to G a ray Q whose vertex set
is contained in A and which is edge-disjoint from G. Note that H might
have multiple edges. Let T be a spanning tree of G or equivalently a spanning
tree of H containing no edge of Q. If Q is V-dominated by a vertex x in
H, there exists a linking L(x, Q) by paths of G pairwise intersecting in x
only, and since V(Q)/A we are done. On the other hand, if Q is not
V-dominated in H, then, applying Lemma 4, we have that T must contain
a ray R which is vertex-equivalent to Q in H, and hence there must exist
a linking L(R, Q) consisting of pairwise disjoint paths of G. K

Restricting graphs to those having only one edge-end, Lemma 4 and
the theorem of Polat�S8 ira� n� [5, 8] provide a solution to our E-faithful
spanning tree problem.

Proposition 1. Let G be a countable connected graph with precisely one
edge-end. Then G has an E-faithful spanning tree if and only if all
V-undominated rays are vertex-equivalent.

Proof. If G contains two V-undominated rays which are not vertex-
equivalent, then by Lemma 4 any spanning tree has two disjoint rays and
hence cannot be E-faithful in a one-edge-ended graph. On the other hand,
take any ray P (V-undominated if such exist, arbitrary otherwise), and
observe that in G�P all rays are V-dominated. By the theorem of Polat�
S8 ira� n� [5, 8], G�P has a rayless spanning tree T� . Let x=P�P and for each
edge xy # E(T� ) let zy be one of the neighbours of y in P. The spanning tree
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T of G obtained from T� by replacing x by P and each edge of the form xy
in T� by the edge zyy in G, has the required properties.

It is important to note that the above proposition does not extend to
uncountable graphs. This is witnessed by the example constructed by
Seymour and Thomas [7] which provides a negative solution to Halin's
problem [3] of the existence of a V-faithful spanning tree in general (see
also Thomassen [9]).

If we now try to generalize the condition of Proposition 1 to arbitrary
graphs we are naturally led to the following definition.

Definition 1. A graph G is end-correlated if any two edge-equivalent
V-undominated rays of G are vertex-equivalent; that is, if

Pte Q � Ptv Q

for any two V-undominated rays P and Q of G.

In other words, G is end-correlated if and only if every edge-end contains
at most one V-undominated vertex-end.

As an immediate consequence of Lemma 4, we have the following.

Proposition 2. A graph containing an E-faithful spanning tree is
end-correlated. K

In fact (as we will show in Theorem 5), for countable connected graphs,
end-correlation is not only a necessary condition but it is also sufficient.
However, before proving Theorem 5, we introduce some further concepts
which will turn out to be equivalent to end-correlation. The first of these
generalizes the example of Figure 1.

A caterpillar is a connected graph G containing a sequence [Hi]i # Z of
(not necessarily connected) subgraphs whose union is G and such that for
any two distinct integers i, j # Z

1. Si=V(Hi) & V(Hi+1) is a finite set;

2. V(Hi) & V(Hj)=< if |i& j |�2;

3. there is a sequence of vertices (xi) i # Z , xi # Si such that each Hi

contains a linking L(xi&1 , xi).

If G contains such a sequence indexed only by non-negative integers we
call it a half-caterpillar. Clearly, a caterpillar is also a half-caterpillar but
the converse is not true. Observe that since G is connected the sets Si must
be non-empty and hence are necessarily cutsets separating �j�i V(Hj )
from �j>i V(Hj ).

The following result relates caterpillars to contraction and domination.
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Proposition 3. Let P and Q be disjoint edge-equivalent rays in a graph
G such that P is not V-dominated in G�Q. Then G is a half-caterpillar.

Proof. Observe first that P and Q cannot be in the same vertex-end,
otherwise the vertex xQ obtained by contracting Q V-dominates P in G�Q.
Therefore, there is a finite vertex cutset S0 which separates P and Q. Let
G1 be the component of G&S0 that contains a tail of P and let G1* be the
subgraph of G induced by the vertex set V(G1) _ S0 . Moreover let
H0=G&G1 ; observe that S0=V(H0) & V(G1*).

Since Pte Q, there is a strong linking L(Q, P), by Lemma 2. This link-
ing squeezes infinitely many edge-disjoint paths through a finite set S0 of
vertices. Consequently, there exists a vertex x0 # S0 and a linking
L0=L(x0 , P) (considered as a subgraph of L(Q, P)) in G1* such that the
set of its endpoints on P is infinite. Let W1 /V(G1) be the set of all
neighbours (that belong to G1) of vertices of S0 . This set is also infinite,
since L0 is (and our graphs do not have multiple edges). We may suppose
that W1 is disjoint from a tail of P since otherwise some vertex in S0 would
V-dominate P.

We observe that in G1 there is a finite cutset S1 separating W1 from a
tail of P (indeed, in the contrary case we would have an infinite set of
mutually vertex-disjoint W1 P-paths in G1 , and consequently some vertex
in S0 would V-dominate P). Now, the linking L0=L(x0 , P) squeezes an
infinite number of edge-disjoint x0 P-paths through the finite set S1 . It
follows that there exists a vertex x1 # S1 and a linking L(x0 , x1) which is
a subgraph of L0 (and hence a subgraph of G1*).

Let G2 be the component of G1&S1 containing a tail of P and let
H1=G1*&G2 . (Note that S0=V(H0) & V(H1).) Clearly, the linking
L(x0 , x1) is contained in H1 . At the same time we see that, by the finiteness
of S1 , the linking L0 necessarily contains (as a subgraph) linking L1=
L(x1P) with an infinite set of endpoints on P.

This construction can be repeated, mutatis mutandis, to obtain the
subgraphs Hi , the finite cutsets Si=V(Hi) & V(Hi+1) and the linkings
L(xi&1 , xi), xi # Si for i=2, 3, . . . starting with Si&1 in place of S0 and
defining Li&1=L(xi&1 , P), Wi , Hi , Gi* and the linkings L(xi&1 , xi) along
the way so that all the conditions from the definition of a half-caterpillar
are satisfied. Thus, G is a half-caterpillar, as claimed. (Moreover, as a
by-product we see that our construction guarantees that the ray P is
vertex-equivalent to any ray that passes through the vertices xi for infinitely
many i>0.) K

We will say that a graph G has the symmetric domination property if for
any two disjoint edge-equivalent rays P and Q either P is V-dominated in
G�Q or Q is V-dominated in G�P.
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Proposition 4. Let G be a graph with the symmetric domination property.
Then in every edge-end : of G there is a ray Q: such that every ray in :
disjoint from Q: is V-dominated in G�Q: .

Proof. Let : be an edge-end of G and let Q # : be a ray. Assume that
there is another ray P # :, disjoint from Q, which is not V-dominated in
G�Q. Fix such Q and P ; by the symmetric domination property, Q is
V-dominated in G�P. Let R be an arbitrary ray in : disjoint from P. We
claim that R is V-dominated in G�P, which will prove the Proposition with
Q:=P. Clearly, the claim is true if Rtv Q because Q, an hence R, is
V-dominated in G�P.

The facts that P, Q # : and that P is not V-dominated in G�Q imply (by
Proposition 3) that G is a half-caterpillar. A half-caterpillar admits
infinitely many ways of choosing the subgraphs, cutsets and linkings for its
description. In what follows we assume that the subgraphs Hi and the finite
cutsets Si=V(Hi) & V(Hi+1), i�0 are exactly the ones given by the
construction in the proof of Proposition 3. Thus, we assume that the ray
Q is contained in H0 whereas the say P is the one which intersects every Si ,
i>0. We will consider two cases.

1. First assume that the vertices of a tail of R lie in some Hi , i�0.
If R is not V-dominated in G�P then, by the symmetric domination
property, P is V-dominated in G�R. But then, since P intersects every Si ,
the infinitely many paths of domination would have to pass through the
finitely many vertices of the two cutsets Si&1 and Si (or, just S0 if i=0),
which is impossible.

2. If no tail of R lies in some Hi then R intersects infinitely many of
the Hi 's. Then R also intersects infinitely many cutsets Si . Now, by the
construction from the proof of Proposition 3, no finite cutset can separate
R from P, and so P and R are vertex-equivalent. But then clearly R is
V-dominated in G�P (assuming, of course, that P and R are disjoint).

This completes the proof. K

4. END-CORRELATION, CATERPILLARS, AND
SYMMETRIC DOMINATION

In this section we will establish equivalence between the different properties
we have defined previously. As a first result, let us show that end-correlation,
not being a caterpillar and symmetric domination are three aspects of the
same thing, the first being stated in terms of V-dominating vertices, the
second in terms of separators and edge-connectivity, and the third in terms
of quotient graphs.
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Theorem 1. For a connected graph G, the following statements are
equivalent.

1. G is end-correlated;

2. G is not a caterpillar;

3. G has the symmetric domination property.

Note that no assumption is made concerning the cardinality of G.

Proof. 1 O 2. We prove the converse. Let G be a caterpillar and let
(xi) i # Z be the sequence referred to in the definition of a caterpillar. Let P
and Q be two rays in G such that P contains all the xi for i>0 and Q
contains all the xi for i<0. Invoking the properties of a caterpillar, it is
easy to see that P and Q belong to the same edge-end but to different
vertex-ends, and neither of these two vertex-ends is V-dominated in G.

2 O 3. Assume that there are two disjoint edge-equivalent rays P
and Q such that neither is V-dominated by the other in the appropriate
contracted graph. But if P is not V-dominated in G�Q, then G is a half-
caterpillar whose structure (i.e., the subgraphs Hi , cutsets Si=V(Hi) &
V(Hi+1) and linkings L(xi , xi+1) in Hi+1 , i�0) has been described in the
proof of Proposition 3. In particular, adopting the same notation as in that
proof, we may assume that the ray Q is contained in H0 while P intersects
all the Si for i sufficiently large. Since now we also assume that Q is not
V-dominated in G�P, we may switch the roles of P and Q. Using now the
non-positive integers as subscripts, the construction in the proof of
Proposition 3 now endows G with another half-caterpillar structure with
subgraphs H$i , i�0, where H$0 is obtained by deleting from G all vertices
of the component of G&S0 that contains a tail of Q (note that S0 is the
initial cutset separating P from Q). It is a matter of routine to check that
the two half-caterpillars can be combined to form a caterpillar, which
contradicts 2.

3 O 1. Let : be an edge-end of G. For a contradiction assume that :
contains two disjoint rays P and Q such that Pt% v Q and neither is
V-dominated in G. By the symmetric domination property and Proposi-
tion 4, : contains a ray R such that every ray in : disjoint from R is
V-dominated in G�R. If some tails of both P and Q are disjoint from R,
then both P and Q must be V-dominated in G�R by the vertex obtained
by contracting R. But then P and Q are vertex-equivalent in G or one of
them is V-dominated already in G, a contradiction. If, on the other hand
and without loss of generality, P intersects R infinitely often (and hence
Ptv R), then a tail of Q may be assumed to be disjoint from R (otherwise
Qtv Rtv P, contrary to our assumption). Since Q is V-dominated in G�R
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and Pt% v R, Q is also V-dominated in G�P. But then, Pt v Q implies that
Q must already be V-dominated by some vertex on P, again a contradiction.

The proof is complete. K

We also have a similar result involving half-caterpillars.

Theorem 2. A connected graph G is a half-caterpillar if and only if it
contains a strictly dominated end.

Proof. Necessity. Let G be a half-caterpillar and (xi)i�0 the sequence
referred to in the definition. Let P be a ray in G passing through all vertices
xi . Invoking the properties of a half-caterpillar it is easily shown that P is
E-dominated but not V-dominated in G.

Sufficiency. Suppose G is not a half-caterpillar but contains a strictly
dominated ray P. Let x be a vertex which E-dominates P in G. Now take
a ray Q vertex-disjoint from G and construct a new graph G� by attaching
Q to G as follows:

V(G� )=V(G)_* V(Q),

E(G� )=E(G)_* E(Q)_* [ax : a # V(Q)].

Note that since G is not a half-caterpillar, neither is G� . Moreover,
since in G� both P and Q are E-dominated by x, we have Pte Q in G� .
Now applying Theorem 1 and Proposition 4 we obtain that P must be
V-dominated in G� �Q, which is a contradiction since, by construction of G� ,
G� �Q is isomorphic to the union of G with some edge [x, q], q{V(G). K

5. FAITHFULNESS ON V-UNDOMINATED ENDS

A subgraph H of a graph G is called end-preserving if there is an injective
function f : V (H) � V (G), necessarily unique, such that :/f (:) for every
: # V (H). This notion is a generalization of the notion of V-faithfulness,
an end-preserving subgraph being V-faithful if f is also surjective. Both
concepts were introduced by Halin [3]. It follows that an E-faithful sub-
graph H of G is an end-preserving subgraph such that f (V (H)) contains
exactly one vertex-end from each of the edge-ends of G. As in [4] an end-
preserving subgraph H will be called A-faithful, where A/V (G), if
f (V (H))=A, i.e., the ends of G represented in H are precisely those
belonging to A. By Lemma 4 it is easy to see that a necessary condition
for a graph to have an A-faithful spanning tree is that each vertex-end not
in A be V-dominated. The most interesting case, however, occurs when A

is the set of all V-undominated vertex-ends, which we denote by U.
A U-faithful spanning tree is in some sense ``as rayless as possible.''
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Unfortunately, such spanning trees do not always exist even in the countable
case (see [4] for counterexamples). However, as we will prove in Theorem 4,
they exist in countable graphs having no strictly dominated ends. This fact
will lead us to our main theorem, the characterization of countable graphs
having an E-faithful spanning tree (Section 6).

In this section, given any A/V(G), [A, A� ] will denote the set of all
edges having one endvertex in A and the other in A� =V(G)"A.

Definition 2. Given any subgraph H of a connected graph G, a crown
of H is a family (Ki) i # I of pairwise vertex-disjoint connected subgraphs of
G such that

(i) H is vertex-disjoint from Ki for any i ;
(ii) Ci :=[V(Ki), V(Ki)] is finite for any i ;

(iii) any ray of G which is not E-dominated in G by a vertex of H
and not edge-equivalent in G to a ray in H, has a tail in some Ki .

Note that in the preceding definition we did not insist that the set I be
non-empty, and thus we allow also empty crowns (where applicable). For
example, if G is a (connected) graph with no finite edge-cuts and if H is any
connected subgraph of G, then the empty family is a crown of H in G
(because in this case any vertex of H E-dominates any ray in G).

If a crown of a subgraph H exists we say that H is crownable. Intuitively,
a crown presents a means for ``isolating H from'' the edge-ends not in E (H)
which are not E-dominated by any vertex of H. As we will show in the next
result, for connected subgraphs such an ``isolation'' is always possible.

Theorem 3. Any connected subgraph of a connected graph is crownable.

Proof. Let G be a connected graph and H a connected subgraph of G.
We distinguish two cases.

Case 1. H consists of just one isolated vertex u. Let J be the set of all
vertices v # V(G) which are infinitely edge-connected to u (that is, there is
a linking L(u, v)), and J+ the set J together with all its neighbours. Let R

be a maximal set (w.r. to inclusion) of rays emanating from u which are
E-dominated in G by u, and uJ+-paths such that the intersection of any
two members of R is an initial segment of both (the existence of such a
maximal set is obvious). Finally let H� be the subgraph of G induced by u
and the vertices of all paths and rays in R. Let (Ki) i # I be the set of all non-
trivial components of G"H� (that is, no Ki is an isolated vertex). We claim
that (Ki) i # I is a crown of [u].

Note that it is clear that the Ki 's are pairwise disjoint connected sub-
graphs of G, and that condition (i) of the definition of crowns is satisfied,
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because by construction H� contains all the edges incident to u implying
that u is an isolated vertex of G"H� .

Now, suppose for a moment that we have a finite cut set [A, A� ] of G
with u # A� . Then there must exist a finite subset B of R such that

V \ .
R # B

R+$V(H� )"A� .

Consequently (as it can be easily seen), the set V(H� )"A� is necessarily finite.
This analysis quickly implies that for any infinite subset U�V(H� ) there is
a U-strong linking L(u, U). Hence, condition (iii) of the definition of a
crown is satisfied, because any ray not E-dominated by u in G will have a
tail disjoint from H� .

It remains to show that condition (ii) is also satisfied. Suppose by way
of contradiction that there exists an i # I such that Ci :=[V(Ki), V(Ki)] is
infinite. Let X (resp. Y ) be the set of vertices in V(Ki) (resp. V(Ki)) incident
with an edge of Ci (so that Ci=[X, Y]). The fact that Ki is a component
of G"H� implies that Ci is contained in E(H� ) and hence X, Y�V(H� ). Since
Ci is assumed to be infinite, and G has no multiple edges, either X or Y
must be infinite. Observe that since Ki is a non trivial connected component
of G"H� and since H� is an induced subgraph of G, each vertex of X is
adjacent in Ki to a vertex not in H� . Hence, no vertex of X may belong
to J ; otherwise it would be possible to add to R another xJ+-path,
contradicting the maximality. This all implies that X must be infinite.
Indeed, if not, then Y would be infinite and hence there would be a
Y-strong linking L(Y, u) (cf. the remark at the end of the proof of condi-
tion (iii)). Due to finiteness of X, one of its vertices, say y would have
infinitely many neighbours among the endpoints of L(Y, u). Thus y would
be infinitely connected to u, a contradiction to X and J being disjoint.

Because of the fact that X is an infinite subset of V(H� ), there exists an
X-strong linking L(u, X ). Let X$ be the set of all endpoints (in X ) of paths
of L(u, X ). As X$�V(Ki), Corollary 1 implies that in Ki there is either a
vertex z and an X$-strong linking L(X$, z), or a ray R and a strong linking
L(X$, R). In the first case, z must be infinitely edge-connected to u, because
one can construct a linking L(u, z) from L(u, X$) and L(X$, z). In the
second case, the ray R must be E-dominated by u, a V(R)-strong linking
L(u, R) being constructible from L(u, X$) and L(X$, R). In either case we
obtain a contradiction with maximality of R. This shows that (ii) is
satisfied, as claimed.

Hence, (Ki) i # I is a crown of u.

Case 2. H is any connected subgraph of G. W.l.o.g. we may suppose
that no vertex of G&H is adjacent to more than one vertex of H. (If this
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is not the case, just subdivide each edge in [H, H� ] into a path of length
two, obtaining a new graph G$. A crown in G$ of the graph H$ induced by
H and the newly added degree 2 vertices will yield a crown of H in G.)
Now let (K� i) i # I be a crown of the vertex u~ =H�H in G�H. Let (Ki) i # I be
a family of subgraphs of G such that Ki�H=K� i . It is easy to see that the
Ki 's are pairwise vertex-disjoint since so are the K� i 's. Let us show that
(Ki) i # I is a crown of H in G.

Condition (i) is clearly satisfied for any i because H and Ki are
already vertex-disjoint since, the K� i 's being a crown of u~ = H"H, we have
u~ � V(K� i) for any i.

(ii) Ci is finite since by construction no vertex of Ki is incident with
more than one vertex of H, whence there is a canonical bijection from
Ci=[V(Ki), V(Ki )] to the finite subset [V(K� i), V(K� i)] of G�H.

(iii) Given a ray R with no tail in any Ki , let us show that R is either
E-dominated by a vertex of H or edge-equivalent to a ray in H. If R meets
H infinitely often, we are done by Corollary 1. Otherwise we may suppose
that R is disjoint from H, so that the ray R�H is E-dominated by u~ in G�H,
since R�H has no tail contained in a K� i . Let L(u~ , R�H) be a V(R�H)-strong
linking and let L(H, R) be the corresponding linking in G. Then it is easy
to see that if there is an x # V(H) which is the endpoint of infinitely many
paths of L(H, R), then x E-dominates R; if there is no such vertex, then the
set B of endpoints of L(H, B) is infinite and hence by Corollary 1, we have
either a B-strong linking L( y, B) in H for some y # V(H) or a strong link-
ing L(Q, B) for some ray Q in H. In the first case, y must E-dominate R
in G ; in the second case, Q must be edge-equivalent to R in G. This
completes the proof. K

Before proceeding, let us state a lemma which slightly generalizes the
Polat�S8 ira� n� theorem [5, 8]; we omit the proof which is very similar to the
ones given in [5, 8].

Lemma 5. Let G be a countable graph in which every ray is dominated.
Then each rayless tree of G can be extended to a rayless spanning tree
of G. K

The next result can be viewed as a generalization of the preceding
lemma.

Lemma 6. Let G be a countable graph with no strictly dominated ends.
Let T be any rayless tree of G and let (Ki) i # I be a crown of T. Then there
exists a rayless tree T $ containing T and such that

1. �i # I V(Ki)�V(T $);
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2. all endvertices of edges in Ci :=[V(Ki), V(Ki)] are in T $ for any i ;

3. for any i # I there exists a unique edge ei # Ci which separates
T $ & Ki from T in T $.

Proof. Choose a spanning tree Fi in each Ki and let F be the spanning
forest of G for which E(F )=� i # I E(Fi) (that is, all vertices of V(G)"
�i # I V(Ki) are isolated in F ). Because T is vertex-disjoint from every Ki ,
the contracted graph T�F is isomorphic to T. Moreover, since T is rayless
and crowned by (Ki) i # I , any ray of G having no tail in any Ki must be
E-dominated (and hence V-dominated) in G. This implies that every ray
of G�F is V-dominated, and so, by Lemma 5, G�F contains a rayless spanning
tree, say U� , such that T�F�U� .

Now for any xy # E(G�F ) fix an edge exy of E(G) connecting the
component x of F to the component y of F, and let U be the subgraph
induced by [exy : xy # E(U� )]. Note that T�U since T�F�U� , and that U
contains no edges of the Ki 's. Finally for any i # I take a finite Ti �Ki

containing all the vertices incident with Ci and let T $=U _ �i # I Ti .
Observe that each vertex Ki of U� lifts to the corresponding Ti in T $ in

such a way that acyclicity and connectedness is carried over from U� to T $.
Due to the fact that the Ti 's are finite (and hence rayless), no rays are
introduced by the lifting, i.e., T $ is rayless as well.

For the same reasons, conditions 1 and 2 are satisfied. Finally, if condi-
tion 3 fails for some i # I, then, as T is connected, there would be a cycle
in U� containing the vertex Ki and intersecting T�F, a contradiction. K

Before presenting the last (and most important) result of this section, we
recall that we denoted by U the set of all V-undominated vertex-ends of
a graph G.

Theorem 4. Any countable connected graph G without strictly dominated
rays has a U-faithful spanning tree.

Proof. By induction, we construct two sequences (Tn)n�0 , (T +
n )n�0 of

rayless trees in G such that Tn �T +
n , as well as a crown Kn of T +

n , for
each n.

Pick any vertex x0 of G. Let T0=[x0], let T +
0 be the (rayless) tree

whose vertices are x0 and its neighbours in G, and let K0 be any crown of
T+

0 . Suppose Tn , T +
n and Kn have already been constructed. Let Tn+1 be

any tree containing T +
n and having properties 1, 2 and 3 of Lemma 6 with

respect to Kn , and let T+
n+1 be any rayless tree containing Tn+1 such that

V(Tn+1) consists of the vertices of Tn and all their neighbours. Let Kn+1

be a crown of T +
n+1. It is clear from the construction that (Tn)n�0 is a

nested sequence. We claim that T :=�n�0 Tn is a U-faithful spanning tree.
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Note that, by construction, T is clearly a spanning tree, hence we only
have to show that

(a) any V-undominated end of G has a ray in T ;

(b) no ray of T is V-dominated in G;

(c) T is end-preserving; since T is a tree, this is equivalent to showing
that any two disjoint rays of T are vertex-inequivalent.

(a) This a direct consequence of Lemma 4 (because T is a spanning
tree).

(b) Let : be a V-dominated end and suppose by way of contradiction
that : contains a ray R which belongs to T. Let x be a vertex that
V-dominates R, and let n be any integer such that x # V(Tn). Note that
x � V(K) for any K # Kn . Therefore, and because CK :=[V(K), V(K)] is
finite, for any K # Kn each K� contains some tail of R. Hence R meets Tn+1

infinitely often, which implies that R _ Tn+1 will contain a cycle, since
obviously R cannot lie in the rayless tree Tn+1. Therefore T must also
contain a cycle since it contains both R and Tn+1, a contradiction.

(c) Let P, P$ be two disjoint rays of T and let Tn be any tree of the
nested sequence, containing initial segments of both P and P$. As proved
in (b), P and P$ are not V-dominated in G, and since Kn is a crown of T +

n ,
a tail of P (resp. P$) is contained in some K # Kn (resp. K$ # Kn). Note that
by our construction there is a unique edge in CK=[V(K), V(K)] (resp.
CK$=[V(K$), V(K$)]) separating Tn from Tn+1 & K (resp. Tn+1 & K$) in
Tn+1. This, together with the fact that the endpoints of the edges in CK and
CK$ are in V(Tn+1), and the disjointness of P and P$, implies that K{K$.
Therefore CK separates a tail of P from a tail of P$ in G, forcing their edge-
inequivalence and a fortiori their vertex-inequivalence. The proof is
complete. K

6. E-FAITHFUL SPANNING TREES

We can now prove the main result of the paper.

Theorem 5. Let G be a countable connected graph. Then the following
are equivalent.

1. G has an E-faithful spanning tree;

2. G is end-correlated ;

3. G has the symmetric domination property;

4. G is not a caterpillar.
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Proof. By Theorem 1 and Proposition 2, we only have to show that
2 O 1. Assume that G is end-correlated and let (:i) i # I be the set of all
E-dominated edge-ends of G. Note that since G is countable and since
(by Remark 1) a vertex can E-dominate at most one edge-end, I must also
be countable. Moreover, as G is end-correlated, at most one vertex-end of
each :i is not V-dominated. Let (Ri) i # I be a family of pairwise vertex-
disjoint rays such that Ri # :i for any i, and choose Ri to be V-undominated
whenever V-undominated rays exist in :i .

For each i # I introduce a new vertex zi ( � V(G)) and define a graph G�
as follows:

V(G� )=V(G) _ [zi : i # I ],

E(G� )=E(G) _ [xzi : i # I and x # V(Ri)].

Claim 1. The inclusion G�G� is V-faithful. In other words,

(a) any ray in G� is vertex-equivalent to some ray in G, and

(b) two rays in G are vertex-equivalent in G if and only if they are
vertex-equivalent in G� .

To prove (a) note that for any ray R� in G� , the subgraph R of G obtained
from R� by replacing for each zi # V(R� ) the two edges xzi and zi y of E(R� )
by the xy-path in Ri , is a connected infinite, locally finite graph and any
ray contained in R intersects R� infinitely often.

The sufficiency part of (b) is a direct consequence of the fact that G�G� .
To prove the necessity, take any two rays R and Q in G, which are vertex-
equivalent in G� , and let L(R, Q) be a linking consisting of pairwise disjoint
paths of G� . Denote the paths of the linking by (P� k)k�0. Let Pk be the
subgraph of G obtained from P� k by replacing, for each zi # V(P� k), the two
edges xzi and zi y of E(P� k) by the xy-path in Ri . Note that Pk is connected
and contains the endpoints of P� k since P� k is a (V(R), V(Q))-path and R,
Q�G. Therefore, there exists a path Qk in Pk which has the same endpoints
as P� k . Note that the Qk 's are not necessarily pairwise disjoint but that at
most two of them can meet in any given x # V(G), and, moreover, that the
common vertex x must belong to some Ri (this follows immediately from
the construction of the Qk 's and the fact that the P� k 's are pairwise
disjoint). It is now a matter of routine to construct (out of the Qk 's) a linking
L$(R, Q) of pairwise vertex-disjoint paths of G, which establishes
V-equivalence of R and Q in the graph G.

Claim 2. No Vertex-End of G� Is Strictly Dominated. Suppose this is not
the case. As we have already shown that G is V-faithful in G� , and since all
rays in the E-dominated ends in G (the :i 's) are V-dominated in G� ,
a strictly dominated end in G� must be E-undominated in G. Take a
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strictly dominated ray R in G� (which, as we have just seen, is necessarily
E-undominated in G). By the V-faithfulness of G we may suppose R�G.
Let L(x, R) be any V(R)-strong linking in G� .

If x # V(G), then as in the proof of the preceding claim, we can construct
a V(R)-strong linking L$(x, R) in G, contradicting the hypothesis that R is
E-undominated in G. On the other hand, if x=zi for some i # I, then in
view of the definition of G� , we obtain a strong linking L(Ri , R) by remov-
ing the vertex zi from each path of the linking L(zi , R). Hence Ri te R, and
by the V-faithfulness of G in G� , we have that R # :i , again a contradiction
with the fact that R is not E-dominated in G. This completes the proof of
Claim 2.

By Theorem 4, G� contains a U-faithful spanning tree T� , where U is now
the set of all V-undominated vertex-ends of G� . Let T :=T� & G and
H :=T _ �i # I Ri .

To complete this proof we only have to show that H is an E-faithful
connected spanning subgraph of G, because then any V-faithful spanning
tree of H is also an E-faithful spanning tree of G. Note that a V-faithful
spanning tree in H always exists since H is countable; see Halin [3]. Since
H is clearly a connected spanning subgraph of G, we only have to show
that every edge-end has a ray in H and that any two rays of H that are
edge-equivalent in G are edge-equivalent in H. Instead, we prove the
following assertion (which appears to be stronger compared to what we
need but actually is equivalent to it, see Diestel [2]):

every edge-end ; has a ray in H that meets all the other rays of ; that are
in H.

Case 1. ;=:j for some j # I. By way of contradiction, suppose there
exists a ray R in H that is edge-equivalent to Rj but disjoint from it. Since
such an R is edge-inequivalent to all Ri 's, i # I"[ j], R can meet each of
these Ri 's at most finitely many times. Observe that each edge e # E(R)"
E(T� ) belongs to a unique Ri for some i=i(e). Let R� be the subgraph of T�
obtained from R by replacing each edge e=xy # E(R)"E(T� ) by the two
edges xzi and zi y where i=i(e). Clearly, R� is connected, infinite and locally
finite, and moreover, by the construction of G� and T� , any ray R$�R� is
vertex-equivalent to R and disjoint from Rj . Since R$ is contained in T� ,
which is U-faithful in G� , R$ and hence R are V-undominated in G� and a
fortiori so is R in G.

By our assumptions, R and Rj are edge-equivalent in G. Moreover, as
has just been proved, R is V-undominated in G. However, by the choice
of the Ri 's, the ray Rj is V-undominated in G as well. Invoking end-
correlation of G, it follows that Rtv Rj in G and therefore also R$tv Rj

in G� . But then R$ would be V-dominated in G� by zj , contrary to what we
obtained in the preceding paragraph.
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Case 2. ;{:i for all i # I. First note that by Lemma 4, ; must contains
a ray R in H because as ;{:i for all i # I, it can not be E-dominated in
G and therefore it does not contains V-dominated vertex-end. By way of
contradiction, suppose that ; contains an other ray Q, disjoint from R but
still contained in H. Note that since in this case is E-undominated in G,
both R and Q are E-undominated and a fortiori V-undominated in G.
Therefore, since G is end-correlated, we have that Rtv Q in G.

Similarly to Case 1, let R� (resp. Q� ) be the subgraph of T� obtained by
replacing each edge xy in E(R� )"E(T� ) (resp. E(Q� )"E(T� )) by the edges xzi

and zi y. Take two rays R$�R� and Q$�Q� . As in the preceding case we
have R$tv Q$, Qtv Q (in G� ). Therefore, since Rtv Q in G (and hence in
G� ) we have R$tv Q$ in G� . Since R$ and Q$ are contained in the U-faithful
tree T� , it follows that a tail of Q$ is contained in R$. But according to our
construction, R$ and Q$ can meet in the zi 's only, and hence must be edge-
disjoint, the zi 's being by construction pairwise non-adjacent. This
contradiction completes the proof. K
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