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In contrast to their (oxa)norbornenyl counterparts, cyclobutenyl derivatives have remained
relatively unexplored in ring-opening metathesis polymerization (ROMP), despite ROMP of
cyclobutene derivatives yields unsaturated polymers based on a strictly 1,4-polybutadiene
backbone that is not easily attainable by other routes. This article summarizes work done
in our group in the field of cyclobutenyl-capped macromonomers that are convenient
building blocks for the synthesis of graft (bottle-brush) copolymers by ROMP via the so-
called macromonomer (or grafting-through) route. Synthetic strategies employing orthog-
onal chemistries such as reversible deactivation radical polymerization techniques (atom
transfer radical polymerization – ATRP, and reversible addition-fragmentation chain
transfert (RAFT) polymerization) and recent developments using copper-catalyzed
azide–alkyne cycloaddition click chemistry are highlighted. Furthermore, ROMP of the
so-obtained macromonomers, including preliminary novel results regarding ROMP of
cyclobutenyl-capped macromonomers prepared through RAFT polymerization and click
chemistry are reported and discussed.

� 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.
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1. Introduction

Ring-opening metathesis polymerization (ROMP) has
been broadly applied for the synthesis of materials [1–5],
including polymers with biological activities [6–9]. The
development of well-defined, highly active and tolerant
initiators (Fig. 1) based on ruthenium [10–13] and molyb-
denum [14–16] has opened new avenues to the synthesis
of complex macromolecular architectures using ROMP
[5,17]. Among the various strained cycloalkenes that can
be used, norbornene and oxanorbornene derivatives are
the most popular ROMP monomers because of their high
ring strain, easy preparation, and the facility with which
functional groups are attached [18–22].

Graft copolymers, also denoted as bottle-brush copoly-
mers, are a unique class of polymers bearing densely
grafted side chains that control the polymer conformation
via steric repulsion [23,24]. Three main strategies can be
used to prepare such graft copolymers: the grafting-from,
the grafting-onto, and the grafting-through (or macromo-
nomer) methods [25–28]. The grafting-through route has
proven to be one of the most convenient methods for pre-
paring well-defined graft copolymers, as it allows better
control of grafts, backbone length, as well as the grafting
density [29–31]. ROMP has emerged as a versatile method-
ology to generate graft copolymers by the grafting-through
route and considerable work has been made using
macromonomers having a norbornene [32–75] or an oxa-
norbornene [76–79] end-group as the ‘‘ROMP-able’’ entity.
Compared to their (oxa)norbornene counterparts of similar
ring strain (about 30 kcal/mol [80,81]), cyclobutene deriva-
tives have been much less investigated in ROMP [82–96].
This can be ascribed to the difficulties associated with the
synthesis of the corresponding monomers. Nonetheless,
ROMP of cyclobutene derivatives yields unsaturated poly-
mers based on a strictly 1,4-polybutadiene backbone that
is not easily attainable by other synthetic processes such
as anionic polymerization [97]. ROMP of cyclobutenyl
macromonomers can thus afford 1,4-polybutadiene graft
copolymers having a high density and an exact placement
of the grafts. To make those graft copolymers with specific
properties, the structures have to be controlled, thus well-
defined side chains and backbone with pre-determined
molecular weights and low polydispersity indices must be
obtained using controlled/living polymerization processes.

In this paper, we summarize our work devoted to the
synthesis and ROMP of cyclobutenyl macromonomers
Fig. 1. Selected metathesis catalysts used a
prepared using various strategies including reversible
deactivation radical polymerization (RDRP) processes:
atom transfer radical polymerization (ATRP) and reversible
addition-fragmentation chain transfer (RAFT) polymeriza-
tion, in the same way as click chemistry using copper-cat-
alyzed azide-alkyne cycloaddition (CuAAC) [98].
2. Synthesis of cyclobutenyl precursors

A number of cyclobutene derivatives can be conve-
niently synthesized using cis-cyclobut-3-ene-1,2-dicarbox-
ylic anhydride precursor (1, Scheme 1) [96]. Although
anhydride 1 can be prepared by photochemical [2 + 2]
cycloaddition between maleic anhydride and acetylene,
this reaction is cumbersome and not totally safe. A new
safe and original synthetic route to compound 1 was devel-
oped in our laboratory using (Z + E)- or (E)-dichloroethene
as acetylene equivalents in the photochemical step [99].
Subsequent elimination in the presence of activated zinc
provides anhydride 1 in good yield.

Reduction of 1 using lithium aluminum hydride affords
cis-3,4-bis(hydroxymethyl)cyclobutene (2) in an almost
quantitative yield (Scheme 2). Taking in account the
known sensibility of ROMP to protic functionalities and
to the stereochemistry of the monomer double bond
[100–103], acetyl-protected derivatives 3 and 6 have been
prepared (Scheme 2) according to literature procedures
[104–106] to investigate their relative reactivity. Our
initial work related to the ROMP of acetyloxymethyl cyclo-
butenes 3 and 6 (Scheme 2) had shown that monomer (3)
with the cis stereochemistry is more reactive than its trans
counterpart (6) owing to steric hindrance [94], we thus
choose the cis stereochemistry as the starting point for
subsequent works devoted to the synthesis of cyclobutenyl
macromonomers.
3. Synthesis of ATRP inimers

ATRP was reported by Sawamoto et al. as ruthenium-
mediated polymerization [107,108] and by Matyjaszewski
et al. as copper-mediated polymerization [109–111]. A typ-
ical ATRP reaction requires an alkyl halide as the initiator.
In order to prepare macromonomers bearing a cyclobutenyl
group through ATRP, we choose to introduce a bromine ini-
tiating group in a series of cyclobutenyl-functionalized
ATRP inimers (initiators-monomers) starting from diol 2
s ROMP initiators (Cy = cyclohexyl).



O

O

O

O

O

O

Cl

Cl

Cl
O

O

O

+
hν

20 ºC, 48h

Zn

 , 14hCl

1

80 ºC

Scheme 1. Synthesis of cis-cyclobut-3-ene-1,2-dicarboxylic anhydride
(1).
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(Scheme 3) [112–115]. Inimers 7 and 8 were prepared
through esterification of 2-bromoisobutyryl bromide with
2 in the presence of triethylamine. Inimer 7 was obtained
in 72% yield by reaction with an excess (2.5 equivalents)
of 2-bromoisobutyryl bromide. Pure 8 was obtained in
76% yield by using a slight excess (1.1 equivalent) of 2-
bromoisobutyryl bromide. The remaining hydroxyl group
of 8 was then protected either by acetylation giving inimer
9 (94% yield) or by reaction with 1.2 equiv of tert-butyldi-
phenylchlorosilane (TBDMSCl) in the presence of imidaz-
ole, affording the corresponding silyl derivative 10 in 69%
yield (Scheme 3). Inimer 10 affords a complete orthogonal-
ity between the silyl group and the ester group, allowing a
selective regeneration of the hydroxyl functionality from
the silyl moiety [116]. Such unsymmetrical inimers contain
two initiating moieties that can initiate different polymer-
ization mechanisms selectively and independently, giving
rise to orthogonal (or dual) initiators [117].
4. Synthesis of clickable cyclobutenyl derivatives

Since its introduction by Sharpless et al. [98], the con-
cept of click chemistry has received a considerable amount
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of attention in polymers and materials science [118–125].
The Huisgen 1,3-dipolar cycloaddition reaction reported
in 1965 [126] gained a considerable interest after the cop-
per-catalyzed version was introduced in 2002 indepen-
dently by Meldal et al. [127] and Sharpless et al. [128]. In
our group, we have used the azide-alkyne 1,3-dipolar
cycloaddition reaction in both copper-catalyzed (CuAAC)
[79,129–131] and thermal Huisgen [132–139] versions.

In order to prepare complex architectures through the
macromonomer route, we designed a series of clickable
cyclobutenyl derivatives bearing either alkyne or azide
groups, starting from anhydride 1 (Scheme 4) or diol 2
(Scheme 5) [129]. Dicarboximide 11 was obtained in over-
all 70% yield through reaction of N-propargylamine with
anhydride 1 (Scheme 4).

Although bis-azide 12 (Scheme 5) is easily prepared by
nucleophilic substitution after mesylate activation of the
hydroxyl groups, this compound must be handled with
care, considering the potential hazards associated with
azides having a C/N ratio = 1 [98,129]. Alkynoate deriva-
tives 14–16 were obtained in good (60%) to moderate
(40%) yields by esterification of the corresponding alkynoic
acids (Scheme 5) [129]. An additional spacing (CH2)3 chain
was introduced in 15 and 16 in order to increase the acces-
sibility during subsequent CuAAC reactions.
5. Synthesis of cyclobutenyl RAFT agents

Introduced by Rizzardo et al. in 1998 [140], the RAFT-
mediated polymerization is nowadays one of the most ver-
satile techniques of RDRP. RAFT polymerization is
tolerant toward a wide variety of reaction conditions and
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functionalities, enabling control over the largest variety of
monomers of all the RDRP techniques, including
(meth)acrylamides [141–143]. RAFT polymerization uses
thiocarbonylthio compounds as chain transfer agents
(CTA) [144]. The thiocarbonylthio end-groups of the result-
ing polymers are easily removed or modified by a variety of
methods [145–147]. Among the different thiocarbonylthio
moieties that can be employed in RAFT polymerization, we
choose the trithiocarbonate group [148] that can be easily
incorporated into various CTA structures (including CTA for
metathesis) as demonstrated in our previous works [149–
152]. Cyclobutenyl RAFT agents 17 and 18 were prepared
in good yield (80%) using the commercially available S-1-
dodecyl-S0-(a,a0-dimethyl-a00-acetic acid) trithiocarbonate
(Scheme 6) [129]. Such a modular strategy gives access
to highly functionalized compounds like 18 which contains
orthogonal functionalities: a ‘‘ROMP-able’’ cyclobutenyl
moiety, a trithiocarbonate RAFT agent, and a clickable al-
kyne group that enables the anchorage of a wide variety
of azido end-functionalized polymers.
6. Synthesis of macromonomers by ATRP using
cyclobutenyl inimers

Considering the reaction conditions required for the
ATRP of most of the vinylic monomers (in toluene solution
at temperature = 60–100 �C [153–155]) and the known
ability of cyclobutenes to thermal ring-opening [105,106],
we have investigated the thermal stability of the ATRP ini-
mers under such conditions. It was found that compounds
2 and 7 are stable under ATRP conditions, i.e., up to 100 �C
for 2 h [113].

ATRP of styrene, t-butyl acrylate (tBA), and methyl
methacrylate (MMA) using N,N’,N’,N’’,N’’-pentamethyldi-
ethylenetriamine (PMDETA) [112–114] or N-(pyridin-2-
ylmethylene)octan-1-amine [156] as the ligand enabled
the synthesis of well-defined macromonomers retaining
the cyclobutenyl moiety with narrow polydispersities
ðMn;SEC ¼ 1600—24;500 g mol�1; PDI = 1.06–1.24), includ-
ing block copolymers, using both difunctional (Scheme 7)
and monofunctional (Scheme 8) inimers. A series of
amphiphilic macromonomers were obtained through sub-
sequent acidolysis of the t-butyl ester groups using trifluo-
roacetic acid (Scheme 7) [114]. Importantly, 1H NMR
analysis revealed that acidolysis using trifluoroacetic acid
occurs without alteration of the ester linkages between
the cyclobutene moiety and the polymer chains [112,114].

In the case of difunctional inimer 7, the similar effi-
ciency of both initiator sites was demonstrated through
hydrolysis of the ester linkage between the cyclobutenyl
moiety and the polystyrene chain of a macromonomer.
The so-obtained polystyrene showed a molecular weight
of about half the value of the initial macromonomer while
retaining a low polydispersity index [112]. All of the exper-
imental criteria of a controlled polymerization were veri-
fied in these experiments, demonstrating the efficiency of
the various inimers as ATRP initiators. More importantly,
the cyclobutenyl insaturation survived intact the ATRP
process as evidenced by 1H NMR [112,113], in contrast
with the norbornenyl moiety that was found to react
competitively during ATRP of acrylates under similar
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conditions [32]. Put all together, these results demonstrate
that the prepared cyclobutenyl inimers act as efficient ini-
tiators for ATRP, affording well-defined cyclobutenyl-func-
tionalized macromonomers.
7. Synthesis of macromonomers using CuAAC click
chemistry

A variety of highly efficient click reactions have success-
fully been applied to prepare functional polymers via the
post-polymerization modification route [79,118–125]. We
exploited the commercial availability of x-hydroxy-
poly(ethylene oxide) monomethyl ether (PEO, molecular
weight 2000 g mol�1) and its easy transformation into azi-
do- [157] and alkyne-terminated PEO [158] to prepare cyc-
lobutene-based PEO macromonomers through CuAAC
starting from clickable cyclobutenyl derivatives. Alkyne-
functionalized cyclobutenes (11, 14–16 and 18) and
azido-functionalized cyclobutene 12 were reacted with
azido-functionalized PEO (PEO-N3) and alkyne-functional-
ized PEO, respectively, in the presence of copper bromide
and PMDETA (Schemes 9 and 10), affording the corre-
sponding cyclobutene-based PEO macromonomers [129].
The competitive reaction that can take place between azi-
do groups and strained cycloalkenes in a purely thermal
cycloaddition process [159] was not observed under these
conditions (room temperature), illustrating the orthogo-
nality of the CuAAC reaction toward the cyclobutene
group. The possibility of preparing polymer scaffolds hav-
ing azide (or alkyne) termini via a post-polymerization
route thus enables the synthesis of a wide range of cyclob-
utene end-capped macromonomers derived from virtually
any polymer.
8. Synthesis of macromonomers using cyclobutenyl-
functionalized RAFT agents

RAFT polymerization is known for its ability to mediate
the RDRP of most vinylic monomers, including
(meth)acrylamides that are known to be difficult to control
with ATRP [140–142]. Moreover, the combination of RAFT
polymerization with click chemistry has been reported to
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be highly efficient for the synthesis of complex macromo-
lecular architectures [160–162]. To extend the variety of
cyclobutenyl macromonomers, we investigated the RAFT
polymerization of ethyl acrylate (EA) and N-isopropyl
acrylamide (NIPAM) using azobisisobutyronitrile (AIBN)
and 4,40-azobis(4-cyanopentanoyl acid) (ACPA) as initiator,
respectively, and CTAs 17 and P18 (Scheme 11) [129].

Macromonomers P17a, P17b, and P19 were obtained
with molecular weights in the range 2800–11,400 g mol�1

having low polydispersity indices (PDI = 1.06–1.14). The
orthogonality of the RAFT process toward the cyclobutene
moiety was demonstrated by MALDI-TOF mass spectrome-
try that showed the presence of both the trithiocarbonate
end-group and the cyclobutenyl insaturation at the
chain-end or into the polymers chains [129]. The trithio-
carbonate-derived cyclobutenyl CTAs can thus mediate
efficiently the RAFT polymerization of various monomers,
including acrylamides as demonstrated with NIPAM,
extending the possibilities of preparing cyclobutenyl-
capped macromonomers derived from monomers that
are not easily polymerized using the ATRP process.
9. ROMP of cyclobutenyl macromonomers

The ROMP of polystyrene macromonomers P7a and
polystyrene-b-poly(t-butyl acrylate) macromonomers P7b
was first investigated using Grubbs’ catalyst G1 (Fig. 1) in
toluene (Scheme 12) that showed only low conversion of
the macromonomers [112]. Extended reaction times or
higher temperature (50 �C) did not significantly diminish
the amount of unreacted macromonomer. This result can
be ascribed to the steric hindrance effect of the two
polymer chains around the double bond, as previously ob-
served in the case of norbornene-derived macromonomers
with two polylactide arms [60].

Grubbs’ second generation catalyst G2 (Fig. 1) was then
tested, as it is well known that G2 is a more active catalyst
than G1 [10,163–165]. However, G2 generally provides
polymers with uncontrolled molecular weights and broad
molecular weight distributions [4,165,166]. This has been
attributed to relatively slow rates of initiation compared
to propagation and to competitive chain transfer reactions
along the backbone of the polymers [165,166]. As initially
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Scheme 11. Synthesis of cyclobutenyl-functionalized
suggested by Bowden et al. [60], we hypothesized that the
steric crowding around the polymacromonomer active
center will affect more the rate of propagation (kp) than
the rate of initiation (ki) and will lower the ratio of kp/ki.
Steric hindrance created by the high density of grafts is
also expected to prevent the catalyst from reacting with
the double bonds of the backbone, thus limiting chain
transfer reactions (‘‘backbiting’’) [60]. Polymerization of
macromonomers P7a (Mn;SEC ¼ 3500 g mol�1; PDI = 1.11)
and P7b (Mn;SEC ¼ 4300 g mol�1; PDI = 1.11) using G2
([macromonomer]0/[G2]0 = 10) as the initiator gave incom-
plete, although higher conversions as compared with G1
under similar conditions. By increasing temperature
(70 �C), concentration (0.01 up to 0.06 mol/L), and reaction
time (up to 76 h), polymacromonomers having narrow and
unimodal molecular weight distributions were obtained
(PDI = 1.21–1.25) [112]. The absence of residual macromo-
nomer as revealed by SEC analysis and the complete disap-
pearance of the signal of the cyclobutenyl moiety in NMR
spectra of the reaction mixtures demonstrated that the
polymerizations went to completion. It can thus be con-
cluded that the use of Grubbs’ second generation catalyst
G2 for the ROMP of norbornenyl macromonomers [60]
can be successfully extended to cyclobutenyl-capped
macromonomers. Such an approach was subsequently
used in the literature for the efficient ROMP of various nor-
bornenyl macromonomers obtained via click chemistry
[68].

Considering the reported compatibility of ruthenium
catalysts with the triazole ring resulting from the click
reaction [68,79,167], we began recently investigation of
the ROMP of cyclobutenyl-capped PEO macromonomers
obtained through CuAAC.

In contrast with the previously studied macromono-
mers, ruthenium catalysts G2 and G3 failed to initiate the
polymerization of macromonomer P11 [168]. Such a result
can be ascribed to the coordination of the emerging ruthe-
nium carbene metal center resulting in a stable chelation
through a 5-membered ring between metal center and
oxygen after the initiation step [85,169].

Macromonomers P17a-b and P19 issued from RAFT
polymerization have been tested using G3 catalyst
(Fig. 1). ROMP of macromonomers P17a and P19 derived
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from NIPAM failed, probably due to the high concentration
of amide groups that can deactivate the catalyst. In con-
trast, ROMP of macromonomer P17b derived from ethyl
acrylate ([P17b]0/[G3]0 = 10), led to the expected polyma-
cromonomer, although with a limited (70%) conversion
[168]. Work is in progress in our group to test other ruthe-
nium-based initiators with these macromonomers [170].
10. Conclusions and outlook

By exploiting the orthogonality of the cyclobutenyl
functionality toward ATRP, RAFT polymerization, and click
chemistry, modular strategies have been set up in order to
prepare new cyclobutene-based molecules bearing orthog-
onal functionalities that enable the synthesis of well-
defined cyclobutenyl-capped macromonomers. The result-
ing macromonomers show predictable molecular weights
and narrow molecular weight distributions. The length of
each block can be easily tuned thank to either RDRP tech-
niques such as ATRP or RAFT polymerization or to highly
efficient click reaction using easily available macromolecu-
lar precursors such as PEO.

The strategies summarized herein pave the way for the
synthesis of well-defined macromonomers derived from a
wide range of monomers and/or macromolecular precur-
sors. Such cyclobutenyl-derived macromonomers can not
only find applications in ROMP to synthesize hetero-
grafted molecular brushes with precisely controlled archi-
tecture, but also for other click reactions involving strained
rings and other ligation strategies.

All the results gathered up to now collectively demon-
strate that most of the cyclobutenyl-capped macromono-
mers obtained through RDRP techniques or click CuAAC
reaction can be efficiently polymerized by ROMP, affording
well-defined polymacromonomers. However, our results
also show that, as already known in the literature
[25,26,29], polymerization of macromonomers is still defi-
cient in preparing high molecular weight graft copolymers.
The ability to prepare amphiphilic macromonomers such
as PEO-derived macromonomers of pre-determined molec-
ular weights and controlled hydrophilic balance allows for
the ROMP to be envisioned in aqueous dispersed media. It
is expected that such macromonomers will organize into
micelles with the hydrophobic polymerizable end-groups
concentrated in the cores. In ongoing studies we intend
to employ this strategy for the preparation of 1,4-polybu-
tadiene graft copolymers starting from cyclobutenyl-
capped amphiphilic macromonomers.
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