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largest signless Laplacian index among all the cacti with n vertices
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with the largest signless Laplacian index among all the cacti with

n vertices; we also characterize the n-vertex cacti with a perfect

matching having the largest signless Laplacian index.
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1. Introduction

Spectral graph theory [1,2,4,6,7] studies properties of graphs using the spectrum of related matri-

ces. We consider only simple graphs (i.e., finite, undirected graphs without loops or multiple edges).

Let G = (VG, EG) be a simple graph on n vertices and m edges (so n = |VG| is its order, and m = |EG|
is its size). The most studied matrix associated with G appears to be adjacency matrix A = (aij)where

aij = 1 if vi and vj of the graph G are adjacent and 0 otherwise. Another well studied matrix is the

Laplacian, defined by L = D − A where D is the diagonal matrix with degrees of the vertices on the

main diagonal (see [1,12,22]). The matrix Q = D + A is called the signless Laplacian matrix of G (see

[8]) and has attracted the attention of many researchers. Computer investigations of graphs with up
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to 11 vertices [11] suggest that the spectrum of D+ A performs better than the spectrum of A or D− A

in distinguishing non-isomorphic graphs.

If N is the vertex-edge incidence matrix of G then

NNT = D + A, NTN = A(L̂(G))+ 2I,

where A(L̂(G)) is the adjacency matrix of the line graph L̂(G). In particular, D + A is positive semi-

definite. It is also easy to see that the matrix Q = D + A is real symmetric, the eigenvalues of Q can

be arranged as q1(Q) � q2(Q) � · · · � qn(Q) � 0, where q1(Q) is the signless Laplacian index of

graph G. If in addition G is connected, there exists a unique (up to multiples) and (entrywise) positive

eigenvector, say x = (x1, x2, . . . , xn)
T , corresponding to this index. It will be convenient to associate a

labelling of vertices ofG (with respect tox) inwhich xv is a label of v. The signless Laplacian characteristic

polynomial of G, equal to det(xI − Q), is denoted byψ(G, x) (or, for short, byψ(G)).
Recently there is a lot ofworkon the signless Laplacian eigenvalues, especially the signless Laplacian

index of a graph. The papers [8–10] give a survey on thiswork. Several bounds for the signless Laplacian

index canbe found in [11–14], and the relations between this index andgraphparameters are discussed

in [13–21,24–28]. The least signless Laplacian eigenvalues is also studied; see e.g., [5,13]. Other work

can be found in [23] for the Q-spread.

In [29], Zhu proposed the following problem concerning the signless Laplacian index: Given a set

of graphs G , find an upper bound for the signless Laplacian index and characterize the graphs in which

the maximal signless Laplacian index is attained. The problem proposed by Zhu in [29] is actually the

signless Laplacian version of the classical Brualdi-Solheid problem for the adjacency matrix; see [3].

In this paper, we study the same question for Cn,k , a set of polycyclic graphs (called cacti) in which any

two of its cycles have at most one common vertex and each cactus is connected containing k pendant

vertices.

In order to state our results,we introduce somenotation and terminology. Other undefinednotation

may refer to [2]. Denote by Cn and Pn the cycle and the path with n vertices, respectively. G− v, G− uv

denote the graph obtained from G by deleting a vertex v ∈ VG , or an edge uv ∈ EG , respectively (this

notation is naturally extended if more than one vertex, or edge, is deleted). Similarly, G+ uv is a graph

that arises from G by adding an edge uv /∈ EG , where u, v ∈ VG . For uv ∈ E(G), let Guv be the graph

obtained from G by subdividing the edge uv, that is, by replacing uv with edges uw and wv,where w

is an additional vertex. For v ∈ VG, d(v) denotes the degree of vertex v and N(v) denotes the set of

all neighbors of vertex v ∈ VG . An internal path is a path or a cycle, in which the initial and terminal

vertices have degree at least three and the internal vertices have degree two.

2. Preliminaries

In order to complete the proof of our main results we need the following lemmas.

Lemma 2.1 [19]. Let u and v be two distinct vertices of a connected graph G. Suppose that w1,w2, . . . ,
ws(s � 1) are neighbors of v but not u and they are all different from u. Let x = (x1, x2, . . . , xn)

T be the

Perron vector of Q(G), and let H be obtained from G by deleting the edges vwi and adding the edges uwi

for i = 1, 2, . . . , s. If xv � xu, then q1(G) < q1(H).

From the Perron–Frobenius Theorem of non-negative matrices, we have the following lemma.

Lemma 2.2 [14]. If G′ is a proper subgraph of a connected graph G, then q1(G
′) < q1(G).

Lemma 2.3 [17]. Let G be a connected graph and let uv be an edge on an internal path of G. Let Guv be

obtained from G by subdividing the edge uv. Then q1(Guv) < q1(G).

Let H be a connected (n − m)-vertex graph with u0 ∈ VH having k pendants if u0 is a pendant and

k − 1 pendants otherwise. Set G1 (resp. G2) be an n-vertex graph obtained from H by attaching Pm+1
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Fig. 1. Graphs G1, G2,H0 and H1.

Fig. 2. Graphs G3 and G4.

Fig. 3. Graphs G5, G6, G7 and G8.

(resp. Pm−1 and C3) to u0 (see Fig. 1); H0 (resp. H1) be an n-vertex graph obtained from H by attaching
m−1
2

C3’s and a P2 (resp. m−2
2

C3’s and a P3) to u0 when m is odd (resp. even), where m � 3. Graphs

H0 and H1 are depicted in Fig. 1.

Lemma 2.4. Let G1, G2,H0 and H1 be graphs as shown in Fig. 1. Then

(i) q1(G1) < q1(G2);
(ii) q1(G1) < q1(H0) or q1(G1) < q1(H1).

Proof. (i) Let Pm+1 = u0u1 . . . um(m � 3). Now, consider the Perron vector x = (x1, x2, . . . , xn)
T of

Q(G1). If xu0 � xu2 , let G
′ = G1 − u2u3 + u0u3; otherwise, let G′ = G1 − {u0y|y ∈ N(u0)\{u1}} +

{u2y|y ∈ N(u0)\{u1}}. By Lemma 2.1, we have q1(G1) < q1(G
′). It is easy to see that G2 = G′ + u0u2,

then in view of Lemma 2.2, we have q1(G
′) < q1(G2). So we have q1(G1) < q1(G2).

(ii) If m = 3 or, 4, it is easy to see that H0
∼= G2 or, H1

∼= G2. Then in view of (i), our result holds

immediately. If m � 5, by repeatedly applying (i) to G2, then we can finally get a graph H0 when m is

odd or, a graph H1 when m is even. Therefore, q1(G1) < q1(H0) or, q1(G1) < q1(H1).
This completes the proof. �

LetW be a connected (n− 4)-vertex graph with u0 ∈ VW having k − 1 pendants if u0 is a pendant

and k − 2 pendants otherwise. The graph G3 is the graph obtained from W by attaching two paths of

length 2 to u0; see Fig. 2. Set G4 = G3 − zw + {u0w, u0t} (see Fig. 2). It is easy to see that G3 (resp. G4)

is an n-vertex graph with k pendant vertices.

Lemma 2.5. Let G3 and G4 be the graphs as depicted in Fig. 2. Then q1(G3) < q1(G4).

Proof. Consider thePerronvectorx = (x1, x2, . . . , xn)
T ofG3. If xu0 � xz , then letG′ = G3−zw+u0w;

otherwise, let G′ = G3 − {u0u|u ∈ N(u0)\{z}} + {zu|u ∈ N(u0)\{z}}. Hence, by Lemma 2.1 we get

q1(G3) < q1(G
′). On the other hand, it is straightforward to check that G4 = G′ + u0t if xu0 � xz and

G4 = G′ + zt otherwise. Therefore, our result follows by Lemma 2.2.

This completes the proof. �

Let Y be a connected (n−m+1)-vertex graphwith u0 ∈ VY having k+1 pendants if u0 is a pendant

and k pendants otherwise. Let G5 (resp. G6) be an n-vertex graph obtained from Y by attaching Cm
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Fig. 4. Graphs H2 and H3.

Fig. 5. Graphs H4 and H5.

(resp. Cm−2 and C3) to u0 (see Fig. 3); G7 (resp. G8) be an n-vertex graph obtained from Y by attaching
m−1
2

C3’s (resp.
m−4
2

C3’s and a C4) to u0 when m is odd (resp. even), where m � 5. Graphs G7 and

G8 are depicted in Fig. 3.

Lemma 2.6. Let G5, G6, G7 and G8 be the graphs defined as above (see Fig. 3). Then

(i) q1(G5) < q1(G6);
(ii) q1(G5) < q1(G7) or, q1(G5) < q1(G8).

Proof. (i) Let Cm = u0u1 . . . um−1u0 (m � 5). Now, we consider the Perron vector x = (x1, x2, . . . ,
xn)

T of G5. If xu0 � xu3 , then let G′ = G5 − u2u3 + u0u2; otherwise, let G′ = G5 − {u0y|y ∈
N(u0)\{um−1}} + {u3y|y ∈ N(u0)\{um−1}}. By Lemma 2.1, we get q1(G5) < q1(G

′). Note that G6 =
G′ + u0u3, hence by Lemma 2.2 we have q1(G

′) < q1(G6), i.e., q1(G5) < q1(G6).
(ii) Ifm = 5, 6, then in viewof (i)we know that our result holds. Ifm � 7, by repeatedly applying (i)

to G5, we can finally get graph G7 whenm is odd or, get graph G8 whenm is even. So, q1(G5) < q1(G7)
or q1(G5) < q1(G8).

This completes the proof. �

Lemma 2.7. Let H2 and H3 be the graphs as depicted in Fig. 4, where U is a connected (n − 6)-vertex
graph with k pendants. Then q1(H2) < q1(H3).

Proof. Consider the Perron vector x = (x1, x2, . . . , xn)
T ofH2. If xu0 � xu6 , letH

′ = H2−u5u6+u0u5;

otherwise, let H′′ = H2 − {u0y|y ∈ N(u0)\{u6}} + {u6y|y ∈ N(u0)\{u6}}. It is straightforward to

check that H′ ∼= H′′. By Lemma 2.1, we get q1(H2) < q1(H
′).

Nowconsider thePerronvectory = (y1, y2, . . . , yn)
T ofH′. If yu0 � yu1 , letH

∗ = H′−u1u2+u0u2;

otherwise, let H∗∗ = H′ − {u0y|y ∈ N(u0)\{u1}} + {u1y|y ∈ N(u0)\{u1}}. It is straightforward to

check that H∗ ∼= H∗∗. By Lemma 2.1, we get q1(H
′) < q1(H

∗). It is easy to see that H3
∼= H∗ + u1u6.

Hence, by Lemma 2.2, we have q1(H
∗) < q1(H3). Therefore, q1(H2) < q1(H3).

This completes the proof. �

Lemma 2.8. Let H4 and H5 be the n-vertex graphs as shown in Fig. 5, where S is a connected (n−5)-vertex
graph with k − 1 pendants. Then q1(H4) < q1(H5).

Proof. Consider thePerronvectorx = (x1, x2, . . . , xn)
T ofH4. If xu0 � xu3 , letM

′ = H4−u2u3+u0u2;

otherwise, let M′′ = H4 − {u0y|y ∈ N(u0)\{u3}} + {u3y|y ∈ N(u0)\{u3}}. It is straightforward to

check thatM′ ∼= M′′. By Lemma 2.1, we have q1(H4) < q1(M
′) = q1(M

′′).
Note that H5

∼= M′ + u0u5, henceM′ is a proper subgraph of H5. By Lemma 2.2, we have q1(M
′) <

q1(H5). Hence, we get q1(H4) < q1(H5).
This completes the proof. �
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Fig. 6. Graphs H6 and H7.

Lemma 2.9. Let H6 and H7 be the n-vertex graphs as shown in Fig. 6, where Z is a connected subgraph

with k − 1 pendants. Then q1(H6) < q1(H7).

Proof. Note that H7 contains a cycle C3 = u0uvu0. Let N
′ = (H7)uv, i.e., N

′ is obtained from H7 by

subdividing the edge uv. It is easy to see that u0uvu0 is an internal path of H7, hence by Lemma 2.3 we

get q1(N
′) < q1(H7).

Note that H6 is a proper subgraph of N′, hence in view of Lemma 2.2, we have q1(H6) < q1(N
′).

Therefore, we obtain that q1(H6) < q1(H7).
This completes the proof. �

3. Main results

We call graph G a cactus if G is connected and any two of its cycles intersect in at most one vertex.

For a cactus graph G, we call it a bundle if all cycles of G have exactly one common vertex. Denote by

Cn,k the set of all connected cacti on n vertices with k pendant vertices. In the following, we determine

the graphs with the largest signless Laplacian indices in the class Cn,k.

Theorem 3.1. Let G be a graph in Cn,k.

(i) If n − k ≡ 1 (mod 2), then q1(G) � q1(C
1(n, k)) with equality if and only if G ∼= C1(n, k), where

C1(n, k) is depicted in Fig. 7 and q1(C
1(n, k)) is the largest root of the equation g(x) = 0, here

g(x) = x3 − (k + 6)x2 − (n − 4k − 12)x + n − k − 7.

(ii) If n − k ≡ 0 (mod 2), then q1(G) � q1(C
2(n, k)) with equality if and only if G ∼= C2(n, k), where

C2(n, k) is depicted in Fig. 7 and q1(C
2(n, k)) is the largest root of the equation h(x) = 0, here

h(x) = x5−(k+9)x4−(n−7k−32)x3+(4n−14k−54)x2−(4n−7k−40)x+n−k−8.

Proof. Choose G ∈ Cn,k such that its signless Laplacian index is as large as possible. Denote the vertex

set of G by VG = {v1, v2, . . . , vn} and the Perron vector of G by x = (xv1 , xv2 , . . . , xvn)
T , where xvi

corresponds to the vertex vi, i = 1, 2, . . . , n.
We first prove that the graph G is a bundle. In order to do so we will prove the following claims.

Claim 1. Any two cycles of the graph G have one common vertex.

Fig. 7. Graphs C1(n, k), C2(n, k) and C3(n, k).
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Proof. Note that any two cycles of G have no edge in common, hence assume, on the contrary, that

there are two disjoint cycles C1 and C2 contained in G. Then, we can choose cycles C1 and C2 such that

the path P of length p � 2 connects C1 and C2 is the shortest. For convenience, let VC1 ∩ VP = {u1}
and VC2 ∩VP = {up}. We distinguish the following two possible cases to complete the proof of Claim 1.

Case 1. The path P (connecting C1 and C2) has no common edge with any other cycle(s) contained

in G. Without loss of generality, we may assume that xu1 � xup . Let y in VC2 be a neighbor of up, then

set G′ := G − {upy} + {u1y}. Thus G′ ∈ Cn,k . By Lemma 2.1 we have q1(G
′) > q1(G), a contradiction.

Case 2. The path P (connecting C1 and C2) has common edge(s) with some other cycle, say C3,

contained in G. Note that, by the selection of C1 and C2, it suffices to consider that u1 is just the

common vertex of C3 and C1, whereas up is the only common vertex of C3 and C2. Without loss of

generality, we may assume that xu1 � xup . Note that there exist two neighbors in VC2 , say y1 and y2,

of up. Set G
′′ := G − {upy1, upy2} + {u0y1, u0y2}. It is easy to see that G′′ ∈ Cn,k. By Lemma 2.1 we

have q1(G
′′) > q1(G), a contradiction.

This completes the proof of Claim 1. �

Claim 2. Any three cycles contained in G have exactly one common vertex.

Proof. It is the direct consequence of Claim 1. In fact, assume that in G there exist three cycles, say

C1, C2 and C3, such that they have no vertex in common. By Claim 1, we have in G that VC1 ∩ VC2 �=
∅, VC1 ∩ VC3 �= ∅ and VC2 ∩ VC3 �= ∅. Hence, it is easy to check that there exist two cycles in G that

have common edge(s), a contradiction to the assumption of G. �

By Claims 1 and 2, we know that all of the cycles contained in G have exactly one common vertex,

say u0, i.e., G is a bundle. By Claims 1 and 2 we also know that the graph in Cn,k having the largest

signless Laplacian index is a bundle with some pendant trees attached.

Next we are to show that if G contains a pendant tree T , then T is attached to the vertex u0 of G.

Claim 3. Any tree T of graph G is attached to the common vertex u0 of all cycles of the bundle.

Proof. Assume, to the contrary, that there exists a tree T attached to a vertex u on a cycle C of G with

u �= u0. Let y1, y2, . . . , yt be all of the neighbors of vertex u in T .

If xu0 � xu, let G′ = G − {uy1, uy2, . . . , uyt} + {u0y1, u0y2, . . . , u0yt}; otherwise, let G′′ =
G − {u0y|y ∈ N(u0)\VC} + {uy|y ∈ N(v0)\VC}. It is straightforward to check that G′ ∼= G′′ and
G′ ∈ Cn,k. By Lemma 2.1, we have q1(G

′) > q1(G), a contradiction. �

We further prove the following claim.

Claim 4. Let T be the tree attached to the common vertex u0 of all the cycles contained in G, then for any

u ∈ VT\{u0} we have d(u) � 2.

Proof. In the opposite case, there exists a vertex u in VT\{u0} such that d(u) � 3. Let Nu denote the

set of all neighbors of u in T such that d(u0, v) = d(u0, u)+ 1 for each v ∈ Nu. For convenience, let v0
be in Nu.

If xu0 � xu, then let G′ = G − {uv|v ∈ Nu\{v0}} + {u0v|v ∈ Nu\{v0}}; If xu0 < xu, choose a

neighbor in some cycle, say y, of u0 and set G′′ = G − {u0y} + {uy}. It is straightforward to check that

G′, G′′ ∈ Cn,k. By Lemma 2.1, we have q1(G
′) > q1(G) and q1(G

′′) > q1(G), a contradiction. �

Now we come back to complete the proof of Theorem 3.1. By Claim 4, Lemmas 2.4 and 2.5, we

conclude that there exists at most one vertex, say u, of degree 2 in the attached tree such that u is the

neighbor of vertex u0. By Lemmas 2.6 and 2.7, the lengths of all cycles in G are 3 or 4, and at most one

of them is of length 4. By Lemma 2.8, G cannot contain both a cycle of length 4 and a vertex u (�= u0) of
degree 2 in the attached tree. Hence, if n−k ≡ 1 (mod 2), then G ∼= C1(n, k) (see Fig. 7); if n−k ≡ 0



4406 S. Li, M. Zhang / Linear Algebra and its Applications 436 (2012) 4400–4411

Fig. 8. Graphs C1(n) and C2(n).

(mod 2), then G ∼= C2(n, k) or, C3(n, k), where C2(n, k) and C3(n, k) are depicted in Fig. 7. And by

Lemma 2.9, we know that q1(C
2(n, k) > q1(C

3(n, k)). So, G ∼= C2(n, k)when n − k ≡ 0 (mod 2).
By direct computing (one may also refer to the Appendix) we have

ψ(C1(n, k)) = (x − 1)
n+k−3

2 (x − 3)
n−k−3

2 [x3 − (k + 6)x2 − (n− 4k − 12)x + n− k − 7] (3.1)

and

ψ(C2(n, k)) = (x − 1)
n+k
2

−3(x − 3)
n−k
2

−2[x5 − (k + 9)x4 − (n − 7k − 32)x3

+ (4n − 14k − 54)x2 − (4n − 7k − 40)x + n − k − 8]. (3.2)

It is easy to see that C3 is a proper subgraph of C1(n, k) (resp. C2(n, k)). Note that q1(C3) = 4,

hence q1(C
1(n, k)) > 4 and q1(C

2(n, k)) > 4.Whence, q1(C
1(n, k)) is the largest root of the equation

x3 − (k + 6)x2 − (n− 4k − 12)x + n− k − 7 = 0 and q1(C
2(n, k)) is the largest root of the equation

x5 − (k + 9)x4 − (n − 7k − 32)x3 + (4n − 14k − 54)x2 − (4n − 7k − 40)x + n − k − 8 = 0.

This completes the proof of Theorem 3.1. �

Denote by Cn the set of all connected cacti with n vertices. Let C1(n) and C2(n) be the bundles with

n vertices as depicted in Fig. 8.

Theorem 3.2. Let G be a graph in Cn. Then

(i) q1(G) � 5+√
4n−3

2
for odd n, and the equality holds if and only if G ∼= C1(n),where C1(n) is depicted

in Fig. 8.
(ii) q1(G) � q1(C

2(n)) for even n, and the equality holds if and only if G ∼= C2(n), where C2(n) is
depicted in Fig. 8 and q1(C

2(n)) is the largest root of the equation x3 −7x2 − (n−16)x+n−8 = 0.

Proof. By Lemma 2.2, we get

q1(C
1(n, k + 2)) < q1(C

1(n, k)), q1(C
2(n, k + 2)) < q1(C

2(n, k))

for k � 0. Hence, if n is odd, then C1(n, k) is a spanning subgraph of C1(n); if n is even, then C2(n, k)
is a spanning subgraph of C2(n). By Lemma 2.2 and Theorem 3.1, we get

q1(C
1(n, k)) < q1(C

1(n, k − 2)) < · · · < q1(C
1(n, 2)) < q1(C

1(n))

and

q1(C
2(n, k)) < q1(C

2(n, k − 2)) < · · · < q1(C
2(n, 3)) < q1(C

2(n)).

By direct computing, we have

ψ(C1(n), x) = (x − 1)
n−1
2 (x − 3)

n−3
2 (x2 − 5x − n + 7)

and

ψ(C2(n), x) = (x − 1)
n−2
2 (x − 3)

n−4
2 [x3 − 7x2 − (n − 16)x + n − 8].
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Note that C3 is a proper subgraph of C1(n) and C2(n), hence q1(C
1(n)) > q1(C3) = 4 and q1(C

2(n)) >

q1(C3) = 4. Therefore, q1(C
1(n)) = 5+√

4n−3

2
and q1(C

2(n)) is the largest root of the equation

x3 − 7x2 − (n − 16)x + n − 8 = 0.
This completes the proof. �

At last, based on the results obtained as above,we determine the sharp upper bound for the signless

Laplacian index of cacti with a perfect matching. Let C̃2k be the set of all 2k-vertex cacti with a perfect

matching.

Based on Theorem 3.2, we get

Theorem 3.3. Let G be a graph in C̃2k. Then q1(G) � q1(C
2(2k)), and the equality holds if and only if

G ∼= C2(2k), where q1(C
2(2k)) is the largest root of the equation x3 − 7x2 − (2k − 16)x + 2k − 8 = 0..

It is natural to consider the question: Let C̃m
n be the set of all n-vertex cacti with matching number

m. How to determine the graph in C̃m
n which attains the maximal signless Laplacian index? Here we

pose the following conjecture.

Conjecture 3.4. Let G be a graph in C̃m
n . Then

(i) if n = 2m + 1, then q1(G) � 5+√
4n−3

2
, and the equality holds if and only if G ∼= C1(n), where

C1(n) is depicted in Fig. 8.
(ii) if n � 2m + 2, then q1(G) � q1(C

1(n, n − 2m + 1)), and the equality holds if and only if

G ∼= C1(n, n− 2m+ 1),where q1(C
1(n, n− 2m+ 1)) is the largest root of the equation x3 − (n−

2m + 7)x2 + (3n − 8m + 8)x + 2m − 8 = 0.

Appendix

We shall prove Eqs. (3.1) and (3.2) in what follows. In order to obtain our results, we need the

following Propositions which are obtained by Hou and the first author of the current paper in [20]. We

give their proofs here for the sake of completeness. Assume that G is a graph with v ∈ VG , let Qv(G)
denote the principal submatrix of Q(G) by deleting the row and column corresponding to the vertex v.

Proposition 1 [20]. Let G = G1u : vG2 be the graph obtained from two disjoint graphs G1 and G2 by

joining a vertex u of graph G1 to a vertex v of the graph G2 by an edge. Then

ψ(G) = ψ(G1)ψ(G2)− ψ(G1)ψ(Qv(G2))− ψ(G2)ψ(Qu(G1)).

Proof. Let Q(G∗
1) (resp. Q(G

∗
2)) be the principal submatrix obtained by deleting the row and column

corresponding to vertex v (resp. u) from Q(G1u : v) (resp. Q(G2v : u)), where G1u : v (resp. G2v : u) is
the graph formed from G1 (resp. G2) by joining a new pendant vertex v (resp. u) to u (resp. v). Without

loss of generality, we may assume that

Q(G) =
⎛
⎝ Q(G∗

1) E11

ET11 Q(G∗
2)

⎞
⎠ ,

where E11 is the |VG1
| × |VG2

| matrix whose only non-zero entry is 1 in position (1, 1).
By Laplace Theorem for determinants, we have

ψ(G) = ψ(G∗
1)ψ(G

∗
2)− ψ(Qu(G1))ψ(Qv(G2)). (a.1)
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Note that ψ(G∗
1) = ψ(G1) − ψ(Qu(G1)) and ψ(G

∗
2) = ψ(G2) − ψ(Qv(G2)), hence in view of (a.1),

we have

ψ(G) = ψ(G1)ψ(G2)− ψ(G1)ψ(Qv(G2))− ψ(G2)ψ(Qu(G1)),

as desired. �

Proposition 2 [20]. Let G be an n-vertex connected graph consisting of a subgraph H (with at least two

vertices) and n − |VH| distinct pendant edges (not in H) attaching to a vertex v in H. Then

ψ(G) = (x − 1)n−|VH |ψ(H)− (n − |VH|)x(x − 1)n−|VH |−1ψ(Qv(H)).

Proof. Letm = n − |VH|. We prove the proposition by induction onm.

When m = 1, there is one pendant edge (not in H) attached to v, denoted as vv1. We regard G as a

connected sum of an isolated vertex v1 and H at v. By Proposition 1, we have

ψ(G) = xψ(H)− ψ(H)− xψ(Qv(H)) = (x − 1)ψ(H)− xψ(Qv(H)).

Suppose the result holds form−1. For n−|VH| = m � 2, let the pendant edges (not inH) attached

to v be vv1, . . . , vvm. We regard G as a connected sum of an isolated vertex vm and H′ at v, where H′
is the graph obtained from H by attachingm − 1 pendant edges vv1, . . . , vvm−1. Then by Proposition

1, we have

ψ(G) = (x − 1)ψ(H′)− xψ(Qv(H
′)). (a.2)

Moreover, by the inductive hypothesis, we have

ψ(H′) = (x − 1)m−1ψ(H)− (m − 1)x(x − 1)m−2ψ(Qv(H)). (a.3)

On the other hand,

ψ(Qv(H
′)) = (x − 1)m−1ψ(Qv(H)). (a.4)

In view of (a.2)–(a.4), we have

ψ(G) = (x − 1)mψ(H)− mx(x − 1)m−1ψ(Qv(H)),

as required. �

The proof of Eq. (3.1). By Proposition 2, we have

ψ(C1(n, k)) = (x − 1)kψ(C1(n − k))− kx(x − 1)k−1ψ(Qv(C
1(n − k))), (a.5)

whereC1(n−k) is depicted inFig. 8. Inorder tocomplete theproof, it suffices todetermineψ(C1(n−k))
andψ(Qv(C

1(n − k))).
Note that

Q(C1(n − k)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − k − 1 1 1 · · · 1 1

1 2 1 · · · 0 0

1 1 2 · · · 0 0

...
...
...
. . .

...
...

1 0 0 · · · 2 1

1 0 0 · · · 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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hence

ψ(C1(n − k)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − (n − k − 1) −1 −1 −1 · · · −1 −1

−1 x − 2 −1 0 · · · 0 0

−1 −1 x − 2 0 · · · 0 0

...
...

...
...
. . .

...
...

−1 0 0 0 · · · 0 0

−1 0 0 0 · · · x − 2 −1

−1 0 0 0 · · · −1 x − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (a.6)

For convenience, letψ(C1(n− k)) = Bn−k. Consider the last two rows ofψ(C1(n− k)) in (a.6), there

are just three non-zero sub-determinants:

M1 =
∣∣∣∣∣∣
−1 x − 2

−1 −1

∣∣∣∣∣∣ = x−1, M2 =
∣∣∣∣∣∣
−1 −1

−1 x − 2

∣∣∣∣∣∣ = −(x−1), M3 =
∣∣∣∣∣∣
x − 2 −1

−1 x − 2

∣∣∣∣∣∣ = x2−4x+3.

Hence, we obtainψ(C1(n − k)) = M1A1 + M2A2 + M3A3,where Ai is the cofactor ofMi, i = 1, 2, 3,
i.e.,

A1 = (−1)3n−3k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 · · · −1 −1 −1

x − 2 −1 · · · 0 0 0

−1 x − 2 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · x − 2 −1 0

0 0 · · · −1 x − 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −(x2 − 4x + 3)
n−k−3

2 ,

A2 = (−1)3n−3k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 · · · −1 −1 −1

x − 2 −1 · · · 0 0 0

−1 x − 2 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · x − 2 −1 0

0 0 · · · −1 x − 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x2 − 4x + 3)
n−k−3

2

and A3 = Bn−k−2.
Combine with

B3 =

∣∣∣∣∣∣∣∣∣

x − 2 −1 −1

−1 x − 2 −1

−1 −1 x − 2

∣∣∣∣∣∣∣∣∣
= (x − 4)(x − 1)2,

we have

ψ(C1(n − k)) = Bn−k = (x − 1)(x2 − 4x + 3)
n−k−3

2 (x2 − 5x + 7 − n + k). (a.7)
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On the other hand, we have

Qv0(C
1(n − k)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 · · · 0 0

1 2 0 · · · 0 0

0 0 2 · · · 0 0

...
...
...
. . . 0 0

0 0 0 · · · 2 1

0 0 0 · · · 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore,

ψ(Qv0(C
1(n − k))) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − 2 −1 · · · 0 0

−1 x − 2 · · · 0 0

...
...

. . .
...

...

0 0 · · · x − 2 −1

0 0 · · · −1 x − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x2 − 4x + 3)
n−k−1

2 . (a.8)

By (a.5), (a.7) and (a.8), our result follows immediately. �
The proof of Eq. (3.2). In C2(n, k) delete the k − 1 pendent vertices each of which is adjacent to v0 (see Fig. 7),

denote the resultant graph by H. For convenience, let u be the vertex of degree 2 on the pendent path of H. By

Proposition 2, we get

ψ(C2(n, k)) = (x − 1)k−1ψ(H)− (k − 1)x(x − 1)k−2ψ(Qv0 (H)). (a.9)

In order to complete the proof, it suffices to determine ψ(H) and ψ(Qv0 (H)). In fact, in view of Propositions 1

and 2, we have

ψ(H) = ψ(C1(n − k − 1))ψ(P2)− ψ(C1(n − k − 1))ψ(Qu(P2))− ψ(P2)ψ(Qv0(C
1(n − k − 1)))

= (x2 − 3x + 1)ψ(C1(n − k − 1))− x(x − 2)ψ(Qv0 (C
1(n − k − 1)))

= (x2 − 3x + 1)ψ(C1(n − k − 1))− x(x − 2)(x2 − 4x + 3)
n−k−2

2

= (x2 − 3x + 1)(x − 1)(x2 − 4x + 3)
n−k−4

2 (x2 − 5x + 7 − n + k + 1)

− x(x − 2)(x2 − 4x + 3)
n−k−2

2

= [x4 − 9x3 − (n − k − 29)x2 + (3n − 3k − 35)x − (n − k − 8)](x − 3)
n−k−4

2 (x − 1)
n−k−2

2 .

(a.10)

On the other hand,

ψ(Qv0 (H)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − 2 −1 0 0 · · · 0 0

−1 x − 1 0 0 · · · 0 0

0 0 x − 2 −1 · · · 0 0

0 0 −1 x − 2 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · x − 2 −1

0 0 0 0 · · · −1 x − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x2 − 3x + 1)(x2 − 4x + 3)
n−k
2

−1. (a.11)

In view of (a.9)–(a.11), our result follows immediately. �
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