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1. Introduction

Lagrange multipliers are one of the central notions of optimization theory. The method of Lagrange multipliers is known
to be the classical approach to constrained optimization problems. Its roots can be traced back to Lagrange’s work in 18th
century and the use of this method emerged in 20th century in F. John’s paper [14], in 1948. Basically, the method of
Lagrange multipliers consists of transforming a constrained problem into an unconstrained one. In the 18th century most
optimization problems were related to physical sciences and had equalities as constraints. Lagrange essentially applied his
multiplier method to study problems arising in the Calculus of Variations. For more details see the entertaining book titled
Stories about Maxima and Minima by Tikhomorov [21]. Though the problems of Calculus of Variations are actually infinite
dimensional problems of optimization, very different techniques were developed in those days to study them, since there
was no clear idea about infinite dimensional spaces.

The real study of optimization in finite dimensions in fact began with the advent of Linear Programming during the
second World–War. Later on, it was realized that in many applications nonlinear functions had to be tackled and that gave
rise to Nonlinear Programming. It was understood that in many applications, for example in engineering, constraints in the
form of inequalities play a predominant role. John’s seminal paper of 1948, that has been mentioned above, first brought
the Lagrangian multiplier rule to the domain of inequality constraint. Another key contribution in this direction is due to
Kuhn and Tucker [15]. They corrected the shortcomings of the optimality conditions as laid down by John. This lead to
the now famous Kuhn–Tucker conditions which play a very fundamental role both in the theory of optimization and the
analysis of optimization algorithms. It is also important to note that Kuhn and Tucker [15] were most probably the first to
have a detailed study of necessary optimality conditions for multiobjective programming. Thus Kuhn and Tucker extended
the Lagrangian multiplier rule to the domain of vector optimization.
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The main draw back of the necessary optimality conditions laid down by John was that a multiplier gets associated
with the gradient of the objective function and this multiplier can also become zero, thus making the objective function
play no role in the optimization process. However, in order to put the necessary optimality conditions for problems with
inequality constraints in the form of Lagrange multiplier rule one needs a positive multiplier associated with the gradient of
the objective function. Kuhn and Tucker [15] realized that in order to achieve this one needs to impose certain conditions
on the constraints. These constraints, known as constraint qualifications, play a vital role in optimization. One of such
constraint qualification, due to Mangasarian and Fromovitz [16], was introduced in 1969 and it still plays a very central role
in optimization theory. In order to motivate our study, it will be useful to briefly state the Mangasarian–Fromovitz constraint
qualification (MFCQ).

Consider the following mathematical programming problem in finite dimensions,

min f (x),

subject to

gi(x) � 0, i = 1, . . . ,m,

h j(x) = 0, j = 1, . . . ,k,

where f : R
n → R, gi : R

n → R for all i = 1, . . . ,m and h j : R
n → R for all j = 1, . . . ,k. Assume that all the functions

are continuously Fréchet differentiable. Let x̄ be a feasible point of the above problem. Then the Mangasarian–Fromovitz
constraint qualification holds at x̄ if the set{∇h1(x̄), . . . ,∇hk(x̄)

}
is a linearly independent set and there exists d ∈ R

n such that

〈∇h j(x̄),d
〉 = 0, ∀ j = 1, . . . ,k,〈∇gi(x̄),d
〉
< 0, ∀i ∈ I(x̄),

where I(x̄) = {i ∈ {1, . . . ,m} | gi(x̄) = 0} denotes the set of active indices at the point x̄.
In 1977, J. Gauvin [12] observed that the Mangasarian–Fromovitz constraint qualification condition is in fact equivalent

(for finite dimensional scalar problems with smooth data) to the boundedness of the set of Lagrange multipliers associated
with the mathematical programming problem stated above. More precisely, Gauvin [12] showed that the boundedness of
the set

M(x̄) =
{

(λ,μ) ∈ R
m+ × R

k
∣∣∣ ∇ f (x̄) +

m∑
i=1

λi∇gi(x̄) +
k∑

j=1

μ j∇h j(x̄) = 0, λi gi(x̄) = 0, ∀i = 1, . . . ,m

}
,

is equivalent to the Mangasarian–Fromovitz constraint qualification. This remark gives more importance to the Mangasarian–
Fromovitz constraint qualification condition, because the fact that the set of multipliers is bounded has many implications
in the computational aspects concerning the Lagrangian function (see [1] and the references therein).

Let us now turn our attention to vector optimization problems in finite dimensions. Consider the following vector opti-
mization problem

min f (x) = (
f1(x), . . . , f p(x)

)
subject to

gi(x) � 0, i = 1, . . . ,m,

h j(x) = 0, j = 1, . . . ,k,

where f : R
n → R, gi : R

n → R for all i = 1, . . . ,m and h j : R
n → R for all j = 1, . . . ,k. Again, assume that all the functions

are continuously differentiable. It is well known that a feasible point x̄ of the above problem is called Pareto minimum if
there exists no feasible x such that f (x) − f (x̄) ∈ −(R

p
+ \ {0}) and the point x̄ is called a weak minimum if there exists

no feasible x such that f (x) − f (x̄) ∈ − int R
p
+ . The set of Lagrangian multipliers for the vector optimization problem stated

above is given as

E(x̄) =
{

(τ , λ,μ) ∈ (
R

p
+ \ {0}) × R

m+ × R
k
∣∣∣ p∑

r=1

τr∇ fr(x̄) +
m∑

i=1

λi∇gi(x̄) +
k∑

j=1

μ j∇h j(x̄) = 0,

λi gi(x̄) = 0, ∀i = 1, . . . ,m

}
.
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For example, if x̄ is a weak minimum and some constraint qualification is satisfied, then E(x̄) is nonempty. However,
observe that E(x̄) forms a cone and thus is unbounded. In Dutta and Lalitha [7] certain subsets of E(x̄) were identified and
necessary and sufficient conditions for those sets to be bounded were studied. In the quoted paper the authors considered
the case for both Pareto minimum and the weak Pareto minimum and they studied the smooth case and also the nonsmooth
case with locally Lipschitz data.

In the recent past, there has been a renewed interest in the study of non-convex vector optimization in infinite dimen-
sional spaces. These approaches are based on a very different scalarization approach than the ones used in the literature
(see, for example, [10] and [9] and the references therein). Further, there are few works which also concentrate on the study
of set-valued vector optimization. Very recently, the coderivative of a set-valued map defined by Mordukhovich (see [17])
was used as an important tool in the study of set-valued optimization (see [3,8,19]).

In this paper, we focus our attention on vector optimization problems with cone constraints in normed spaces. In par-
ticular, our main aim is to devise sufficient conditions under which the set of Lagrange multipliers to the cone constrained
vector optimization problem becomes a bounded set. We study both the smooth and nonsmooth case. While studying the
nonsmooth case we take a more unified view by studying set-valued optimization problems in terms of the coderivative of
Mordukhovich. We also show what happens when we consider the map to be single-valued. It is natural that the conditions
needed to guarantee the boundedness of the set of Lagrange multipliers would be more complicated than the one in the
finite dimensional case. We would like to stress that we use specific methods for each of the different cases that we are
going to study.

The paper is organized as follows. Section 2 contains some basic facts required in the sequel. Our main focus in this
section is the study of dually compact cones which play a pivotal role in our study. Section 3 is devoted to the case of
cone-constrained vector optimization problem with single-valued and smooth data on general normed vector spaces, while
Section 4 is devoted to the case of set-valued (nonsmooth) optimization problems on reflexive Banach spaces. The aim
of Sections 3 and 4 is to develop some Mangasarian–Fromovitz type conditions in order to ensure that a certain set of
Lagrange multipliers is bounded. In both cases we shall see that the conditions we shall find are similar to those in the
classical theory despite the fact we use different techniques: In Section 3 we mainly follow the lines of the classical case
while in Section 4 we consider the tools of generalized differentiation theory developed by B.S. Mordukhovich [17].

2. Preliminaries

In the first part of this paper we will be concerned with the following vector optimization problem with functional
constraints

(P) min f (x) such that g(x) ∈ −Q ,

where X, Y and Z are normed vector spaces, f : X → Y , g : X → Z are functions and Q is a closed convex cone in Z .
We shall consider that the space Y has a partial order induced by the closed convex cone K , as usual, by y1 �K y2 if
y2 − y1 ∈ K . We denote by M the set of feasible points of the problem (P), i.e., M := {x ∈ X | g(x) ∈ −Q }.

In the following, in some situations, we assume:

(AK ) int K �= ∅,
(A Q ) int Q �= ∅.

It is important to realize that in many normed spaces the natural ordering cone has an empty interior. For example, this
fact is true in most of the Asplund spaces. However, there are some Banach spaces where the natural ordering cone has a
nonempty interior. An important example of such a space is the space C(Ω) of all continuous real-valued functions defined
on the compact Hausdorff set Ω .

A feasible point x̄ is said to be a Pareto minimum of (P) if there exists no feasible x to (P) such that
f (x) − f (x̄) ∈ −(K \ {0}). In the event that the cone K is also having a nonempty interior then x̄ is called a weak minimum
of (P) if there exists no feasible x such that f (x) − f (x̄) ∈ − int K .

As we mentioned in the previous section of this paper we also focus our attention on set-valued optimization problem.
Hence, we mention the types of set-valued optimization problems that we shall consider in this study. Let us begin with
the some preliminaries on set-valued maps.

Let us consider set-valued maps F : X ⇒ Y , G : X ⇒ Z , where X , Y and Z are normed spaces. As usual, the graph of F
is Gr F = {(x, y) ∈ X × Y | y ∈ F (x)}. If A ⊂ X, F (A) := ⋃

x∈A F (x) and the inverse set-valued map of F is F −1 : Y ⇒ X given
by (y, x) ∈ Gr F −1 if and only if (x, y) ∈ Gr F .

We shall first consider the following set-valued problem where we will have no functional constraints. This problem is
given as follows:

(P1) min F (x), subject to x ∈ S ⊂ X,

where F : X ⇒ Y and the space Y is partially-ordered by a closed convex cone K . Now, with respect to the ordering cone K
we introduce the definition of Pareto minimum and weak Pareto minimum for the above problem.
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Definition 2.1. A point (x̄, ȳ) ∈ Gr F is called Pareto minimum point for problem (P1) if(
F (S) − ȳ

) ∩ −K = {0}.

For weak solutions (if int K �= ∅) one uses the following definition.

Definition 2.2. A point (x̄, ȳ) ∈ Gr F is called weak minimum point for problem (P1) if(
F (S) − ȳ

) ∩ − int K = ∅.

We shall also consider the case when the feasible set of the problem (P1) will be explicitly described via set-valued
maps. This is given in form of the following problem

(P2) min F (x), subject to x ∈ X, 0 ∈ G(x) + Q .

In fact, we shall also consider a simplified version of problem (P2) where G is not a set-valued map but a single-valued
one denoted by g . Then the problem above is represented as(

P ′
2

)
min F (x), subject to x ∈ X, g(x) �Q 0.

The definitions for both types of solutions for (P2) is obtained by replacing S in the above definitions by
{x ∈ X | 0 ∈ G(x) + Q } = G−1(−Q ).

As mentioned in the previous section, our main aim here is to work on infinite dimensional normed vector spaces, not
only with single-valued vector functions, but also with set-valued maps. We shall consider the smooth and nonsmooth data
and the solutions will be understood in the sense of weak minimality and/or Pareto minimality.

We will now turn our attention to a specific class of cones called dually compact cones which play a central role in our
analysis. This notion was introduced in [19] where the authors used it in order to develop Fermat type rules for set-valued
maps.

Let Y be a normed vector space and K ⊂ Y be a closed, convex and pointed cone which introduces a partial order
relation on Y . The notation Y ∗ stands for the topological dual of Y . Then, the dual cone of K is

K ∗ := {
y∗ ∈ Y ∗ ∣∣ y∗(k) � 0, ∀k ∈ K

}
.

In several cases, we shall work with cones with nonempty interior, but we shall also consider more general cones,
namely dually compact cones introduced in [19]. One says that K is dually compact if there exists a compact set C ⊂ Y s.t.

K ∗ ⊂ {
y∗ ∈ Y ∗ ∣∣ ‖y∗‖ � sup

y∈C
y∗(y)

}
.

In fact, this property is equivalent with the similar condition written for finite sets instead of compact sets: The cone is
dually compact if and only if there exists a finite subset P := {y1, y2, . . . , yp} ⊂ Y s.t.

K ∗ ⊂ {
y∗ ∈ Y ∗ ∣∣ ‖y∗‖ � max

yi∈P
y∗(yi)

}
. (1)

Indeed, since every finite set is compact it is clear that the latter property implies the definition. Conversely (see also [19]),
for the compact set C there exists a finite set {y1, y2, . . . , yp} s.t.

C ⊂
p⋃

i=1

(
yi + 2−1U Y

)
,

where U Y stands for the closed unit ball in Y . Then for every y∗ ∈ K ∗,

‖y∗‖ � sup
y∈⋃p

i=1(yi+2−1U Y )

y∗(y) = max
i=1,p

y∗(yi) + 2−1‖y∗‖.

We deduce that

‖y∗‖ � max
i=1,p

y∗(2yi),

so we can take P as {2y1,2y2, . . . ,2yp}.
Using (1) as the basis of further considerations one can easily obtain two conclusions already observed in [19]:

• every closed convex cone in a Euclidian space R
n (n � 1) is dually compact: Take P = {(x1, x2, . . . , xn) | xi ∈ {−1,1},

∀i = 1, p};
• a cone with nonempty interior (in a general normed vector space) is dually compact.
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Concerning this last assertion it is proved in [19] that for a cone with nonempty interior the set P can be taken as a
singleton. We can prove that this property characterizes the cones with nonempty interior among dually compact cones.
This is shown in the following proposition.

Proposition 2.1. Let K be a cone with nonempty interior. Then it is dually compact and the set P in (1) is a singleton. Conversely,
assume that K is dually compact and the set P is a singleton. Then K has a nonempty interior.

Proof. Let us first observe that in the case P := {ū} the right-hand side of (1) becomes {y∗ ∈ Y ∗ | ‖y∗‖ � y∗(ū)} and this
set is a closed convex cone. Moreover,{

y∗ ∈ Y ∗ ∣∣ ‖y∗‖ � y∗(ū)
} = {

y∗ ∈ Y ∗ ∣∣ y∗(u) � y∗(ū), ∀u ∈ U Y
}

= {
y∗ ∈ Y ∗ ∣∣ y∗(ū − u) � 0, ∀u ∈ U Y

}
= (ū − U Y )∗,

where A∗ stands, as usual, for the dual cone of a set A.

Suppose now that int K �= ∅. Then, there exists ū ∈ K and a positive a s.t. ū − aU Y ⊂ K , i.e. a−1ū − U Y ⊂ K . Then
(a−1ū − U Y )∗ ⊃ K ∗ so P can be taken as {a−1ū}.

Conversely, suppose that K is a dually compact cone with the set P = {ū}. Then, from the discussion at the beginning of
the proof we conclude that K ∗ ⊂ (ū − U Y )∗. Then

K ∗∗ = K ⊃ (ū − U Y )∗∗ = cl cone(ū − U Y ),

where cl cone(ū − U Y ) stands for the closed cone generated by ū − U Y . Since this cone obviously contains balls, int K �= ∅.

This completes the proof. �
Therefore, we can conclude that a closed convex cone K is dually compact and has empty interior if the set P contains

at least two distinct elements ū1, ū2 ∈ Y s.t. (ū1 − U Y )∗ �= (ū2 − U Y )∗, K ∗ ∩ (ūi − U Y )∗ \ (ū j − U Y )∗ �= ∅, i �= j, i, j ∈ 1,2.

Thus, from the point of view of vector optimization, it is important to have an example of a cone which is dually compact
and yet has an empty interior. We now present here the example very kindly provided to us by Professor K.F. Ng.

Example 2.1. Let X = l2 and let the cone C be given as

C =
{

(0, t1, t2, . . .)

∣∣∣ ∞∑
n=2

t2
n < +∞

}
.

It is clear that X is an Asplund space and C has an empty interior. Further, it is simple to see that the dual cone of C is
given as

C∗ = {
(t,0,0, . . .)

∣∣ t ∈ R
}
.

It is simple to see that C∗ is weakly locally compact. Hence, using Proposition 3.1 in [19], we conclude that C is dually
compact. In fact, one can see that the corresponding set P consists of two elements: (1,0,0, . . .) and (−1,0,0, . . .).

However, we would like to stress that the natural ordering cone of many normed spaces needs not be dually compact. In
the sequel, we use a remarkable property of dually compact cones [19, Relation 3.9] which follows from relation (1): If K is
dually compact then every (generalized) sequence (y∗

n) ⊂ K ∗ with y∗
n

w∗−−→ 0 converges strongly to 0. Here w∗ denotes the
weak star topology in Y ∗ generated by the natural duality between Y and Y ∗. We interpret this relation in the following
way: if a sequence (y∗

n) ⊂ K ∗ with ‖y∗
n‖ = 1 for every n, converges weakly star to some y∗, then y∗ �= 0 (contrary, y∗

n → 0
in norm and this is not possible since ‖y∗

n‖ = 1).

3. The case of smooth data

This section is devoted to development of main ideas in the simplest case: We consider weak solutions for vectorial
problems under inequality constraints with smooth data. For this section, we suppose

(A f ) The function f : X → Y is continuously Fréchet differentiable on X .

(Ag) The function g : X → Z is continuously Fréchet differentiable on X .

In what follows we denote by ∇ f (x) the Fréchet derivative of f at the point x ∈ X and by T B(M, z) the Bouligand
tangent cone to M ⊂ X at z ∈ M. We recall that

T B(M, z) := {
u ∈ X

∣∣ ∃(tn) ⊂ (0,∞), tn ↓ 0, ∃(un) ⊂ X, un → u, ∀n ∈ N, z + tnun ∈ M
}
.



594 M. Durea et al. / J. Math. Anal. Appl. 348 (2008) 589–606
The next results present a method for obtaining Lagrange multipliers for problem (P) along the lines of the classical scalar
case. Corresponding results are proven by Jahn [13, Theorem 7.3], using the Lyusternik theorem. For reader’s convenience,
we give the following necessary condition for weakly minimal points of (P) with the feasible set M .

Proposition 3.1. Assume (AK ) and (A f ). If x̄ ∈ M is a weakly minimal point for the problem (P), then ∇ f (x̄)(u) /∈ − int K for every
u ∈ T B(M, x̄).

Proof. We proceed by contradiction: Suppose that there is an element u ∈ T B(M, x̄) s.t. ∇ f (x̄)(u) ∈ − int K . Since f is
Fréchet differentiable at x̄, one has that there exists α : X → Y with limh→0 α(h) = α(0) = 0 s.t.

f (x) = f (x̄) + ∇ f (x̄)(x − x̄) + ‖x − x̄‖α(x − x̄) (2)

for every x ∈ X . Since u ∈ T B(M, x̄), following the definition, there exist (tn) ⊂ [0,∞), tn ↓ 0 and (un) ⊂ X , un → u, s.t.
x̄ + tnun ∈ M, for every n ∈ N. Using (2) one gets:

f (x̄ + tnun) − f (x̄) = tn∇ f (x̄)(un) + tn‖un‖α(tnun) = tn
(∇ f (x̄)(un) + ‖un‖α(tnun)

)
for every n ∈ N. Therefore, for n large enough, ∇ f (x̄)(un) + ‖un‖α(tnun) ∈ − int K , whence tn(∇ f (x̄)(un) + ‖un‖α(tnun)) ∈
− int K , and taking into account that x̄ + tnun ∈ M, this contradicts the weak minimality of x̄. The proposition is proved. �

Now, we present a calculation of the tangent cone which appears in the preceding proposition taking into account the
specific form of our feasible set M = {x ∈ X | g(x) ∈ −Q }. This is done in the next proposition where one needs to employ
a condition concerning the existence of an element ū ∈ X with ∇g(x̄)(ū) ∈ − int Q . This is a Mangasarian–Fromovitz type
condition (denoted in short as (MF) condition).

Proposition 3.2. Assume (A Q ) and (Ag). Furthermore, suppose that g(x̄) ∈ −Q and (MF) holds at x̄. Then,{
u ∈ X

∣∣ ∇g(x̄)(u) ∈ −Q
} ⊂ T B(M, x̄).

Moreover, if g(x̄) = 0 then

T B(M, x̄) = {
u ∈ X

∣∣ ∇g(x̄)(u) ∈ −Q
}
.

Proof. First, observe that the set M coincides with g−1(−Q ) and the announced form of the tangent cone to M at x̄
coincides with ∇g(x̄)−1(−Q ). In order to prove the first conclusion, consider an element u ∈ X with ∇g(x̄)(u) ∈ − int Q and
a sequence (tn) ⊂ (0,∞), tn ↓ 0. We use that g is differentiable at x̄ and we get the existence of a sequence (αn) ⊂ Z ,αn → 0
with

g(x̄ + tnu) = g(x̄) + tn∇g(x̄)(u) + tn‖u‖αn = g(x̄) + tn
(∇g(x̄)(u) + ‖u‖αn

) ∈ −Q − int Q ⊂ −Q ,

for n large enough. This shows that g(x̄ + tnu) ∈ −Q for large n, whence u ∈ T B(M, x̄).
Let us now take u ∈ X with ∇g(x̄)(u) ∈ −Q and for every n ∈ N \ {0} consider un := n−1ū + (1 − n−1)u where ū is given

by condition (MF). It is clear that the sequence (un) converges to u and since

∇g(x̄)(un) = n−1∇g(x̄)(ū) + (
1 − n−1)∇g(x̄)(u) ∈ − int Q − Q ⊂ − int Q ,

we have that ∇g(x̄)(un) ∈ − int Q for every n. Then un ∈ T B(M, x̄) for every n and since T B(M, x̄) is a closed cone, we get
u ∈ T B(M, x̄). This ends the proof of the first part.

Now, we study the case where g(x̄) = 0. Let us consider u ∈ T B(M, x̄). Hence there exists a sequence {un} such that
un → u and a sequence tn ↓ 0 such that x̄ + tnun ∈ M . Hence g(x̄ + tnun) ∈ −Q . Since g(x̄) = 0 we have

g(x̄ + tnun) − g(x̄) ∈ −Q .

Since tn > 0 for all n ∈ N and Q is a cone we have that

g(x̄ + tnun) − g(x̄)

tn
∈ −Q .

Since g is smooth and Q is a closed cone we have as n → ∞
∇g(x̄)(u) ∈ −Q .

This yields

T B(M, x̄) ⊂ {
u ∈ X

∣∣ ∇g(x̄)(u) ∈ −Q
}
,

i.e., the assertions of the proposition are shown. �
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From the above proof it is clear that for the equality to hold in the above result the fact that g(x̄) = 0 plays a very crucial
role. However, we want to stress that such a requirement is not mandatory to calculate the Bouligand tangent cone to the
set M at x̄. The result would be more generalized and more involved than that of the above proposition. We show such a
calculation through the following proposition.

Proposition 3.3. Assume (A Q ) and (Ag). Let x̄ ∈ M and let us assume that there exists ū ∈ X such that

∇g(x̄)(ū) ∈ int T B
(−Q , g(x̄)

)
. (3)

Then

T B(M, x̄) = {
u ∈ X

∣∣ ∇g(x̄)(u) ∈ T B(−Q , x̄)
}
.

Proof. Let us first prove that one has{
u ∈ X

∣∣ ∇g(x̄)(u) ∈ T B(−Q , x̄)
} ⊂ T B(M, x̄)

under the qualification condition (3). First, let us consider an element u ∈ X such that

∇g(x̄)(u) ∈ int T B
(−Q , g(x̄)

)
.

Since −Q is convex and int(−Q ) �= ∅ we have from Proposition 4.2.3 of Aubin and Frankowska [2]

int T B
(−Q , g(x̄)

) =
⋃
μ>0

(
int(−Q ) − g(x̄)

μ

)
.

This shows that there exists μ̄ > 0 such that

g(x̄) + μ̄∇g(x̄)(u) ∈ int(−Q ).

Now consider a sequence λn > 0 such that λn ↓ 0. Thus we have

g(x̄ + λnμ̄u) = g(x̄) + λnμ̄∇g(x̄)(u) + λnμ̄‖u‖vn,

where vn ∈ Z and vn → 0 when n → ∞. Therefore, we have

g(x̄ + λnμ̄u) = (1 − λn)g(x̄) + λn
(

g(x̄) + μ̄∇g(x̄)(u) + μ̄‖u‖vn
)
.

For n sufficiently large one can show that

g(x̄ + tnu) ∈ int(−Q ) ⊂ −Q ,

where tn = λnμ̄. Thus, it is clear that tn ↓ 0 and x̄ + tnu ∈ M and hence u ∈ T B(M, x̄).
Now consider the case

∇g(x̄)(u) ∈ T B
(−Q , g(x̄)

)
.

We take a point ū which satisfies (3). Consider now the sequence (for n � 2)

un = 1

n
ū +

(
1 − 1

n

)
u.

It is clear that un → u. Now observe that

∇g(x̄)(un) = 1

n
∇g(x̄)(ū) +

(
1 − 1

n

)
∇g(x̄)(u).

This shows that

∇g(x̄)(un) ∈ 1

n
int T B

(−Q , g(x̄)
) +

(
1 − 1

n

)
T B

(−Q , g(x̄)
)
.

Since Q is a convex cone we have that T B(−Q , g(x̄)) is a convex cone and hence

∇g(x̄)(un) ∈ int T B(−Q , x̄).

Therefore, un ∈ T B(M, x̄) for all n � 2. Since T B(M, x̄) is closed we have u ∈ T B(M, x̄). This proves the required inclusion.
For the opposite inclusion we proceed as follows. From [2, p. 124, Table 4.1, item (4)] we have

∇g(x̄)
(
T B

(
g−1(−Q ), x̄

)) ⊂ T B
(−Q , g(x̄)

)
.

Since g−1(−Q ) = M, we have

T B(M, x̄) ⊂ {
u ∈ X

∣∣ ∇g(x̄)(u) ∈ T B
(−Q , g(x̄)

)}
and this yields the result. �



596 M. Durea et al. / J. Math. Anal. Appl. 348 (2008) 589–606
Remark 3.1. It is simple to observe that if g(x̄) = 0 in the above proposition, the conclusion of Proposition 3.2 follows
immediately by noting the fact that

T B(−Q ,0) = −Q .

The conclusion of the above proposition also holds under the Robinson constraint qualification. The Robinson constraint qual-
ification requires that

0 ∈ − int
{

g(x̄) + ∇g(x̄)(X) + Q
}
,

where ∇g(x̄)(X) denotes the image of ∇g(x̄). This has been demonstrated for example in Bonnans and Shapiro [4]. Observe
that (3) reduces to the (MF) condition when g(x̄) = 0.

Putting together Propositions 3.1 and 3.2 one gets the next corollary.

Corollary 3.1. Assume (AK ), (A Q ), (A f ) and (Ag). If x̄ ∈ M is a weakly minimal point for the problem (P) and there exists ū ∈ X s.t.
∇g(x̄)(ū) ∈ − int Q , then ∇ f (x̄)(u) /∈ − int K for every u ∈ X with ∇g(x̄)(u) ∈ −Q .

We present now an existence result for the Lagrange multipliers in our case. A corresponding result, in a finite dimen-
sional setting, is shown by Jahn [13, Theorem 7.8].

Proposition 3.4. Assume (AK ), (A Q ), (A f ) and (Ag). Let x̄ ∈ M be a weakly minimal point for the problem (P) s.t. the condition
(MF) holds at x̄. Then there exists y∗ ∈ K ∗ \ {0} and z∗ ∈ Q ∗ s.t.

y∗ ◦ ∇ f (x̄) + z∗ ◦ ∇g(x̄) = 0. (4)

Proof. From Corollary 3.1 one has that(∇ f (x̄)(u),∇g(x̄)(u)
)

/∈ − int K × −Q

for every u ∈ X . Since the set {(∇ f (x̄)(u),∇g(x̄)(u)) | u ∈ X} ⊂ Y × Z is convex one can use a standard convex separation
theorem to obtain a pair (y∗, z∗) ∈ (Y ∗ × Z∗) \ {(0,0)} s.t.(

y∗ ◦ ∇ f (x̄)
)
(u) + (

z∗ ◦ ∇g(x̄)
)
(u) � y∗(k) + z∗(q)

for every u ∈ X, k ∈ −K and q ∈ −Q . Now, by some standard arguments, we have that y∗ ∈ K ∗ , z∗ ∈ Q ∗ and(
y∗ ◦ ∇ f (x̄)

)
(u) + (

z∗ ◦ ∇g(x̄)
)
(u) � 0

for every u ∈ X . Then, by the linearity of the involved functionals, one gets(
y∗ ◦ ∇ f (x̄)

)
(u) + (

z∗ ◦ ∇g(x̄)
)
(u) = 0

for every u ∈ X . Suppose by contradiction that y∗ = 0; then z∗ �= 0 and (z∗ ◦ ∇g(x̄))(ū) = 0. But this is a contradiction,
because z∗ ∈ Q ∗ and ∇g(x̄)(ū) ∈ − int Q , so (z∗ ◦ ∇g(x̄))(ū) < 0. The proof is complete. �

In the above result, fix y∗ ∈ K ∗ \ {0} and consider the set

L y∗ := {z∗ ∈ Q ∗ | (4) holds}.
We have seen in Proposition 3.4 that condition (MF) ensures the nonemptiness of L y∗ for at least one y∗ ∈ K ∗ \ {0}. We ask
when this set is bounded. In order to give an appropriate (positive) answer to this question, let us observe that condition
(MF) is equivalent to the following regularity condition (RC):

z∗ ∈ Q ∗, z∗ ◦ ∇g(x̄) = 0 ⇒ z∗ = 0.

Indeed, suppose first that (MF) holds and (RC) does not. Then there exists ū ∈ X s.t. ∇g(x̄)(ū) ∈ − int Q , and hence
z∗ ∈ Q ∗ \ {0} with z∗ ◦ ∇g(x̄) = 0. This implies z∗(∇g(x̄)(ū)) = 0, but, on the other hand z∗(∇g(x̄)(ū)) < 0, hence a contra-
diction. Suppose now that (RC) holds and (MF) does not. This is ∇g(x̄)(X) ∩ − int Q = ∅. It is clear that the set ∇g(x̄)(X)

is convex, so from a separation theorem, there exists z∗ ∈ Q ∗ \ {0} with z∗(∇g(x̄)(u)) � 0 for every u ∈ X . The linearity of
z∗ ◦ ∇g(x̄) implies that z∗(∇g(x̄)(u)) = 0 for every u ∈ X and this yields (by (ii)) z∗ = 0, a contradiction.

In order to prove our result concerning the boundedness of L y∗ one needs the following assumption on the space Z :

(A Z ) The closed unit ball of Z∗ is w∗-sequentially compact.

Note that this assumption holds if Z is a subset of a weakly compactly generated space (see [6,11]). In particular, (A Z )

holds if Z is a separable Banach space or a reflexive Banach space.



M. Durea et al. / J. Math. Anal. Appl. 348 (2008) 589–606 597
Remark 3.2. We show the following theorem assuming (among other things) (A Z ) and that Q is dually compact. In Ex-
ample 2.1 a dually compact cone (with empty interior) in X = l2 is given such that (A Z ) is fulfilled. However, it would be
possible to replace in Theorem 3.1 the assumption that Q is dually compact by (A Q ).

Theorem 3.1. Assume (A Z ), (A f ) and (Ag). Furthermore, suppose that Q is dually compact. Let y∗ ∈ K ∗ \ {0}. If the regularity
condition (RC) holds, then the set L y∗ is (norm) bounded. Conversely, if L y∗ is nonempty and bounded then (RC) holds.

Proof. Suppose, again by contradiction, that L y∗ is unbounded. Then, one can find a sequence (z∗
n) ⊂ L y∗ with ‖z∗

n‖ → ∞.

By normalization, one has(∥∥z∗
n

∥∥−1
y∗ ◦ ∇ f (x̄)

)
(u) + (∥∥z∗

n

∥∥−1
z∗

n ◦ ∇g(x̄)
)
(u) = 0 (5)

for every u ∈ X . It is clear that the sequence (‖z∗
n‖−1z∗

n) ⊂ Q ∗ is bounded, whence, by (A Z ), it contains a w∗-convergent

subsequence to some z∗ ∈ Q ∗ . Without relabeling, one can write ‖z∗
n‖−1z∗

n
w∗−−→ z∗. Since Q is dually compact, one gets that

z∗ �= 0 (contrary, ‖z∗
n‖−1z∗

n → 0 in norm and this is not possible because ‖‖z∗
n‖−1z∗

n‖ = 1 for every n). On the other hand,
‖z∗

n‖−1 y∗ → 0. For every fixed u ∈ X one passes to the weak∗ limit in (5) and, consequently,(
z∗ ◦ ∇g(x̄)

)
(u) = 0

for every u ∈ X, i.e., z∗ ◦∇g(x̄) = 0. Since z∗ �= 0, this contradicts the regularity condition (RC), hence the conclusion follows.
For the opposite, let us consider z̄∗ ∈ L y∗ and suppose that there exists z∗ ∈ Q ∗ \ {0} with z∗ ◦ ∇g(x̄) = 0. Then is clear that
z̄∗ + nz∗ ∈ L y∗ for every n ∈ N, so L y∗ is unbounded. This is again a contradiction and the result is proved. �
Remark 3.3. Observe that the set L y∗ is always convex, so under (MF), it is weakly∗ compact.

We can summarize the results of this section in a corollary.

Corollary 3.2. Assume (A Z ), (AK ), (A Q ), (A f ) and (Ag). Suppose that x̄ ∈ M is a weakly minimal point for the problem (P). The
following assumptions are equivalent:

(i) (MF) holds;
(ii) (RC) holds;

(iii) there exists y∗ ∈ K ∗ \ {0} s.t. L y∗ is nonempty and bounded.

Similar conditions can be obtained (along the lines of scalar theory) for problems with mixed constraints, i.e., problems
having some additional constraints given as h(x) = 0, where h is a smooth function acting between X and another normed
vector space W . Of course, in this case one needs a constraint qualification condition with respect to h as the surjectivity
of its derivative and, moreover (for the boundedness of the set of Lagrange multipliers) one needs the space W to be finite
dimensional. We briefly consider this situation.

Let f : X → Y and g : X → Z , h : X → W be functions and consider the problem:(
P ′) minimize f (x) s.t. g(x) ∈ −Q , h(x) = 0.

We denote by M ′ the set of feasible points of the problem (P ′), i.e.,

M ′ := {
x ∈ X

∣∣ g(x) ∈ −Q , h(x) = 0
}
.

The Proposition 3.1 must be considered with M ′ instead of M.

Suppose

(Ah) The function h is continuously Fréchet differentiable on X .

The (MF) condition for this case (referred as (MF)′) is that there exists an ū ∈ X with ∇g(x̄)(ū) ∈ − int Q and
∇h(x̄)(ū) = 0. We follow a correspondence with the results concerning problem (P) and we only point out the differences
in the proofs.

Proposition 3.5. Assume (A Q ), (Ag) and (Ah). Suppose that g(x̄) ∈ −Q and (MF)′ holds at x̄ and the linear operator ∇h(x̄) is
surjective. Then,{

u ∈ X
∣∣ ∇g(x̄)(u) ∈ −Q , ∇h(x̄)(u) = 0

} ⊂ T B(M ′, x̄).

Proof. First, let u ∈ X s.t. ∇g(x̄)(u) ∈ − int Q ,∇h(x̄)(u) = 0. Since ∇h(x̄) is surjective there exist (tn) ↓ 0 and (un) → 0 s.t.
h(x̄ + tnun) = 0 (apply [2, Theorem 4.3.3]). The differentiability of g ensures the existence of a sequence (αn) ⊂ Z , αn → 0
with
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g(x̄ + tnun) = g(x̄) + tn∇g(x̄)(un) + tn‖un‖αn

= g(x̄) + tn
(∇g(x̄)(un) + ‖un‖αn

) ∈ −Q − int Q ⊂ −Q

for n large enough. This shows that g(x̄ + tnun) ∈ −Q for large n, hence u ∈ T B(M ′, x̄).
For the general case of u ∈ X with ∇g(x̄)(u) ∈ −Q , ∇h(x̄)(u) = 0 we proceed as in the proof of Proposition 3.1 using

(MF)′ instead of (MF). �
Corollary 3.3. Assume (AK ), (A Q ), (A f ), (Ag) and (Ah). If x̄ ∈ M is a weakly minimal point for the problem (P ′) such that (MF)′
holds at x̄ and ∇h(x̄) is surjective then ∇ f (x̄)(u) /∈ − int K for every u ∈ X with ∇g(x̄)(u) ∈ −Q ,∇h(x̄)(u) = 0.

The Lagrange multipliers condition is as below, cf. Jahn [13, Theorem 7.8], for the finite dimensional setting.

Proposition 3.6. Assume (AK ), (A Q ), (A f ), (Ag) and (Ah). Let x̄ ∈ M be a weakly minimal point for the problem (P ′) such that the
condition (MF)′ holds at x̄ and ∇h(x̄) is surjective. Then there exists y∗ ∈ K ∗ \ {0}, z∗ ∈ Q ∗, p∗ ∈ W ∗ s.t.

y∗ ◦ ∇ f (x̄) + z∗ ◦ ∇g(x̄) + p∗ ◦ ∇h(x̄) = 0. (6)

Proof. One can proceed as above because(∇ f (x̄)(u),∇g(x̄)(u),∇h(x̄)(u)
)

/∈ − int K × −Q × {0}
for every u ∈ X . �

Again, in the above result fix y∗ ∈ K ∗ \ {0} and consider the set

L′
y∗ := {

(z∗, p∗) ∈ Q ∗ × W ∗ ∣∣ (6) holds
}
.

It is easy to observe that, under the surjectivity of ∇h(x̄), condition (MF)′ is equivalent to the following regularity condi-
tion (RC)′:

z∗ ∈ Q ∗, p∗ ∈ W ∗, z∗ ◦ ∇g(x̄) + p∗ ◦ ∇h(x̄) = 0 ⇒ z∗ = 0, p∗ = 0.

Theorem 3.2. Assume (A Z ), (A f ), (Ag) and (Ah). Furthermore, suppose that Q is dually compact. Let y∗ ∈ K ∗ \ {0}. Suppose that W
is finite dimensional and ∇h(x̄) is surjective. If the regularity condition (RC)′ holds at x̄ then the set L′

y∗ is (norm) bounded. Conversely,
if L′

y∗ is nonempty and bounded, then (RC)′ holds.

Proof. The proof is as in Theorem 3.1 because the cone Q × {0} ⊂ Z × W is obviously dually compact. �
4. The case of nonsmooth data

In this section we pass to the case where the data are not necessarily smooth and even not necessarily single-valued.
We shall discuss the problems (P1), (P ′

2) and (P2). Further, we will be only concerned with Pareto minima of these classes
of problems. Moreover, we will not make any assumption on the interior of the ordering cone K . In fact, the interior of
the ordering cone can be empty. The details of the solution concepts associated with these problems are given in Section 2.
The optimality conditions and the results associated with the boundedness of the set of Lagrange multipliers depend on an
important construction associated with the set-valued map—the coderivative of Mordukhovich. In the infinite dimensional
setting there are two notions of coderivative, namely the mixed coderivative and the normal coderivative whose definition
we present below. However, before defining the coderivatives it is important to state the various notions of normal cones
that we use in this section, since the coderivatives in turn depend on the notion of normal cones to non-convex sets. The
definitions that appear below are give in the comprehensive monograph of Mordukhovich [17] but we present them here
mainly for the sake of completeness.

Definition 4.1. Let X be an Asplund space and S ⊂ X be a nonempty closed subset of X and let x ∈ S. The limiting normal
cone to S at x is

N(S, x) := {
x∗ ∈ X∗ ∣∣ ∃xn

S−→ x, x∗
n

w∗−−→ x∗, x∗
n ∈ N F (S, xn)

}
,

where N F (S, z) denotes the Fréchet normal cone to S at a point z ∈ S, given as

N F (S, z) :=
{

x ∈ X∗
∣∣∣ lim sup

u∈S, u→z

x∗(u − z)

‖u − z‖ � 0

}
.
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It is important to note that the Fréchet normal cone is always convex and closed in the strong topology in X∗ and hence
it is weak∗-closed in X∗ if X is reflexive. Further, the limiting normal cone needs not to be closed in the norm topology
even in the setting of a Hilbert space. See [17] for details.

In order to define the two coderivative notions of Mordukhovich (see, for example [17]) one needs to define another
fundamental construction, namely the Fréchet coderivative. We would like to stress that all the spaces involved in this
section are Asplund spaces.

Definition 4.2. Let F : X ⇒ Y be a set-valued map. Then the Fréchet coderivative of F at (x̄, ȳ) ∈ Gr F is defined as the
multifunction D̂∗ F (x̄, ȳ) : Y ∗ ⇒ X∗ such that

D̂∗ F (x̄, ȳ)(y∗) = {
x∗ ∈ X∗ ∣∣ (x∗,−y∗) ∈ N F

(
Gr F , (x̄, ȳ)

)}
.

Definition 4.3. Let F : X ⇒ Y be a set-valued map. Then the mixed coderivative of F at (x̄, ȳ) ∈ Gr F is a set-valued map
D∗

M : Y ∗ ⇒ X∗ given as

D∗
M F (x̄, ȳ)

(
ȳ∗) = lim sup

(x,y)→(x̄, ȳ), y∗→ ȳ∗
D̂∗ F (x, y)(y∗).

This means that the mixed coderivative is a collection of x̄∗ ∈ X∗ such that there are sequences (xk, yk, y∗
k ) → (x̄, ȳ, ȳ∗) and

x∗
k

w∗−−→ x̄∗ with (xk, yk) ∈ Gr F and x∗
k ∈ D̂∗ F (x, y)(y∗

k ).

Definition 4.4. Let F : X ⇒ Y be a set-valued map. Then the normal coderivative of F at (x̄, ȳ) ∈ Gr F is a set-valued map
D∗

N : Y ∗ ⇒ X∗ given as

D∗
N F (x̄, ȳ)( ȳ∗) = lim sup

(x,y)→(x̄, ȳ), y∗ w∗−−→ ȳ∗
D̂∗ F (x, y)(y∗).

This means that the normal coderivative is a collection of x̄∗ ∈ X∗ such that there are sequences (xk, yk) → (x̄, ȳ) and
(x∗

k , y∗
k )

w∗−−→ (x̄∗, ȳ∗) with (xk, yk) ∈ Gr F and x∗
k ∈ D̂∗ F (x, y)(y∗

k ). The normal coderivative can also be equivalently repre-
sented as

D∗
N F (x, y)(y∗) := {

x∗ ∈ X∗ ∣∣ (x∗,−y∗) ∈ N
(
Gr F , (x, y)

)}
.

When F : X → Y is a single-valued mapping then we denote the mixed and normal coderivatives as D∗
M F (x̄)(y∗) and

D∗
N F (x̄)(y∗), respectively. Observe that the major difference in the definition of the mixed coderivative and normal coderiva-

tive is in the manner in which y∗
k converges to ȳ∗ . In case of the mixed derivative the convergence is in the norm topology,

while in the case of the normal coderivative the convergence is in the weak∗-star topology. It is clear that if X and Y are
finite dimensional spaces both notions of coderivative coincide. Moreover, all the three coderivatives mentioned above are
positively homogenous set-valued maps. A set-valued map F : X ⇒ Y is said to be positively homogeneous if αF (x) ⊂ F (αx),
with α > 0. Further, it is clear that for any y∗ ∈ Y ∗ one has

D̂ F (x̄, ȳ)(y∗) ⊂ D∗
M F (x̄, ȳ)(y∗) ⊂ D∗

N F (x̄, ȳ)(y∗). (7)

If f : X → Y is continuously Fréchet differentiable at x̄ then one has from Theorem 1.38 in Mordukhovich [17] the following
fact:

D∗
M f (x̄)(y∗) = D∗

N f (x̄)(y∗) = {∇ f (x̄)∗ y∗}, ∀y∗ ∈ Y ∗, (8)

where ∇ f (x̄)∗ denotes the adjoint operator associated with ∇ f (x̄). However, keeping in view of the notations already used
in Section 3 we can express ∇ f (x̄)∗ y∗ equivalently as y∗ ◦ ∇ f (x̄), i.e., ∇ f (x̄)∗ y∗ = y∗ ◦ ∇ f (x̄).

There are two-regularity notions which will play an important role in the sequel. A set-valued map F : X ⇒ Y is called
N-regular at (x̄, ȳ) if

D∗
N F (x̄, ȳ) = D̂∗ F (x̄, ȳ),

and F is called M-regular at (x̄, ȳ) if

D∗
M F (x̄, ȳ) = D̂∗ F (x̄, ȳ).

It is clear from (7) that if F is N-regular then it is also M-regular though the converse may not hold. If F is N-regular, then
one has

D̂ F (x̄, ȳ)(y∗) = D∗
M F (x̄, ȳ)(y∗) = D∗

N F (x̄, ȳ)(y∗). (9)

Further, N-regularity can also be equivalently stated as

N
(
Gr F , (x̄, ȳ)

) = N̂
(
Gr F , (x̄, ȳ)

)
.
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It is well known that locally Lipschitz functions play a major role in optimization theory, see for example Clarke [5].
Thus it is natural expect a generalization of the notion of locally Lipschitz functions in the setting of set-valued mappings.
In fact there are two concepts, namely, the pseudo-Lipschitz set-valued maps and Lipschitz set-valued maps. We present the
definition of these two well-known concepts.

Definition 4.5. A set-valued map F : X ⇒ Y is called pseudo-Lipschitz at a point (x̄, ȳ) ∈ Gr F if there exist a positive number
L > 0 and some neighborhoods U of x̄ and V of ȳ s.t. for every x, u ∈ U one has:

F (x) ∩ V ⊂ F (u) + L‖x − u‖U Y .

When V = Y then F is said to be a Lipschitz set-valued map relative to the set U . When F is single-valued map and
Lipschitz in the above sense then we say that f is locally Lipschitz at x̄ or Lipschitz around x̄.

We shall now provide an interesting characterization of the pseudo-Lipschitz property of a set-valued map F in terms
of its normal coderivative through the following lemma which play a pivotal role in the sequel. The simple proof of this
lemma is a direct application of Theorem 1.38 in Mordukhovich [17] and N-regularity.

Lemma 4.1. Let F : X ⇒ Y be a set-valued map and let (x̄, ȳ) ∈ Gr F . Let F be pseudo-Lipschitz and N-regular, then

D∗
N F (x̄, ȳ)(0) = {0}.

Now, we present some robust optimality conditions in terms of the normal coderivative for (P1) and (P ′
2).

Theorem 4.1. (See [19, Corollary 4.1] and see also [8, Corollary 3.4].) Suppose that X, Y are Asplund spaces, (x̄, ȳ) is a Pareto minimum
point for (P1) and F is pseudo-Lipschitz at (x̄, ȳ). If K is dually compact, then there exists y∗ ∈ K ∗, ‖y∗‖ = 1 s.t.

0 ∈ D∗
N F (x̄, ȳ)(y∗) + N(S, x̄).

Since in finite dimensions every closed convex cone is dually compact, one has the following result.

Corollary 4.1. Suppose that X and Y are finite dimensional spaces, (x̄, ȳ) is a Pareto minimum point for (P1) and F is pseudo-Lipschitz
at (x̄, ȳ). Then there exists y∗ ∈ K ∗, ‖y∗‖ = 1 s.t.

0 ∈ D∗
N F (x̄, ȳ)(y∗) + N(S, x̄).

Now, we shall focus our attention on the problem (P ′
2).

Theorem 4.2. (See [19, Theorem 4.3].) Suppose that X, Y , Z are Asplund spaces and (x̄, ȳ) is a Pareto minimum point for (P ′
2). If F is

pseudo-Lipschitz at (x̄, ȳ) and g is locally Lipschitz, and both K and Q are dually compact, then there exist y∗ ∈ K ∗ and z∗ ∈ Q ∗ with
‖y∗‖ + ‖z∗‖ = 1 s.t.

0 ∈ D∗
N F (x̄, ȳ)(y∗) + D∗

N g(x̄)(z∗). (10)

Now, if g is continuously Fréchet differentiable then using (8) and Theorem 4.2 we get the following proposition.

Proposition 4.1. Suppose that X, Y are Asplund spaces, (x̄, ȳ) is a Pareto minimum point for (P ′
2), F is pseudo-Lipschitz at (x̄, ȳ)

and g is continuously Fréchet differentiable at x̄. Let K and Q be dually compact. Then there exists y∗ ∈ K ∗ and z∗ ∈ Q ∗ with
‖y∗‖ + ‖z∗‖ = 1 s.t.

−z∗ ◦ ∇g(x̄) ∈ D∗
N F (x̄, ȳ)(y∗). (11)

The elements y∗and z∗ are the Lagrange multipliers for our problem. The question which arise in the context of our
discussion is when the set

L y∗ = {
z∗ ∈ Q ∗ | (11) holds

}
is nonempty and bounded for an y∗ ∈ K ∗ \ {0}. The answer is provided in the next result under some regularity assumptions
on F .

Theorem 4.3. Let X, Y , Z be reflexive Banach spaces and (x̄, ȳ) be a Pareto minimum point for (P ′
2). Suppose that F is pseudo-Lipschitz

and N-regular at (x̄, ȳ), g is continuously Fréchet differentiable at x̄, K and Q are dually compact and the following constraint
qualification condition holds:

z∗ ∈ Q ∗, z∗ ◦ ∇g(x̄) = 0 ⇒ z∗ = 0. (12)

Then there exists y∗ ∈ K ∗,‖y∗‖ = 1 s.t. L y∗ is nonempty and bounded.
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Proof. Proposition 4.1 ensures the existence of some y∗ ∈ K ∗ , z∗ ∈ Q ∗ with ‖y∗‖ + ‖z∗‖ = 1 s.t. −z∗ ◦ ∇g(x̄) ∈
D∗

N F (x̄, ȳ)(y∗). If y∗ = 0, since F is pseudo-Lipschitz and N-regular at (x̄, ȳ) from Lemma 4.1 we have

D∗
N F (x̄, ȳ)(0) = {0},

whence −z∗ ◦ ∇g(x̄) = 0. The constraint qualification condition (12) implies z∗ = 0, a contradiction. Therefore, y∗ �= 0 and
L y∗ is nonempty. Suppose, by contradiction, that there exists a sequence (z∗

n) ⊂ L y∗ with ‖z∗
n‖ → +∞. Therefore, for every

natural n,

−z∗
n ◦ ∇g(x̄) ∈ D∗

N F (x̄, ȳ)(y∗),

hence (−z∗
n ◦ ∇g(x̄),−y∗) ∈ N

(
Gr F , (x̄, ȳ)

)
.

Consequently,(∥∥z∗
n

∥∥−1(−z∗
n ◦ ∇g(x̄)

)
,−∥∥z∗

n

∥∥−1
y∗) ∈ N

(
Gr F , (x̄, ȳ)

)
.

It is clear that −‖z∗
n‖−1 y∗ → 0 while, using the dually compactness of Q ,∥∥z∗

n

∥∥−1(−z∗
n ◦ ∇g(x̄)

) w∗−−→ z∗ ◦ ∇g(x̄)

with z∗ ∈ Q ∗ \ {0} (note that (A Z ) holds, because Z is a reflexive Banach space). On the other hand, the N-regularity of F at
(x̄, ȳ) ensures the closedness (in the product topology of strong topologies) and the convexity of N(Gr F , (x̄, ȳ)). Since X, Y
are reflexive Banach spaces, N(Gr F , (x̄, ȳ)) is closed in w∗ × w∗ topology. So,(−z∗ ◦ ∇g(x̄),0

) ∈ N
(
Gr F , (x̄, ȳ)

)
,

i.e.

−z∗ ◦ ∇g(x̄) ∈ D∗
N F (x̄, ȳ)(0).

Again, since F is pseudo-Lipschitz and N-regular at (x̄, ȳ), Lemma 4.1 implies

D∗
N F (x̄, ȳ)(0) = {0},

whence

−z∗ ◦ ∇g(x̄) = 0.

In our assumptions, this would imply z∗ = 0, which is a contradiction. The proposition is proved. �
We make use of Theorem 4.2 in order to study the problem of the nonemptiness and boundedness of the set L′

y∗ :=
{z∗ ∈ Q ∗ | (10) holds} for an element y∗ ∈ K ∗ , ‖y∗‖ = 1.

Theorem 4.4. Let X, Y , Z be reflexive Banach spaces and (x̄, ȳ) be a Pareto minimum point for (P ′
2). Suppose that F is pseudo-

Lipschitz and N-regular at (x̄, ȳ) and g is locally Lipschitz at x̄ and N - regular at (x̄, g(x̄)). If both K and Q are dually compact and
the following constraint qualification condition holds

z∗ ∈ Q ∗, 0 ∈ D∗
N g(x̄)(z∗) ⇒ z∗ = 0 (13)

then there exists y∗ ∈ K ∗ , ‖y∗‖ = 1 s.t. L′
y∗ is nonempty and bounded.

Proof. Theorem 4.2 ensures the existence of some y∗ ∈ K ∗ and z∗ ∈ Q ∗ with ‖y∗‖ + ‖z∗‖ = 1 s.t.

0 ∈ D∗
N F (x̄, ȳ)(y∗) + D∗

N g(x̄)(z∗).

Now suppose that y∗ = 0, hence z∗ �= 0. Then since F is pseudo-Lipschitz and N-regular at (x̄, ȳ), one has that
D∗

N F (x̄, ȳ)(y∗) = {0}. Accordingly, relation (10) can be written down as

0 ∈ D∗
N g(x̄)(z∗)

and in our constraint qualification condition we get z∗ = 0, a contradiction. We conclude that there exists y∗ ∈ K ∗ , ‖y∗‖ = 1
s.t. L′

y∗ is nonempty. Suppose, by contradiction, that there exists a sequence (z∗
n) ⊂ L′

y∗ with ‖z∗
n‖ → +∞. Therefore, for

every natural n one has:

0 ∈ D∗
N F (x̄, ȳ)(y∗) + D∗

N g(x̄)(z∗
n).

Since the normal coderivative is a positively homogenous set-valued map we have

0 ∈ D∗
N F (x̄, ȳ)

(∥∥z∗
n

∥∥−1
y∗) + D∗

N g(x̄)
(∥∥z∗

n

∥∥−1
z∗

n

)
.
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Therefore, there exists (u∗
n) ∈ X∗ s.t., for every n,

u∗
n ∈ D∗

N F (x̄, ȳ)
(∥∥z∗

n

∥∥−1
y∗); −u∗

n ∈ D∗
N g(x̄)

(∥∥z∗
n

∥∥−1
z∗

n

)
.

This means,(
u∗

n,−∥∥z∗
n

∥∥−1
y∗) ∈ N

(
Gr F , (x̄, ȳ)

); (−u∗
n,

∥∥z∗
n

∥∥−1
z∗

n

) ∈ N
(
Gr g,

(
x̄, g(x̄)

))
.

Of course, the sequences (‖z∗
n‖−1 y∗) and (‖z∗

n‖−1z∗
n) are bounded and pseudo-Lipschitzianity of F ensure that (u∗

n) is

bounded too. So, we can suppose that u∗
n

w∗−−→ u ∈ X∗ . Dual compactness of Q allows us to write that ‖z∗
n‖−1z∗

n
w∗−−→ z∗ ∈

Q ∗ \ {0}. Clearly, (‖z∗
n‖−1 y∗) → 0. The same argument as in the proof of the preceding result gives

(u∗,0) ∈ N
(
Gr F , (x̄, ȳ)

); (−u∗, z∗) ∈ N
(
Gr g,

(
x̄, g(x̄)

))
,

i.e.

0 ∈ D∗
N F (x̄, ȳ)(0) + D∗

N g(x̄)(z∗).

The final argument is as above: D∗
N F (x̄, ȳ)(0) consists only of 0 and then 0 ∈ D∗

N g(x̄)(z∗) which implies z∗ = 0. This is a
contradiction and the thesis is proved. �

We will now focus on the problem (P2). Let us note that the problem (P2) is the most studied problem in the literature
on set-valued optimization. In order to make the exposition simple and in order to reduce the technical complication that
may arise in the setting of an Asplund space we shall present our results for the problem (P2) in the finite dimensional
setting. In particular, we shall assume that X = R

n , Y = R
m and Z = R

k . Thus in this setting in the problem (P2) we have
F : R

n ⇒ R
m and G : R

n ⇒ R
k . In Ng and Zheng [19] the main focus was the problem (P ′

2). Thus, the following result will
be an improvement of the results presented in Ng and Zheng [19] at least in the finite dimensional setting. Let us begin
by presenting the notion of inner-semicompactness of a set-valued map around a reference point. A set-valued mapping
S : R

n ⇒ R
m is said to be inner-semicompact at x̄ if for every sequence xk → x̄ there is a sequence yk ∈ S(xk) which has

a convergent subsequence. For example if S is uniformly bounded (local boundedness) at x̄ then S is inner-semicompact
at x̄. By uniform boundedness or local boundedness at x̄ we mean that there exists a neighborhood U of x̄ and a positive
number M such that for all x ∈ U we have ‖y‖ � M for all y ∈ S(x). Also we use in the following result the notion of the
kernel of a set-valued map S denoted by ker S which simply is the collection of those elements x ∈ R

n such that 0 ∈ S(x).

Theorem 4.5. Consider the problem (P2) and let (x̄, ȳ) ∈ Gr F be a Pareto minimum of (P2). Assume that F is pseudo-Lipschitz at
(x̄, ȳ) and G(x̄) is compact. Further assume that the mapping x �→ G(x)∩ (−Q ) is inner-semicompact at x̄. Moreover, assume that the
following qualification condition hold true: for any y ∈ G(x̄) ∩ (−Q ) one has

N(−Q , y) ∩ ker D∗
N G(x̄, y) = {0}. (14)

Then there exist y∗ ∈ K ∗ with ‖y∗‖ = 1, ŷ ∈ G(x̄) ∩ (−Q ) and z∗ ∈ N(−Q , ŷ) such that

0 ∈ D∗
N F (x̄, ȳ)(y∗) + D∗

N G(x̄, ŷ)(z∗). (15)

Proof. Since (x̄, ȳ) is a Pareto minimum and we are in a finite dimensional setting, from Corollary 4.1, we have that there
exists y∗ ∈ K ∗ with ‖y∗‖ = 1 such that

0 ∈ D∗
N F (x̄, ȳ)(y∗) + N

(
G−1(−Q ), x̄

)
.

Thus, the proof would be complete if we compute N(G−1(−Q ), x̄). This will be done by applying Theorem 3.8 in Mor-
dukhovich [17]. The qualification conditions in the statement of the theorem imply the qualification conditions in Theo-
rem 3.8 of [17]. Hence, from Theorem 3.8 in [17] we have

N
(
G−1(−Q ), x̄

) ⊂
⋃{

D∗
N G(x̄, y′)(w∗)

∣∣ w∗ ∈ N(−Q , y′), y′ ∈ G(x̄) ∩ (−Q )
}
.

Hence there exist ŷ ∈ F (x̄) ∩ (−Q ) and z∗ ∈ N(−Q , ŷ) such that

0 ∈ D∗
N F (x̄, ȳ)(y∗) + D∗

N G(x̄, ŷ)(z∗).

This proves the result. �
The vectors y∗ and z∗ are the Lagrange multipliers associated with the problem (P2). Our aim is to see under what

conditions the set of Lagrange multipliers for the problem (P2) remains bounded. It suffices to study the following set for
y∗ ∈ K ∗ with ‖y∗‖ = 1:

L◦
y∗ = {

z∗ ∈ R
k
∣∣ ∃ ŷ ∈ G(x̄) ∩ (−Q ), with z∗ ∈ N(−Q , ŷ) such that (15) holds

}
.
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Of course the set L◦
y∗ do depend on the point (x̄, ȳ). It is easy to observe that the qualification condition in the above

theorem can also be equivalently written as follows: for any ŷ ∈ G(x̄) ∩ (−Q ) and z∗ ∈ N(−Q , ŷ)

0 ∈ D∗
N G(x̄, ŷ)(z∗) ⇒ z∗ = 0.

In the following result we state the condition under which the set L◦
y∗ is bounded.

Theorem 4.6. Let us consider the problem (P2). Let (x̄, ȳ) ∈ Gr F be Pareto minimum for (P2). Further assume that F is pseudo-
Lipschitz at (x̄, ȳ) and G is pseudo-Lipschitz at each (x̄, y) with y ∈ G(x̄). Assume further that G(x̄) is compact. Also assume that
x �→ G(x) ∩ (−Q ) is inner-semicompact and for any y ∈ G(x̄) ∩ (−Q ) one has

N(−Q , y) ∩ ker D∗
N G(x̄, y) = {0}. (16)

Then there exists y∗ ∈ K ∗ with ‖y∗‖ = 1 s.t. L◦
y∗ is a nonempty and bounded set.

Proof. By use of Theorem 4.5 there exists y∗ ∈ K ∗ with ‖y∗‖ = 1 s.t. L◦
y∗ is a nonempty set. Further, let us assume that L◦

y∗
is not bounded. Thus there exists a sequence {z∗

n} ⊂ L◦
y∗ such that ‖z∗

n‖ → ∞ as n → ∞. Now from the definition of L◦
y∗ for

each n there exists ŷn ∈ G(x̄) ∩ (−Q ) with z∗
n ∈ N(−Q , ŷn) such that

0 ∈ D∗
N F (x̄, ȳ)(y∗) + D∗

N G(x̄, ŷn)
(
z∗

n

)
.

Now consider the sequence { z∗
n‖z∗
n‖ }. It is clear that this sequence is bounded and has a cluster point, say z∗, with ‖z∗‖ = 1.

Now, noting the fact that the normal coderivative is a positively homogenous set-valued map, we have for each n

0 ∈ D∗
N F (x̄, ȳ)

(
y∗

n

‖z∗
n‖

)
+ D∗

N G(x̄, ŷn)

(
z∗

n

‖z∗
n‖

)
.

Hence, there exists an element u∗ ∈ R
n such that

u∗
n ∈ D∗

N F (x̄, ȳ)

(
y∗

n

‖z∗
n‖

)

and

−u∗
n ∈ D∗

N G(x̄, ŷn)

(
z∗

n

‖z∗‖
)

.

From the definition of the normal coderivative we have(
u∗

n,− y∗

‖z∗
n‖

)
∈ N

(
Gr F , (x̄, ȳ)

)
and (

−u∗
n,− z∗

n

‖z∗
n‖

)
∈ N

(
Gr G, (x̄, ŷn)

)
.

It has been mentioned in Rockafellar and Wets [20] that in finite dimensions the pseudo-Lipschitz property is equivalent
to the fact that the normal coderivative is locally bounded. Since F is pseudo-Lipschitz, it is clear that D∗

N F (x̄, ȳ) is locally

bounded. The sequence { y∗
‖z∗

n‖ } converges to zero and thus, using the local boundedness of D∗
N F (x̄, ȳ), we conclude that the

sequence {u∗
n} is bounded. Let u∗ be a cluster point of the sequence. Further, as G(x̄) is compact and −Q is closed it is

clear that G(x̄) ∩ (−Q ) is compact and hence the sequence { ŷn} is bounded and thus have a cluster point, say, ŷ. Hence, as
n → ∞, we have

(u∗,0) ∈ N
(
Gr F , (x̄, ȳ)

)
since the limiting normal cone is closed and we have

(−u∗, z∗) ∈ N
(
Gr G, (x̄, ŷ)

)
since the limiting normal cone has a closed graph in finite dimensions. Thus, using the definition of the normal coderivative,
we have

0 ∈ D∗
N F (x̄, ȳ)(0) + D∗

N G(x̄, ŷ)(z∗). (17)

Since F is pseudo-Lipschitz and since the mixed coderivative and the normal coderivative coincide in finite dimensions we
have (for example from Theorem 1.38 in [17] or Theorem 9.40 [20]) that

D∗
N F (x̄, ȳ)(0) = {0}.
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Hence, from (17) we get

0 ∈ D∗
N G(x̄, ŷ)(z∗),

thus we have

z∗ ∈ ker D∗
N G(x̄, ŷ).

Further, since z∗
n ∈ N(−Q , ŷn) we have that

z∗
n

‖z∗
n‖ ∈ N(−Q , ŷn).

Again, since the limiting normal has a closed graph in finite dimensions we have that

z∗ ∈ N(−Q , ŷ).

Moreover, we know that ‖z∗‖ = 1 and hence z∗ �= 0 and this contradicts (16). Hence the assertion is shown. �
Till now in this section we have concentrated on the fact that at least the objective function in our analysis above is

always a set-valued map. However, we can consider the map F above as single-valued map between the Asplund spaces X
and Y . In the single-valued scenario let us represent F by f . Thus, for the usual nonsmooth-vector optimization problem
we consider the problem (P) (see Section 2), now with locally Lipschitz data. The necessary optimality conditions for the
single-valued nonsmooth vector optimization problem (P) can be easily derived from the results given in this section via
the well-known scalarization formula (see Mordukhovich [17] for details). However, we shall state below the definition of
the limiting subdifferential and scalarization rule. Since we are essentially interested in locally Lipschitz functions we shall
mention the definition of the limiting subdifferential for a locally Lipschitz function. Let φ : X → R be a locally Lipschitz
function where as before X is an Asplund space. Then the limiting subdifferential or the Mordukhovich subdifferential of f
at x̄ ∈ X is given as

∂φ(x̄) = {
ξ ∈ X∗ ∣∣ (x∗,−1) ∈ Nepiφ(x̄, f (x̄)

}
,

where epiφ denotes the epigraph of φ. Note that this subdifferential was firstly introduced in [18]. Let us now consider the
function f : X → Y , where X and Y are Asplund spaces. For the scalarization formula to be compatible with the normal
coderivative one needs to assume that the function f : X → Y is strictly Lipschitzian at each point of X . We say that
f : X → Y is strictly Lipschitz at x̄ if it is locally Lipschitz there and if there is a neighborhood V of the origin in X such
that the sequence of the differential quotient

f (xk + tk v) − f (xk)

tk

contains a norm convergent subsequence whenever one has v ∈ V , xk → x̄, and tk ↓ 0. Further, it is important to note that
if Y is finite dimensional, then the notion of strict Lipschitzianess at x̄ coincides with the notion of locally Lipschitzianess
at x̄. It has been shown in [17, Chapter 3] that if f : X → Y is strictly Lipschitz at x̄ then one has

D∗
N f (x̄)(y∗) = ∂〈y∗, f 〉(x̄), ∀y∗ ∈ Y ∗.

It is clear now that by the application of the above scalarization formula one can deduce necessary optimality conditions
and sufficient conditions for the boundedness of the set of Lagrange multipliers for the problem (P) using the results from
this section. Note that, since f is single-valued, the notion of pseudo-Lipschitz continuity coincides with the usual notion
of Lipschitz continuity. If f is just locally Lipschitz one has

D∗
M f (x̄)(y∗) = ∂〈y∗, f 〉(x̄), ∀y∗ ∈ Y ∗.

So, if f is locally Lipschitz and N-regular, then

D∗
N f (x̄)(y∗) = D∗

M f (x̄)(y∗) = ∂〈y∗, f 〉(x̄), ∀y∗ ∈ Y ∗. (18)

5. Application

As an application we formulate a vector control approximation problem in general spaces and show the boundedness of
the set of Lagrange multipliers of this problem applying Theorem 4.3. Suppose that X, Y and W are real Banach spaces; as
in the preceding, K ⊂ Y is a closed convex cone. We introduce a vector-valued norm (see [13]) ||| · ||| : W → K that for all
w, w1, w2 ∈ W and for all λ ∈ R satisfies:

1. |||w||| = 0 ⇐⇒ w = 0;
2. |||λw||| = |λ||||w|||;
3. |||w1 + w2||| ∈ |||w1||| + |||w2||| − K .
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A subdifferential (denoted by ∂�) for vector-valued functions was proposed by Jahn in [13] and for the particular case
of above vector-valued norm ||| · ||| it has the following form:

∂�||| · |||(w0) = {
x∗ ∈ L(W , Y )

∣∣ x∗(w0) = |||w0|||, |||w||| − x∗(w) ∈ K ∀w ∈ W
}
, (19)

where L(W , Y ) denotes the space of linear continuous operators from W into Y .
Sufficient conditions for ∂�||| · ||| �= ∅ are given by Jahn [13] (for instance that ||| · ||| is continuous and K has the Daniell

property which means that every decreasing net (i.e., i � j implies x j � xi ) having a lower bound converges to its infimum).
Suppose now that f : X → Y is a locally Lipschitz function, Ai ∈ L(X, W ) and αi � 0 (i = 1, . . . ,n). Then we consider for

x ∈ X and ai ∈ W (i = 1, . . . ,n) the vector-valued function

h(x) := f (x) +
n∑

i=1

αi
∣∣∣∣∣∣Ai(x) − ai

∣∣∣∣∣∣
and g : X → Z , where Z is a normed space and Q is a closed convex cone in Z .

Now, we study the vector control approximation problem

(Papp) min h(x), subject to x ∈ X, g(x) �Q 0.

Theorem 5.1. Let W , X, Y , Z be reflexive Banach spaces and let x̄ be a Pareto minimum point for (Papp). Suppose that K and Q are
dually compact, g is continuously Fréchet differentiable on X, ||| · ||| is locally Lipschitz, h is N-regular and the following constraint
qualification condition holds:

z∗ ∈ Q ∗, z∗ ◦ ∇g(x̄) = 0 ⇒ z∗ = 0. (20)

Then there exists y∗ ∈ K ∗,‖y∗‖ = 1 s.t. L y∗ = {z∗ ∈ Q ∗ | −z∗ ◦ ∇g(x̄) ∈ ∂〈y∗,h〉(x̄)} is nonempty and bounded.

Proof. We apply Proposition 4.1. Taking into account that −z∗ ◦ ∇g(x̄) ∈ D∗
Nh(x̄)(y∗) and so because of (18), under the

assumption that h is locally Lipschitz and N-regular, we have

−z∗ ◦ ∇g(x̄) ∈ D∗
Mh(x̄)(y∗) = ∂〈y∗,h〉(x̄).

Consequently, we get the result with Theorem 4.3. �
6. Conclusions

The aim of our paper was to show the boundedness of the set of Lagrange multipliers for vector optimization problems
in infinite dimensional spaces. Corresponding results for the finite dimensional case were already published by Dutta and
Lalitha [7]. In order to extend the results to the infinite dimensional case (cf. Theorem 3.1) we need additional assumptions
concerning the ordering cone Q , namely that this cone has a nonempty interior. This nonemptyness of the interior of the
cone implies that Q is dually compact. This is an important property for cones in infinite dimensional spaces in order to
show the existence of nontrivial multipliers (cf. Ng and Zheng [19]).
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