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Abstract

Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate a plethora of host cell
processes to establish infection of the gut mucosa. This manipulation is achieved via the injection of bacterial
effector proteins into host cells using a Type III secretion system. We have previously reported that the
conserved EHEC and EPEC effector EspG disrupts recycling endosome function, reducing cell surface levels
of host receptors through accumulation of recycling cargo within the host cell. Here we report that EspG
interacts specifically with the small GTPases ARF6 and Rab35 during infection. These interactions target
EspG to endosomes and prevent Rab35-mediated recycling of cargo to the host cell surface. Furthermore, we
show that EspG has no effect on Rab35-mediated uncoating of newly formed endosomes, and instead leads
to the formation of enlarged EspG/TfR/Rab11 positive, EEA1/Clathrin negative stalled recycling structures.
Thus, this paper provides a molecular framework to explain how EspG disrupts recycling whilst also reporting
the first known simultaneous targeting of ARF6 and Rab35 by a bacterial pathogen.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The attaching and effacing (A/E) pathogens
enterohaemorrhagic Escherichia coli (EHEC) and
enteropathogenic E. coli (EPEC) use a type III
secretion system (T3SS) to deliver an array of bacterial
effector proteins into host cells during infection,
facilitating colonization of the gut epithelia [1]. EHEC
regularly causes food-poisoning outbreaks, with
associated diarrhea, hemorrhagic colitis and hemolytic
uremic syndrome, and remains the leading cause of
acute pediatric renal failure in the UK and US [2,3].
EPEC causes illness in young children in low-income
countries and is responsible for significant morbidity
and mortality due to diarrheal disease.
Recently we demonstrated that EHEC depletes a

number of cell surface receptors from the Plasma
Membrane (PM) during infection, in a manner depen-
dent on the T3SS effector EspG [4]. Amongst the cell
surface receptors depleted is the Transferrin Receptor
(TfR), the prototypical recycling protein, which cycles
between the PM and the early and recycling endo-
some compartments [5]. We demonstrated that the
Authors. Published by Elsevier Ltd. T
rg/licenses/by/4.0/).
reduction in TfR levels on the cell surface is not due to
degradation, as total cellular levels of TfRare unaltered
during infection, and that injection of EspG results in
the movement of the TfR to cytosolic vesicles positive
for markers of recycling endosomes [4,6,7]. There-
fore, we hypothesize that EspG may inhibit the
recycling of internalized cell surface receptors back
to the PM. Glotfelty et al. (2014) [8] recently described
a similar observation, reporting the accumulation of
internalized occludin within EPEC infected cells and
an EspG1/G2-dependent accumulation of other tight
junction proteins within the cytosol. Gill et al. (2007)
[9] described the EspG-dependent movement of the
major apical anion exchanger DRA away from the PM
to intracellular compartments during EPEC infection
and showed that EspG-mediated reduction of DRA
at the plasma membrane is due to a decrease in
DRA exocytosis [10]. These observations support our
hypothesis that EspG influences the protein compo-
sition of the host plasma membrane through modula-
tion of recycling endosomes.
Since its discovery in 2001 [11] the role of EspG

has been extensively studied [9,12–19], although
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its function during infection has remained controver-
sial. EspG is now understood to modulate host
endomembrane trafficking by functioning as a
“catalytic scaffold” [20]. EspG has been shown to
bind active, GTP-bound, ARF GTPases and to act
as a Rab GTPase activating protein (GAP) [21]. Co-
crystallization experiments [21] suggest EspG can
bind ARF6 and Rab1 on its opposing surfaces, in a
similar manner to the interactions originally described
between EspG, ARF1 and p21-activated kinase
(PAK) [20], raising the possibility that EspG may
reorganize multiple host signaling networks during
infection.
Our investigation of the small GTPase interacting

partners of EspG during infection reveals that EspG
modulates an ARF6:Rab35 signaling axis to disrupt
recycling endosome function, resulting in the accu-
mulation of recycling cargowithin the host cytosol.Our
results highlight the importance of spatial restriction of
bacterial effector proteins during infection, whilst
simultaneously providing a molecular mechanism to
support previously published EspG phenotypes.
EspG interactswithARF6during infection

Humans express multiple ARF [5] and Rab (60+)
proteins, each involved in specificmembrane trafficking
events (e.g. endoplasmic reticulum to Golgi, or early to
late endosome). In vitro data indicates EspG can
interact with at least 3 of the 5 ARF proteins (ARF 1, 5
and 6) [20]. However, the specificity of EspG
interactions during infection remains unclear. To
determine which ARF GTPases are genuine EspG
interacting partners during infection we performed
co-immunoprecipitation experiments usingHeLa cells
expressing a panel of GFP-tagged ARF GTPases
infected with EHEC ΔespG + pEspG:4xHA (Fig. 1,
replicate blots shown in Fig. S1). This revealed that
EspG interacts primarily with ARF6 (Fig. 1a). ARF6
was also found to be the primary interacting partner
over an infection time-course from 2.5 to 7.5 h of
infection (data not shown), suggesting the ARF6
interaction occurs early during infection and is
maintained as infection progresses.
Our previous observations regarding the localization

ofEspGduring infection suggestEspG is not trafficking
to the Golgi, as seen during ectopic expression [18,21]
but is instead localized in endosomal compartments,
with markers of recycling endosomes [4]. ARF 1,3, 4
and 5 have previously been described to localize
predominantly to the Golgi [22] while ARF6 is mainly
found at the plasma membrane and at endosomal
sites [23]. These localizations were confirmed for
the GFP-ARF fusions used in this work (Fig. S2).
We observed that during EHEC infection ARF6 and
EspG accumulated on the same endosomal struc-
tures.Calculation ofPearsons'CorrelationCoefficients
for cells transfected with GFP-ARF6 and infected
with EHEC ΔespG + pEspG:4xHA indicates specific
co-localization between ARF6 and EspG (Fig. 1b)
consistent with the co-immunoprecipitation data
(Fig. 1a).
EspG preferentially interacts with active
ARF6 to localize at endosomal structures
during infection

To determine if EspG interacts preferentially with
GTP-bound ARF6 during infection we assessed the
co-immunoprecipitation of EspG by constitutively
inactive, GDP-bound (T44N) or constitutively active,
GTP-bound (Q67L) ARF6 mutants [24]. Consistent
with previous in vitro data [25], EspG was preferen-
tially co-immunoprecipitated with GTP-bound rather
than GDP-bound ARF6 (Fig. 2a).
ARF-binding has been proposed to spatially

restrict EspG within host cells to allowing targeted,
local Rab inactivation [21,25]. We therefore reasoned
that ARF6 binding occurs upstream of interaction with
Rabs and should therefore be independent of EspG's
ability to act as a Rab GAP. Consistent with this
hypothesis, an EspG Rab GAP mutant (EspG RQ)
was co-immunoprecipitated by ARF6 during EHEC
infection as efficiently as WT EspG (Fig. 2b). This
hypothesis was further confirmed by the observation
that cells expressing GDP-locked GFP-ARF6 T44N
fail to show the characteristic endosomal localization
of EspG, in contrast to un-transfected cells or those
expressing WT GFP-ARF6 (Fig. 2c). Therefore the
interaction of EspG with GTP-ARF6 is required for
correct localization of EspG and is independent of
EspG's Rab GAP activity.
EspG interacts with Rab35
during infection

Over 60 human Rab isoforms have been described
to date [26]. We screened a panel of Rabs that have
been described to localize at recycling endosomes or
the trans-Golgi network [27]. This panel consisted
of Rabs 8, 10, 11, 13, 22a, 30, 35, 37, 38 and 43a
(Fig. S3). In vitro EspG was shown to act as a Rab
GAP for only 12of the 30Rabs tested, including, in our
panel, Rab 13, 30, 35, 37 and 38 [21]. We also
included Rab1 in our panel as, in vitro, EspG showed
the highest GAP activity for this protein [21].
Co-immunoprecipitation experiments using ourRab

GTPase panel show that EspG is selectively and
consistently immunoprecipitated by Rab35 (Fig. 3a,
replicate blots shown in Fig. S4). EspG was also
intermittently immunoprecipitated by Rab13, and then
in decreasing amounts by Rabs 43a, 37 and 10.
However Rab35 was the only Rab to immunoprecip-
itate EspG in every experiment. EspG was not
co-immunoprecipitated by Rab1 in any experiment,
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Fig. 1. EspG interacts with ARF6 during infection. a) HeLa cells expressing GFP-ARF fusions were infected
with EHEC ΔespG + pEspG:4xHA. After 5 h of infection ARFs were immunoprecipitated (output, GFP) and co-
immunoprecipitated EspG:4xHA detected (output, HA) (n = 4, see Fig. S1 for additional blots) b) Confocal microscopy
suggests that GFP-ARF6 and EspG:4xHA colocalize on the same endosomal structures. Representative images show
maximum intensity Z-projections, scale bars represent 5 μm. Colocalization was quantified using Pearsons' Correlation
Coefficients generated for 20 fields of view (1–2 cells per image) across 2 independent experiments, graph showsmeans ±
SD, ns = non-significant, **** = p b 0.0001.
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suggesting it is spatially removed from EspG during
infection. Interestingly, Rab1 and Rab35 share
significant sequence similarity at the amino acid
level, and cluster in a distinct subfamily of Rab
GTPases [28]. Therefore, whilst EspG is able to
interact with and induce GTP hydrolysis of both Rab1
and Rab35 in vitro, spatial restriction of EspG to
endosomal compartments during infection appears to
direct EspG's GAP activity towards Rab35.
Co-localization analysis of EspG and GFP-Rab

constructs shows that EspG co-localizes with Rab35,
supporting our co-immunoprecipitation data (Fig. 3b).
EspG also co-localizes with Rab11, a known marker
of recycling endosomes. However, co-immuno-
precipitation of EspG by Rab11 was found to be no
higher than with GFP alone, consistent with the
absence of Rab GAP activity towards Rab11 in vitro
[21]. These results indicate EspG localizes to ARF6/
Rab35/Rab11 positive recycling endosomes during
infection.
Wepropose thatwhilst EspG is capable of interacting

with multiple ARF and Rab GTPases in vitro, during
infection the spatial restriction of EspG limits its
interacting partners. As such, it is the interactions with
ARF6 (Fig. 1a) andRab35 (Fig. 3a) that are relevant for
EspG's function during infection. Our data suggests
that during infection EspG is recruited to ARF6/
Rab35 positive endosomal structures (Figs. 1c
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Fig. 2. EspG preferentially interacts with GTP-ARF6 upstream of Rab binding to target itself to endosomal
structures. a) HeLa cells expressing GFP-ARF6 Q67L (GTP-locked) and T44N (GDP-locked) were infected with EHEC
ΔespG + pEspG:4xHA. After 5 h of infection ARFs were immunoprecipitated (output, GFP) and co-immunoprecipitated
EspG:4xHA detected (output, HA) (n = 4) b) HeLa cells expressing GFP-ARF6 were then infected with EHEC
ΔespG + pEspG:4xHA or EHEC ΔespG + pEspG RQ:4xHA, GFP-ARF6 immunoprecipitated and co-immunoprecipitated
EspG:4xHA or EspG RQ:4xHA detected (n = 2). c). HeLa cells expressing GFP-ARF6 or GFP-ARF6 T44N were infected
with EHEC ΔespG + pEspG:4xHA for 5 h before the percentage of transfected cells exhibiting endosomal EspG:4xHA
staining was scored. White arrowheads indicate EspG positive endosomal structures; yellow arrowheads indicate diffuse
cytosolic EspG staining in cells expressing GFP-ARF6 T44N. Scale bars represent 10 μm. Graph shows means ± SD of
three independent experiments (N100 cells counted per experiment) ns = non-significant, **** = p b 0.0001.
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and 3c) through scaffolding with GTP-bound ARF6
(Figs. 1a and 2a). Targeting of EspG to these
endosomal structures, via ARF6 (Fig. 2c), is neces-
sary to ensure Rab hydrolysis only occurs for a
specific Rab population, as previously postulated by
Selyunin et al. [25]. During infection, this results in the
Rab GAP activity of EspG being directed towards
Rab35 (Fig. 3a).
Selyunin et al. also observed that binding of EspG

to ARF-GTP may prevent access by ARF GAPs,
thus locking the EspG-bound ARF in the GTP bound
state. In this conformation the effector-binding surface
of the ARF is unobstructed [25] raising the possibility
that EspG, aside from using ARF-binding as amethod
of spatial restriction, also promotes the recruitment of
ARF6 effectors. Importantly, as Rab GAP deficient
EspG is able to interact with ARF6 (Fig. 2b), but
unable to disrupt recycling [4], the functional disruption
of REs during infection appears to be dependent on
EspG's Rab GAP activity. This does not preclude the
stabilization of active ARF6 by EspG from playing
another, currently unknown, role during infection.

Modulation of Rab35 by EspG does not
influencevesicle uncoatingafterClathrin-
dependent endocytosis

Rab35 has been implicated in both endocytosis [29]
and recycling of cargo [30,31,32]. We have previously
demonstrated that EspG is able to disrupt cargo
recycling [4] and were interested in whether EspG
could also affect other Rab35 dependent activities. A
recent report indicates that Rab35 has a role in the
recruitment of Oculocerebrorenal Syndrome of Lowe
(OCRL), an Inositol Polyphosphate 5-Phosphatase,
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to newly formed endosomes. Recruitment of OCRL
promotes the uncoating of Clathrin-Coated Vesicles
(CCVs) after endocytosis [29]. To assess the effect of
EspG on clathrin-uncoating of vesicles, HeLa cells
expressing mRFP-clathrin light chain (CLC) were
infected with WT EHEC, EHEC ΔespG and EHEC
ΔespG + pEspG:4xHA and stained for TfR and Early
Endosome Antigen 1 (EEA1). Peripheral endosomes
containing TfR and EEA1 showed similar association
with CLC in all conditions (Fig. 4a and b), unlike in
Rab35 and OCRL siRNA treated cells [29]. However
large TfR positive structures could be observed inWT
EHEC, and to a greater extent in EHEC
ΔespG + pEspG:4xHA infected cells, but not in
uninfected cells or cells infected with EHEC ΔespG.
These large TfR positive structures were negative for
both EEA1 and CLC (Fig. 4b), and resemble the
enlarged EspG/TfR positive vesicular structures
seen previously [4]. These data suggest that EspG
specifically targets Rab35 involved in recycling and
not in recruitment of OCRL and CCV uncoating after
endocytosis.
Whilst Rab35 has been implicated in early endocytic

processes [29,33] ARF6 andRab35 are also known to
act antagonistically to control RE function, with ARF6
promoting the internalization of cell surface proteins
and Rab35 mediating their recycling [30] via the
assembly of a RE-bound signaling complex [32]. This
Rab35-controlled complex also influences RE lipid
composition [34] and vesiculation [31,35]. EspG
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appears to have no effect on CCV uncoating, whilst
large TfR positive but EEA1 and Clathrin negative
structures occur in the presence of EspG. We
therefore hypothesize that EspGpotentiates its effects
via the modulation of Rab35 specifically on recycling
endosomes. InactivationofRab35 involved in recycling
would give rise to the reduced cell surface proteins we
[4], and others [8,10] have previously observed during
EHEC/EPEC infection. Consistent with this hypothe-
sis, it was recently reported that knock-down of Rab35
in TH2 cells interferes with TfR recycling [36]. The RE
vesiculation regulators EHD1 and GRAF1 form a
complex with MICAL-L1 to promote budding of REs
back to the PM [31,35]. AsMICAL-L1 can be recruited
to REs by Rab35 [32], the inactivation of Rab35 by
EspG may prevent RE vesiculation. This closely
matches the phenotype observed when Rab35
function is perturbed by other means [37], but further
work is required to fully uncover the details of EspGs
effect on RE vesiculation.
Whilst a number of reports in the literature have

identified ARF6 and Rab35 individually as targets
during bacterial infection (ARF6 is implicated in
host cell invasion by both Shigella flexneri [38]
and Salmonella enterica serovar Typhimurium [39]
and Rab35 is known to be modulated by both
uropathogenic E. coli (UPEC) [40] and the Legionella
pneumophilia Dot/Icm effector AnkX [41]) concurrent
modulation of the ARF6:Rab35 signaling axis by
EHEC EspG represents a previously unappreciated
strategy of host cell modulation by a bacterial
pathogen. As such, this work not only increases our
understanding of the plethora of mechanisms bacte-
rial pathogens use to subvert host cell functions but
will also contribute to our understanding of the wide
variety of fundamental host cell processes that ARF6
andRab35have been implicated in, including theAKT
signaling pathway [42], sorting of newly endocytosed
cargo from the plasma membrane [43], cytokinesis
[44] and the establishment of epithelial cell polarity
[45].
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