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We update determination of the MS masses of the charm and bottom quarks, from comparisons of the 
masses of the charmonium and bottomonium 1S states with their perturbative predictions up to next-
to-next-to-next-to-leading order in ε expansion and using the MS masses. Effects of non-zero charm-
quark mass in the bottomonium masses are incorporated up to next-to-next-to-leading order. We obtain 
mc = 1246 ± 2(d3) ± 4(αs) ± 23(h.o.) MeV and mb = 4197 ± 2(d3) ± 6(αs) ± 20(h.o.) ± 5(mc) MeV, which 
agree with the current Particle Data Group values.
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1. Introduction

The Standard Model (SM) of elementary particle physics has 
been successfully completed by the discovery of the Higgs particle, 
whereas no definite clue to physics beyond the SM has been found 
yet. In such an era, necessity for precise understanding of the SM 
is increasing more than ever. In particular, to meet demands for ac-
curate measurements required in the LHC experiments as well as 
those for high-precision flavor physics, etc., there has been remark-
able progress in the predictability of perturbative QCD in recent 
years. The masses of the c- and b-quarks are among the important 
fundamental parameters of perturbative QCD. They play crucial 
roles, for instance, in testing predictions of the SM for the Yukawa 
coupling constants of the Higgs particle, and also as the input pa-
rameters for predicting various observables in flavor physics.

The masses of the c- and b-quarks have been determined in 
many ways. Even referring only to works published after the lat-
est version of Review of Particle Physics [1] by Particle Data Group 
(PDG) Collaboration, there are analyses based on non-relativistic 
QCD sum rule [2,3], relativistic QCD sum rule [4], deep inelas-
tic scattering [5], heavy quarkonium spectroscopy [6], and lattice 
computation [7]. (See [1] for earlier studies.) Their physics ingre-
dients vary substantially, and also they probe different kinematical 
regions of QCD. Therefore, consistency of the determined values 
provides a non-trivial test of QCD, and of the SM more generally.
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In this paper we determine the masses of the c- and b-quarks 
from comparisons of the energy levels of the charmonium and 
bottomonium 1S states with their perturbative predictions. This 
is an update of the mass determination performed as part of the 
analyses in [8,9], which included perturbative expansion up to the 
next-to-next-to-leading order (NNLO). We include one more order, 
namely up to NNNLO. Recently, the four-loop relation to the pole 
and MS quark masses has been computed [10]. The present study 
is the first full analysis using the MS mass up to NNNLO. We also 
include non-zero charm-quark mass effects in the computation of 
the bottomonium energy levels, up to the highest order of the cur-
rently available computations (up to two loops of internal c-quark) 
[11]. On the experimental side, accurate data on the ηc(1S) and 
ηb(1S) masses are available today, which we include in our anal-
ysis, in addition to the J/ψ(1S) and ϒ(1S) masses used in the 
NNLO analyses.

The purpose of the present study is to provide another ac-
curate determination of these quark masses, and also there is a 
different aspect. The heavy quarkonium states are unique among 
various hadrons, in that properties of individual hadronic states 
can be predicted purely within perturbative QCD. Hence, if we ob-
serve consistency with the masses determined by other methods 
with high accuracy, that can be an evidence that pure perturbative 
QCD is indeed capable of predicting properties of these individual 
hadrons with high precision, with only αs and the quark masses 
as the input parameters of the theory.

Since the study at the previous order, our understanding based 
on perturbative QCD has developed considerably. On the one hand, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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developments in computational technology enabled (finally) ac-
complishment of the full NNNLO computation of the quarkonium 
energy levels, which have been carried out stepwise. Milestone 
computations include computations of the two-loop 1/(mr2) po-
tential [12], the full NNNLO Hamiltonian [13], the three-loop static 
potential [14], full formula of the spectrum [15], the four-loop rela-
tion between the pole and MS quark masses [10], etc. In addition, 
non-zero quark mass effects in the three-loop pole-MS mass rela-
tion have been computed [16].

On the other hand, deeper understanding on the structure of 
QCD has been achieved in the meantime. Solid theoretical back-
grounds have been formed based on effective field theory (EFT) 
frameworks, such as potential-NRQCD [17] and velocity-NRQCD 
[18]. Accumulation of empirical facts also reinforced our under-
standing. There were examinations of various higher-order pertur-
bative predictions and computations by lattice QCD simulations. 
New experimental data on heavy quarkonium states, such as ηc , 
ηb and other cc̄, bb̄ states, became available. Detailed compar-
isons of these results clarified the status of perturbative QCD 
predictions in an unequivocal manner [19,14,20,10]. For instance, 
relations between renormalons and non-perturbative matrix ele-
ments in EFT became clearer, which are supported by growing 
number of evidences. In purely perturbative predictions, infrared 
(IR) contributions are encoded as IR renormalons, which induces 
an uncertainty of the order of non-perturbative matrix elements 
[21]. By contrast, in an operator product expansion (OPE) in EFT, 
one should subtract IR renormalons from perturbative evalua-
tions of Wilson coefficients and replace the renormalons by non-
perturbative matrix elements. (See, e.g., discussion on estimates 
of non-perturbative contributions to the heavy quarkonium energy 
levels in [22].)

Since the analysis [6] uses a method similar to ours for de-
termination of the b-quark mass, we state the differences of our 
study. (1) We include the exact four-loop pole-MS mass relation 
[10], which became available only after the study [6]. (2) We in-
clude non-zero charm mass effects on the bottomonium energy 
levels up to two loops of the c-quark [11], whereas [6] includes 
only up to one loop. (3) Ref. [6] uses the renormalon-subtracted 
mass at intermediate stage, whereas we compute the energy levels 
directly in terms of the MS mass. (4) We use the strong coupling 
constant of four active quark flavors in the reference analysis of the 
bottomonium energy levels, in contrast to the three-flavor coupling 
used in [6].

2. Determination of c-quark mass from J/ψ(1S) and ηc(1S)

In perturbative QCD, the energy level of a charmonium state is 
given by

Mcc̄ = 2mpole
c + Ebin, cc̄ . (1)

The pole mass of the c-quark is expressed in terms of the MS mass 
as

mpole = m

[
1 +

3∑
k=0

dk

(
ε αs(m)

π

)k+1

+O(ε5)

]
, (2)

where m ≡ mMS(mMS) represents the MS mass renormalized at the 
MS mass. We use the ε-expansion [23] to cancel the O(�QCD)

renormalons in 2mpole and Ebin. In the computation of the char-
monium levels, we use the coupling constant with n f = 3 active 
quark flavors, α(3)

s . The values of dk are taken from [24,25,10], 
which are converted from their values in the theory with 4 flavors 
(with c-quark) to those with 3 flavors (without c-quark), using the 
matching relation [26]
α
(n f +1)
s (m)

= α
(n f )
s (m)

[
1 − 11

72
α

(n f )
s (m)2

−
(

564 731

124 416
− 82 043

27 648
ζ(3) − 2633

31 104
n f

)
α

(n f )
s (m)3

]
. (3)

We obtain

d0 = 4/3, d1 = 10.3193, d2 = 116.300, d3 = 1687.1 ± 21.5 .

(4)

Then we express αs(m) by the series expansion in αs(μ) using the 
relation

αs(m) = αs(μ)

[
1 + β0

2
log

(
μ

m

)(
εαs(μ)

π

)

+
(

β2
0

4
log2

(
μ

m

)
+ β1

2
log

(
μ

m

))(
εαs(μ)

π

)2

+ . . .

]
, (5)

which follows from the renormalization-group (RG) equation 
for αs; βi denotes the (i + 1)-loop coefficient of the beta function. 
[We suppressed the O(ε3) term for brevity.] Here and hereafter, 
αs represents α(n f )

s .
The binding energy is given by [27,28,15]

Ebin = −4

9
αs(μ)2mpole

3∑
k=0

εk+1
(

αs(μ)

π

)k

Pk(Lμ) +O(ε5) .

(6)

Here, Pk(Lμ) is a k-th order polynomial of Lμ = log[3μ/

(4αs(μ)mpole)] + 1. Apart from ck ≡ Pk(0), the polynomial is de-
termined by the RG equation for αs . ck ’s are given, for J/ψ(1S)

[n f = 3, n = 1, l = 0, s = 1, j = 1], by

c1 = 7/2, c2 = 142.018, c3 = 1276.83(1) + 474.289 logαs(μ) ,

(7)

and for ηc(1S) [n f = 3, n = 1, l = 0, s = 0, j = 0], by

c1 = 7/2, c2 = 165.413, c3 = 908.82(1) + 597.111 logαs(μ) .

(8)

The input value for αs is set as [1]

α
(n f =5)
s (mZ ) = 0.1185 ± 0.0006 . (9)

Evolving by the RG equation, it is matched to the couplings with 4 
and 3 flavors successively, using the matching relation eq. (3). We 
compare the predictions of the J/ψ(1S) and ηc(1S) masses with 
the experimental data [1]:

Mexp
J/ψ(1S) = 3096.916 ± 0.011 MeV,

Mexp
ηc(1S)

= 2983.6 ± 0.7 MeV . (10)

The scale dependences of the predictions are shown in Fig. 1 for 
J/ψ(1S). Those for ηc(1S) are similar. The scale dependences de-
crease as the order is raised. Fig. 1 is also consistent with the 
expectation of renormalon dominance that the minimal sensitiv-
ity scale increases with the order [21]. We can adjust the value 
of mc to reproduce the experimental data at the minimal sensitiv-
ity scales. The central values read mc = 1266 MeV and 1226 MeV, 
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Fig. 1. Scale dependences of the predictions for the J/ψ(1S) mass. NkLO line rep-
resents the prediction up to O(εk+1). We take mc = 1266 MeV, which is adjusted 
to reproduce the experimental data at the minimal sensitivity scale for the NNNLO 
line.

respectively, for J/ψ(1S) and ηc(1S), and the minimal sensitiv-
ity scales for the predictions up to NNNLO read μ = 2.14 GeV and 
2.42 GeV, respectively. (The values of αs(μ) are 0.2712 and 0.2878, 
respectively.) The ε-expansions at the minimal sensitivity scales 
are given by

Mpert
J/ψ(1S) = 2532 + 263 + 170 + 109 + 23 MeV , (11)

Mpert
ηc(1S)

= 2452 + 242 + 162 + 103 + 24 MeV , (12)

where the terms on the right-hand side correspond to the order 
ε0, ε1, . . . , ε4 terms, respectively. They exhibit reasonably conver-
gent behaviors.

We estimate uncertainties of our predictions, which are trans-
lated to uncertainties in the determination of mc . (The errors of 
the experimental data are negligibly small.)

(i) Uncertainty of d3: The uncertainty of d3 in eq. (4) correspond 
to ±2 MeV variation of mc . Other uncertainties in the parame-
ters in the expansion coefficients, such as that of c3, are negligibly 
small.

(ii) Uncertainty of αs(M Z ): The uncertainty in the input αs(M Z )

in eq. (9) corresponds to ±4 MeV shift of mc .
(iii) Uncertainty by higher-order corrections: We estimate the un-

certainty of unknown higher-order corrections in three different 
ways. (a) We change the scale μ from the minimal sensitivity 
scale to twice of that value. The corresponding variations of mc are 
about 18 MeV and 15 MeV, respectively, for J/ψ(1S) and ηc(1S). 
(b) We take the differences of the determined mc using the same 
method up to NNLO and NNNLO, fixing μ at the respective min-
imal sensitivity scales. This results in the differences of 27 MeV 
and 19 MeV, respectively, when we adjust Mcc̄ to the J/ψ(1S)

and ηc(1S) masses. (The respective minimal sensitivity scales up 
to NNLO are 1.08 GeV and 1.23 GeV.) (c) We take one half of the 
last known terms of the series in eqs. (11) and (12). This results 
in about 12 MeV for both states. Let us take the maximal values 
of (a)–(c) as our estimates of higher-order corrections. They give 
27 MeV and 19 MeV for uncertainties of mc as determined from 
the masses of J/ψ(1S) and ηc(1S), respectively. The correspond-
ing uncertainties for the predictions of Mcc̄(1S) (twice of these val-
ues) are similar in size to the estimate of uncanceled renormalon 
of order �3

QCDr2, in the case �QCD ∼ 300 MeV and r ∼ 1.5 GeV−1

(although it is sensitive to the values chosen for �QCD and r). As 
stated, in a purely perturbative prediction, this renormalon uncer-
tainty is the substitute for a non-perturbative matrix element in 
OPE of EFT.

To summarize our results, we obtain

mc( J/ψ(1S)) = 1266 ± 2 (d3) ± 4 (αs) ± 27 (h.o.) MeV , (13)

mc(ηc(1S)) = 1226 ± 2 (d3) ± 4 (αs) ± 19 (h.o.) MeV . (14)
Fig. 2. Determination of mc . Horizontal (vertical) axis represents mc (mass of char-
monium 1S state). Horizontal bands denote the experimental data with errors. 
Diagonal bands show the perturbative QCD predictions with errors as functions of 
mc . Determined mc with error bars are shown below the plot. For comparison, the 
PDG value is also shown.

Both values are mutually consistent within the estimated errors. 
By taking the average of the above two estimates, we obtain

mave
c = 1246 ± 2 (d3) ± 4 (αs) ± 23 (h.o.) MeV . (15)

It is consistent with the current PDG value mc = 1275 ± 25 MeV
[1]. See Fig. 2.

3. Determination of b-quark mass from ϒ(1S) and ηb(1S)

In the limit where we neglect masses of quarks in internal 
loops, the formula for the bottomonium energy level is the same 
as that for the charmonium, except that we set n f = 4. It is known, 
however, that effects of the c-quark mass is important in the pre-
dictions of the bottomonium energy levels. Presently the correc-
tions by non-zero mc effects are known up to O(ε3). These effects 
are included in our predictions in the following way.

Mbb̄ = 2mpole
b + Ebin, bb̄ (16)

with

mpole
b =

[
mpole

b

]
mc→0

+ mb

[
d(c)

1

(
ε αs(mb)

π

)2

+ d(c)
2

(
ε αs(mb)

π

)3]
, (17)

Ebin, bb̄ =
[

Ebin, bb̄

]
mc→0

+ 2mpole
b

[
−ε2�

(c)
NLO − ε3�

(c)
NNLO

]
. (18)

Here, [mpole
b ]mc→0 and [Ebin, bb̄]mc→0, respectively, represent

eqs. (2) and (6) for n f = 4, and the parameters therein are given 
by

d0 = 4/3, d1 = 9.27792, d2 = 94.2137, d3 = 1220.3 ± 21.5 ;
(19)

for ϒ(1S) [n f = 4, n = 1, l = 0, s = 1, j = 1],

c1 = 53/18, c2 = 125.69, c3 = 1010.65(1) + 474.289 logαs(μ),

(20)

and for ηb(1S) [n f = 4, n = 1, l = 0, s = 0, j = 0],

c1 = 53/18, c2 = 149.09, c3 = 665.70(1) + 597.111 logαs(μ) .

(21)
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Table 1
Numerical values of the parameters of non-zero charm mass effects, for representative values of the input parameters. We set mb = 4.18 GeV and mc = 1.275 GeV. We 
evaluate ρ = 3x/[2αs(μ)] with the MS masses; see explanation below eq. (24).

State μ [GeV] αs(μ) x ρ d(c)
1 d(c)

2 �
(c)
NLO �

(c)
NNLO

ϒ(1S) 5.352 0.2092 0.3050 2.187 0.4333 11.66 0.0008526 0.002348
ηb(1S) 6.157 0.2005 0.3050 2.282 0.4333 11.66 0.0007655 0.002113
The deviation from the limit mc → 0 is parametrized as follows. 
At O(ε2) [29,30],

d(c)
1 (x)

= 1

18

[
6(x + 1)2

(
x2 − x + 1

)
(Li2(−x) + log(x) log(x + 1))

+ 6(x − 1)2
(

x2 + x + 1
)

(Li2(x) + log(1 − x) log(x))

− 6x4 log2(x) − 6x2 log(x) − 9x2 − π2
(

x4 − 3x3 − 3x
)]

,

(22)

�
(c)
NLO = 4αs(μ)3

27π

[
3π

4
ρ − 2ρ2 + πρ3 + log

ρ

2

+ 2 − ρ2 − 4ρ4√
ρ2 − 1

Arctan

(√
ρ − 1

ρ + 1

)]
, (23)

where x = mc/mb and ρ = 3mpole
c /[2αs(μ)mpole

b ]. The expressions 
for d(c)

2 and �(c)
NNLO are lengthy, which can be found in the orig-

inal references [16] and [11], respectively, and we refrain from 
showing them.1 We list numerical values of the parameters for 
some representative values of x, ρ in Table 1. There are no ex-
plicit spin-dependences in d(c)

1,2 and �
(c)
NLO,NNLO. Their differences 

between ϒ(1S) and ηb(1S) originate only from the different val-
ues of μ chosen to evaluate the energy levels.

After expressing mpole
b,c by mb,c and applying ε-expansion, we 

obtain

Mbb̄ =
[

Mbb̄

]
mc→0

+ ε22mb

{
d(c)

1
α2

s

π2
− �

(c)
NLO

}

+ ε32mb

{(
d(c)

2 + 2d(c)
1 · β0

2
log

μ

mb

)
α3

s

π3
− 2α4

s

9π2
d(c)

1

− �
(c)
NNLO − d0

αs

π
�

(c)
NLO

}
, (24)

where we show explicitly the ε-expansion of the deviation from 
the mc → 0 limit. The term proportional to β0 log(μ/mb) arises 
from rewriting αs(mb) by αs(μ); the term proportional to α4

s d(c)
1

from the cross term of the leading-order binding energy and d(c)
1 ; 

mpole
b,c in ρ are replaced by mb,c without generating other terms up 

to the order of our interest, since the O(ε) terms cancel in the 
ratio mpole

c /mpole
b .

We compare the predictions of ϒ(1S) and ηb(1S) masses with 
the experimental data [1]:

Mexp
ϒ(1S) = 9460.30 ± 0.26 MeV,

Mexp
ηb(1S)

= 9398.0 ± 3.2 MeV . (25)

The input αs is taken as in eq. (9). The c-quark mass in inter-
nal loops is taken as the PDG central value mc = 1.275 GeV in this 

1 Concerning �(c)
NNLO, while we spot misprints in eqs. (184), (186), (187) of [11], 

we confirm correctness of eq. (64) [apart from a ‘+’ symbol missing in the last line], 
which is the sum of eqs. (183)–(187).
Fig. 3. Scale dependences of the predictions for the ϒ(1S) mass. We take mb =
4207 MeV. Other conventions are the same as in Fig. 1.

analysis.2 We adjust the value of mb to reproduce the experimental 
data. The central values read, respectively, as mb = 4.207 GeV and 
4.187 GeV. The scale dependences of the predictions are shown 
in Fig. 3 for ϒ(1S). Those for ηb(1S) are similar. The minimal 
sensitivity scales are given by μ = 5.352 GeV and 6.157 GeV, re-
spectively. The ε-expansions at the minimal sensitivity scales are 
given by

Mpert
ϒ(1S) = 8414 + 665 + 267 + 109 + 5 MeV , (26)

Mpert
ηb(1S) = 8374 + 638 + 270 + 110 + 6 MeV . (27)

We see reasonable stability and convergence of the predictions.
We examine separately the non-zero charm mass effects. At 

each order of ε in eq. (24), there is a cancellation inside the 
curly bracket, reflecting the cancellation of renormalons between 
2mpole and Ebin. The level of cancellation can be quantified, e.g., 
by the ratio of the sum of the two terms at O(ε2) and the sum 
of the absolute values of the two terms, which is about 0.3–0.4 
for 2 GeV < μ < 6 GeV. The corresponding ratio at O(ε3) is about 
0.1–0.2 for 2 GeV < μ < 6 GeV, so that the cancellation is severer.

Fig. 4(a) shows the scale dependences of the coefficients of 
ε2 and ε3 in eq. (24). They are comparable in size for 2 GeV �
μ � 6 GeV. Moreover, the scale dependence increases by includ-
ing the O(ε3) term in addition to the O(ε2) term. Hence, even 
though there are certain cancellations, we do not observe conver-
gence and stability of the charm-mass correction by itself for the 
first two terms.3 In Refs. [11,9], an enhancement of the non-zero 
charm mass correction was anticipated due to an accidental scale 
relation a−1

1S ∼ mc � mb (a1S is the size of the bottomonium 1S
states) and the resulting incomplete cancellation of the O(�QCD)

renormalons. The above feature is consistent with this expectation, 
which was put forward when the full O(ε3) term was still un-
known. In Refs. [9,6], an improvement in (apparent) convergence 
and stability is suggested by using the 3-flavor coupling α(3)

s in-
stead of α(4)

s , since the renormalon-enhanced effects are absorbed 
into the effective coupling α(3)

s . Indeed we confirm the improve-

2 Whether we vary mc within the error ±25 MeV or choose the values in 
eqs. (13)–(15), variations of our predictions for Mbb̄ are much smaller and negli-
gible compared to the uncertainties discussed below.

3 Our result is also consistent with the non-zero charm mass effects found in the 
analyses using the non-relativistic sum rule [3], which chooses a scale μ � 4.5 GeV.
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Fig. 4. (a) Scale dependences of the non-zero charm mass effects for the bottomonium 1S states at O(ε2) and O(ε3). (b) Same as (a), but in the case that the energy level 
is reexpressed in the 3-flavor coupling α(3)

s .
ment by this prescription. See Fig. 4(b), which shows the corre-
sponding O(ε2) and O(ε3) terms in the α(3)

s scheme. (We refer to 
[6] for the calculation method.) Here, we use the 4-flavor coupling 
in our reference analysis, while we use the 3-flavor coupling for an 
error estimate given below. This is because the c-quark cannot be 
regarded as completely decoupled at the scale of the bottomonium 
1S states [9], and to use the effective 3-flavor coupling may not be 
natural.

By incorporating the charm-mass effects, qualitatively the po-
tential energy V (r) between b and b̄ becomes steeper (interquark 
force becomes stronger) at large r (� m−1

c ), due to the decoupling 
of the c-quark in the running of αs [31]. This pushes up the energy 
levels of the bottomonium for the same input mb . As a result, the 
determined mb ’s are reduced compared to the mc → 0 case [22]
by about 8 MeV.

We estimate uncertainties in the determination of mb in the 
same way as in the charmonium case. (The errors of the experi-
mental data are negligibly small.)

(i) Uncertainty due to uncertainty of d3 is ±2 MeV.
(ii) Uncertainty due to uncertainty of αs(M Z ) is ±6 MeV.
(iii) Uncertainty by higher-order corrections. (a) By changing 

μ to twice of the value of the minimal sensitivity scale, mb de-
termined from either ϒ(1S) or ηb(1S) varies by about 10 MeV. 
(b) The differences in the determined mb on the minimal sensi-
tivity scales up to NNLO and NNNLO give 21 MeV and 18 MeV, 
respectively, for ϒ(1S) and ηb(1S). (c) One half of the last known 
terms of eqs. (26) and (27) are both about 3 MeV. We take as 
our estimates the maximal values of (a)–(c), namely, 21 MeV and 
18 MeV, respectively, for ϒ(1S) and ηb(1S). Twice of these values 
are roughly of the same order of magnitude as (or slightly larger 
than) �3

QCDr2, in the case �QCD ∼ 300 MeV and r ∼ 1 GeV−1.
In addition, we estimate uncertainties of the non-zero charm 

mass corrections.
(iv) Uncertainty of non-zero mc effects: (a) The charm mass cor-

rections at O(ε2) and O(ε3) shown in Fig. 4(a) are around 10 MeV 
at the minimal sensitivity scales μ ∼ 5–6 GeV of Mbb̄ . We take 
the average of these two terms, which translates to about 5 MeV 
for the determined mb . (b) We take the difference of the deter-
mined mb by using the 4-flavor coupling and the 3-flavor cou-
pling. This gives about 3 MeV for either ϒ(1S) or ηb(1S). We 
take the maximal value of (a) and (b), namely 5 MeV, as our 
estimate. This estimate of uncertainty from non-zero mc is consis-
tent with those of previous studies [2,3] using the non-relativistic 
sum rule.

To summarize our results, we obtain

mb(ϒ(1S)) = 4207 ± 2 (d3) ± 6 (αs) ± 21 (h.o.) ± 5 (mc) MeV ,

(28)
Fig. 5. Determination of mb . Horizontal (vertical) axis represents mb (mass of bot-
tomonium 1S state). Other notations are the same as in Fig. 2.

mb(ηb(1S)) = 4187 ± 2 (d3) ± 6 (αs) ± 18 (h.o.) ± 5 (mc) MeV .

(29)

Both values are mutually consistent within the estimated errors. 
By taking the average of the above two estimates, we obtain

mave
b = 4197 ± 2 (d3) ± 6 (αs) ± 20 (h.o.) ± 5 (mc) MeV . (30)

It is consistent with the current PDG value mb = 4.18 ± 0.03 GeV. 
(See Fig. 5.)

4. Conclusions and discussion

We determined the c- and b-quark MS masses, by direct com-
parisons of the experimental data for the masses of the individual 
heavy quarkonium 1S states with the predictions of perturbative 
QCD. The predictions combine the state-of-the-art computational 
results, which are at the NNNLO level, and show stability and 
convergence expected for legitimate perturbative predictions. The 
obtained values of each mass from the different spin states are 
consistent with each other as well as with the current PDG value, 
which is determined from a wide variety of observables. The pro-
cedures of the computation and error estimates are based on fairly 
general prescriptions of perturbative QCD.4

There is a general tendency that hyperfine splittings (also 
fine splittings) are predicted to be smaller than the experimental 

4 Calculation procedures were less systematized and unclear, when the same 
method was applied more than a decade ago up to NNLO.
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data in perturbative predictions of the heavy quarkonium energy 
levels. This tendency is reflected in our analysis in the differ-
ences of the determined values of mb,c from the different spin 
states. There have been studies that particular higher-order cor-
rections increase the splittings (hence, tend to remedy the dif-
ferences), namely the corrections originating from the running of 
αs [32] and from resummation of ultra-soft logarithms by the 
RG equation of potential-NRQCD EFT [33]. We did not include 
these corrections specific to the heavy quarkonium energy lev-
els in our estimates of higher-order corrections. Rather we used 
more general methods applied in estimates of unknown higher-
order corrections for various physical observables. We remark 
that, in the end, we obtain consistent error estimates in both 
ways.
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