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Abstract

We are concerned with a class of weak linear bilevel programs with nonunique lower level solu-
tions. For such problems, we give via an exact penalty method an existence theorem of solutions.
Then, we propose an algorithm.
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1. Introduction

Let us consider the following weak linear bilevel programming problem:

(S): Min sup F(x,y)=clx+dly,
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where M (x) is the set of solutions to the lower level problem
P@):  Min f,y)y=dly

yekR
Ax+By<b
withc eR",dy1,do e R™, b e RP, A e RP*" B € RP*™ X is a closed subset @&”", and
T stands for transpose. Set

Xt={xeX|x>0}
and forx e X1,
Y(x)={yeR} | By <b— Ax}.

The problem(S) called also a weak linear Stackelberg problem, corresponds to a static
uncooperative two player game, where a leader plays against a follower. The leader know-
ing the objective functiory and the constraints of the follower, selects first a strategy

in X, in order to minimize his objective functiof. Then, for this announced strategy,

the follower reacts optimally by selecting a strategyn Y (x). The formulation of the
problem that we consider is called a pessimistic formulation. It corresponds to the case
where the solution seM (x) is not always a singleton, and the leader provides himself
against the possible worst choice of the followerii(x). So, he minimizes the function
SuB e pm) Fx, y).

Note that several papers have been devoted to weak bilevel problems dealing with
different subjects (existence of solutions, approximation, regularizatijrwe cite, for
example, [1-5]. The reader is also referred to the annotated bibliography on bilevel opti-
mization given in [6,7].

As is well known, weak bilevel programming problems are difficult to solve on both the
theoretical and the numerical aspects. In this paper, for the prof#gmve will give an
existence theorem of solutions via an exact penalty method. This penalty method that we
present is inspired from [8,9], where the authors consider a strong linear bilevel program-
ming problem. Finally, we give an algorithm. In [9], White and Anandalingam developed
a penalty function approach that gives global solutions, while in [8], they only obtain local
solutions. However, in [9], some trouble have been identified by Campelo et al. [10]. Then,
they have given a new resolution of the considered problem under a weaker assumption
than the two assumptions used in [9], which one of them is nonvalid.

The paper consists of four sections. In Section 2, we present our penalty method. In
Section 3, we give preliminary results and establish our main result (Theorem 3.3) on the
existence of solutions te5). Finally in Section 4, we propose an algorithm.

2. The exact penalty method

The exact penalty method that we will give is based on the use of the duality gap in
the lower level. First, remark that in the definition of the objective functforwe have
ignored a term of the forna” x, since for a givenx, ¢’ x is a constant in the follow-
er's problemP(x). Throughout the paper, we assume that the following assumptions are
satisfied.
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(H1) For anyx € X, Y(x) # @, and there exists a compact subgebf R™, such that
Y(x)C Z.
(H2) The setx is a polytope.

Forx € XT, set

v(x) = Sup ley.
yeM(x)

Then,(S) can be written as
Min [ch + v(x)].
xeX+t
Let D(x) denote the follower’s dual problem &f(x), i.e.,
D(x): Max (Ax—b)'z
zeRP
BTz>—d;
and let
w(x,y,2) :dzTy —(Ax —=b)Tz,
denote the duality gap.
Remark 2.1. We have thaty solvesP(x), andz solvesD(x) if and only if (y,z) is a

solution of the following system:

dzTy —(Ax—b)Tz=0,
By <b— Ax,
yeRY, zeRf.

Thus,v(x) is also the optimal value of the following linear maximization problem

Maxley,
(y,2) eR™ x R,

Px): dl'y — (Ax —b)Tz =0,
subjectto | By <b — Ax,

BT7 > —d>.

Fork € R, we consider the following penalized p[oblem@[x), where the nonnegative
duality gap is introduced in the objective function/{x), by the penalty parametér
Max{d{ y — kldy y — (Ax —b)"z]},

(v,2) eRT xRY,

By <b — Ax,

BTz > —dy,

Pr(x):
subject to {
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and denote byy (x) its optimal value. Then, the dual problem®f(x) is
Min[d] t + (b — Ax)Tu],

(t,u) e R x RY,

—BTu < kdy — ds,

Bt <k(b— Ax).

Under assumptioxH;), we will see later (Lemma 3.1), that for amye X+, the problem
Pr(x) has a solution. So, from the theory of linear programmingyx) is the common
optimal value ofP; (x) andD; (x). Then, in the first level we get the following intermediate
penalized problem:

Min[c?x +d}t + (b — Ax)Tu],
(x,t,u) € XT xR x Ri,
—BTu < kdy — dy,
Bt < k(b — Ax).
Finally, we obtain the following penalized problem@f):
. o [T
(Sk): xl\él)l(ll[c X +vk(x)].

D (x):
subject to {

(S0):
subject to {

3. Preliminaries and main results

In this section, we first give preliminary results and establish our main result on the
existence of solutions (Theorem 3.3). Finally, we give an algorithm.
Set

Q={zeR) | B z>—dy},

and let(S) be the strong bilevel programming problem correspondir(g1oi.e., the prob-
lem

$): Min inf [cTx+dly].
) xeX‘*’yeM(x)[ 1)’]

In the sequel, we will work with its equivalent form, i.e., the problem
(S): Min [ch + ley].
xeXxt
yeEM(x)
Let the following assumption which was introduced in [10]:

(H*) Q# ¢, and the following relaxed problem ¢f):
Min  [c"x+d]
(x,y)eX*xRﬂ[ ! y]
Ax+By<b

has a solution.

Then, we have the following proposition.
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Proposition 3.1. Let assumptioriH*) hold. Then, the probler(s) has a solution.
See [10] for a proof.
Corollary 3.1. Let assumptiongH1) and (Hy) hold. Then, the probler§) has a solution.

Proof. We can easily see that under assumpti@thg) and (H2), the assumptioiH*) is
satisfied, and the result follows.xO

Let us introduce the following notations. Foe R, set
Ue={ueRY | —BTu <kdo — dv},
Zr={(x, ) e X" xR} | Bt <k(b— Ax)},
and for(k,x) e Ry x X, set
Zr(x)={t e R | Bt <k(b— Ax)}.
In the sequel, for a subset of R?, we shall denote by (A) the set of vertices afl. Set
ﬁ(x, tou)=clx +d2Tt +b—Ax)"u.
Fork € Ry, let6;(.) be the marginal function defined 6f, by

O w)= Inf F(x,t u).
(x,1)eZy

Then, we have the following result.

Theorem 3.1. Letk € R,. Suppose that assumptiotd;) and (H) are satisfied. Then,
the problem

Min 6y (u)

uelly
has at least one solution W (L4).

Proof. First note thatj (.) is a concave function (see, for example, [11]). Otherwise, using
the fact thatvy (x) is the value ofP; (x) andDy (x), we obtain

inf O,(u)= inf inf [c¢Tx+dlt+®—-Ax)Tu
ueldy k() x€X+t€Zk(X)[ 2 ( ) ]
ueuk

= inf [ch + sup (ley —km(x,y, z))]

xeX+ (v,2)eR” xRY
By<b—Ax
BTz>—d>
2 |nf [CT.x +d{y —kT[(x, Y, Z)]

xeXt

for all (y,z) e R x Ri, such thatBy < b — Ax, BTz > —d». In particular, lety* be a
solution of P(x), andz* be a solution ofD(x). Then, sincer (x, y*, z*) = 0, we get

inf 0, (w) > inf [¢Tx+d"y*]> inf [cTx+dly].
welly k( )/x€X+[ 1y ]/ rex+ [ 1)7]
yeMi(x)
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Using Corollary 3.1, we deduce that the functi.) is bounded from bellow by the finite
optimal value of the probleniS). Since the functiom,(.) is concave and the séf; is a
polyhedron, then result follows by using [11, Corollary 32.3.4f1

According to the notations introduced above, the probi8§m can be written as
(So): Min_ ["x+dlt+ b — A0 ul.

(x,1)eZy
uelly

Then, we have the following theorem.

Theorem 3.2. Letk € R, and let assumptiondd1) and (H2) hold. Then,

(1) the problem(gk) has at least one solution i (Z;) x V (Uy),
(2) the problem(S;) has at least one solution i (XT).

Proof. (1) Letuj € V(Uy) be a solution to the problem (Theorem 3.1)

Min 6, .
ucldy k()
We have
inf [¢Tx+dlt+0-—A0)Tu]l= inf [cTx+dlt+ k- AT

(x,t)EZk[ 2 ( ) Mk] (X,I)EZk[ 2 ( ) u]

ueuk
> inf [cTx+dTy],

xeXxt [ 1)’]
yeM(x)

where the last inequality follows from the proof of Theorem 3.1. Then, for the same reasons
as in Theorem 3.1, and by applying [11, Corollary 32.3.4], we deduce that the problem

Min F(x,t,ut
(x,1)eZ; ( k)

has a solution(x;, ;) € V(Z), and hencex}, 1}, uf) € V(Z;) x V(Uy) is a solution
of (Sk)
(2) Itis obvious that; whichis inV(X*), solves(Sy). O
Set
X*:{(x,y)€X+ XR$|Ax+By<b},
and define the function
g(x.y.2)=d{y—k[d)y— (Ax =) z] =d] y —kn(x,y,2).
Then, we have the following lemmas.

Lemma3.l Letk e Ry, andx € X*. Assume that assumptigH, ) is satisfied. Then, the
problem?Py (x) has a solution inV (Y (x)) x V(Q).
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Proof. We have

sup  [diy—kn(x,y,2)]< sup diy= max dly,
), 2)ER™ xRY eR™ yeR%
()Bz;zht);\er Byygbij Byébij
BTz>—d>
where the equality follows from the fact that the 3&tx) is a polytope (see assump-
tion (H1)). That is the functiorg(x, ., .) is bounded from above. Then, using [11, Corol-
lary 32.3.4], we deduce that the problgPa(x) admits a solutior(yx, zx) in V(Y (x)) x

V(Q). O

Lemma 3.2. Let assumptionéH;) and (H) hold. Let(x;), x; € V(X ™), be a sequence of
solutions of the problemssy), k € R.. Then, there existlg € R, such that for alk > k1,

(1) 7(xx, yr, zi) =0, for all (v, zx) € V(Y (xx)) x V(Q), solution ofPy (xz),
(2) vk (xx) = v(xg).

Proof. (1) Let (yr,zx) € V(Y (xx)) x V(Q) be a solution of the problen‘ﬁk(xk)
(Lemma 3.1). Then,

vk (k) = d7 yk — k(e ye, 2) = df y — kmt (xe, ¥, 2),
V(y,2) € Y(xp) x Q.

In particular, lety andz be solutions ofP(x;) andD(x;), respectively. Theng (xi, v, z)
=0, and from the above inequality we deduce that

df Gk —y) < ldall2(lyell2 + 11yll2)

k = k ’
where||.||» denotes the euclidean norm. Singe yx) € Y (xx) X Y (xx) C Z x Z, which is
a compact set, there exists > 0, such that|dy|2(l|vkll2 + llyll2) < M, and hence

0 <7 (xp, Yi» 21) <

0 < 7 (xk, Yis 2k) < -
So

k—liToon(xk’ Vi, 2k) =0.
Using the fact thatxy, yi, zx) € V(X*) x V(Q) (because/ (X*) = V(XT) x V(Y (xr)),
and thatV (X*) x V(Q) is a finite set, it follows that there exists € R, such that

(XK, Yk 2k) =0,  Vk 2> k1.

(2) We have
vi(xk) = df y — k Cep, yeo z) = df ye. forallk > ky.

Letus show thatyy, zx) solvesP (x). Firsthe remark thaty, zx) is a feasible point of
P(xr). Now, let(y, z) be a feasible point gP(x;) and let us show that

df ye > df y.
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Since(y, z) is also a feasible point 0Py (xx), it follows that
df yi — k(e veo ) =di e > di y — k(. y,2) =di y, k> ki,

where the last equality follows from the fact thatx, y, z) = 0, since(y, z) is a feasible
point of P (xy). That is(yx, zx) solvesP(xx). Then,

v(xg) = leyk =vr(xg), forallk>kj. O

Lemma 3.3. Let assumptiongHj) and (H2) hold. Then, there exists € R, such that
(@) <vlx), VxeXT, Vk>=ko.
Proof. Letx e X*. Fork e Ry, let (yx,zx) € V(Y (x)) x V(Q) be a solution ofP (x).

Then, with a similar arguments as in Lemma 3.2, we can show that there lexisiR
such that

w(x, yr,2k) =0, Vk>=ko.
So(y, zx) is a feasible point oP(x), and

v (x) =df ye —kw(x, i, 20) =df yi, Yk >ka
Then,

v(x) Zd{ = (x), Vkzk. O

Now, we are able to establish the following theorem which shows that the penalty is
exact.

Theorem 3.3. Let assumptiongH;) and (Hy) hold. Let(xy), x; € V(X™), be a sequence
of solutions of the problem&Sy), k € R4. Then, there exists* € R, such that for all
k > k*, x;, solves(S).
Proof. Sincex; (x; € V(X™)) is a solution of(S;) (see Theorem 3.2), we have

chk + vr(xg) < cTx+ v (x), VxeXT.

Let k* = max(k1, k2). Then, by Lemma 3.3, and (2) of Lemma 3.2, for all: k*, we
obtain

chk +v(xg) = chk + vr(xx) < cI'x+ vr(x) < cTx+ v(x), VxeXT.

That is, for allk > k*, x; is a solution of the original problefs). O
The following theorem and remark will be used for a test of optimality in the algorithm.
Theorem 3.4. Assume that assumptiorisly) and (Hp) are satisfied. Lek € R,, and

(u,u’) €Uy x Uy. Let(xx (1), t(u”)) be a solution to the problem

Min F(x,t,u).
(x,1)eZ

Then,
O (u) < O + (b — Axp @) (u — ).
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Proof. We have

Oy =T (') + dd 1) + (b — Axg )" u’
and

Or(u) < cTx +d2Tt + (b — Ax)Tu, V(x,t) € Z.
Then,

O () < Ty + dd 1 (') + (b — Axp ) .
From (3.1), we have

Ty +df 'y =6, () — (b — Axg ()" u'.
Finally, the inequality (3.2) implies that

Oc(u) < O ()) + (b — Axe @) w—u). O
From Theorem 3.4, we deduce the following remark.

Remark 3.1. Set

ar (') = min(b — Axg )" (u —u').
ueldy

If ax(u') <0, then
u' ¢ argmin 6 (u): u € Uy}

The following algorithm is inspired from the algorithm given in [8].

4. Thealgorithm

Initializationi =0,

choosek > 0 (k large),u? € Uy, andx > 0.
lterationi =1,2,...

(1) Compute();,i, the argmir{c'Tx + dth'+ (b— Ax)ut: (x,1) € Z).
(2) Computex; = min{(b — Ax,’C)T(u —up): uel},anda solutiom,’g,i.

Optimality test

(3) If f >0, thenu} € argmin{(u): u € Uy}, and go to (a).
(a) Compute a solutioty (x}), z(x!)) of the linear progran® (x!):
(@) If w(x}, y(x}), z(x})) = 0, thenx; solves the problenis),
(@) If w(x}, y(x}), z(x})) > 0, putk < k + A, and go to (1).

407

(3.1)

(3.2)
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(4) If a} <0, setu;™ =uf ;. Then, puti < i + 1, and go to (1).

In (3), () of the algorithm, the penalty parameteris increased by discrete small
stepsh.

Remark 4.1. We note that all results remain valid if replace the terfn by a concave
functiong(x).
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