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a b s t r a c t

A series of Cretaceous plutons is present in the eastern Pontides of northeastern Turkey. The Turnagöl
intrusion is the least studied and, thus, the least understood plutons in the orogen. This intrusion consists of
hornblende-biotite granodiorites emplaced at 78 Ma based on LA-ICP-MS U-Pb zircon dating. It is of sub-
alkaline affinity, belongs to the medium- to high-K calc-alkaline series, and displays features typical of I-
type granites. The rocks of the intrusion are enriched in large-ion lithophile elements and light rare earth-
elements with negative Eu anomalies (Eu/Eu* ¼ 0.69e0.82), but are deficient in high-field-strength
elements. They have a small range of (87Sr/86Sr)i (0.7060e0.7063), 3Ndi

(�2.6 to �3.1), and d18O (þ8.1
to þ9.1) values. Their Pb isotopic ratios are 206Pb/204Pb ¼ 18.63e18.65, 207Pb/204Pb ¼ 15.62e15.63, and
208Pb/204Pb¼ 38.53e38.55. The fractionation of plagioclase, hornblende, and Fe-Ti oxides had key functions
in the evolution of the Turnagöl intrusion. The crystallization temperatures of the melts ranged from 758 to
885 �C as determined by zircon and apatite saturation thermometry. All these characteristics, combined
with the low values of K2O/Na2O and (Na2O þ K2O)/(FeOt þ MgO þ TiO2), as well as the high values of
(CaOþ FeOtþMgOþ TiO2), suggest anoriginbydehydrationmelting fromametabasaltic lowercrustal source.

� 2012, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
1. Introduction

Turkey is located on an east-west trending segment of the
Alpine-Himalayan orogenic belt. This belt embraces various arc-,
collision-, and post-collision geologic settings. In this belt, Turkey, as
the zone of interaction between the Eurasia and Gondwanaland
plates, lies in an important geodynamic position. The Pontide unit
(Ketin,1966) of Turkey includes various intrusive and eruptive rocks
that constitute the widespread eastern Pontide Terrane, many of
which are related to the convergence of these two plates (Fig. 1A).
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The crystallization ages of these intrusive rocks range from the
Permo-Carboniferous (Ço�gulu, 1975; Topuz et al., 2004, 2010;
Dokuz, 2011; Kaygusuz et al., 2012) through the Cretaceouse
Paleocene (Yılmaz et al., 2000; Boztu�g et al., 2006; _Ilbeyli, 2008;
Kaygusuz et al., 2008, 2009, 2010; Kaygusuz and Aydınçakır, 2009;
Karslı et al., 2010; Kaygusuz and Şen, 2011) to the Eocene periods
(Boztu�g et al., 2004; Topuz et al., 2005; Yılmaz-Şahin, 2005; Arslan
and Aslan, 2006; Karslı et al., 2007; Eyubo�glu et al., 2011b). The
rocks were formed in different geodynamic environments, and the
emplacements of these plutons occurred in awide range of tectonic
settings: from arc-collisional, through syn-collisional, to post-
collisional (e.g., Yılmaz and Boztu�g, 1996; Okay and Şahintürk,
1997; Yılmaz et al., 1997; Ye�gingil et al., 2002; Boztu�g et al., 2003).

Investigations on the intrusive rocks of the eastern Pontides are
extensive (e.g., Delaloye et al., 1972; Yılmaz, 1972; Taner, 1977;
Gediko�glu, 1978; Moore et al., 1980; Jica, 1986; Yılmaz and Boztu�g,
1996; Okay and Şahintürk, 1997; Karslı et al., 2004; Boztu�g et al.,
2004, 2006; Yılmaz-Şahin et al., 2004; Topuz et al., 2005; Yılmaz-
Şahin, 2005; Dokuz et al., 2006; Kaygusuz et al., 2008, 2009, 2010,
2011, 2012). However, studies on the Turnagöl intrusion are limited
eking University. Production and hosting by Elsevier B.V. All rights reserved.
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Figure 1. (A) Tectonic map of Turkey and surroundings (modified after Şengör et al., 2003); (B) Major structures of the eastern Pontides (modified from Eyubo�glu et al., 2007);
(C) Location map of the study area and (D) Geological map of the study area. NAFZ: North-Anatolian fault zone; EAFZ: East-Anatolian fault zone; DSFZ: Dead Sea fault zone.
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and primarily related to mine as well as general geological research
(Yalçınalp, 1992; Güven, 1993). The present study examines the
Turnagöl intrusion, which is geochemically and isotopically the
least-studied series of plutons in the eastern Pontides. Before this
study, the age of the Turnagöl intrusion has been uncertain, and no
geochronological age of this intrusion is currently available. In this
article, new petrographic, geochemical, Sr-Nd-Pb-O isotopic, and LA-
ICP-MS U-Pb zircon data from the Turnagöl intrusion in the eastern
Pontide magmatic arc are reported. These geochemical and isotopic
data reveal the magma sources and magma production processes of
the I-type, calc-alkaline granitoids from the eastern Pontides.

2. Geological background

The eastern Pontides orogenic belt is located within the Alpine
metallogenic belt, and geographically corresponds to the eastern
Black Sea region of Turkey. It is commonly subdivided into northern
and southern zones (Fig. 1B) based on structural and lithological
features (Özsayar et al., 1981; Okay and Şahintürk, 1997). These
zones have different lithological characteristics and are separated
by EeW, NEeSW, and NWeSE oriented fault zones that define the
block-faulted tectonic style of the eastern Pontides (Bektaş and
Çapkıno�glu, 1997). The late Cretaceous and middle Eocene
volcanic and volcaniclastic rocks dominate the northern zone,
whereas pre-late Cretaceous rocks dominate the southern zone
(Arslan et al., 1997, 2000; Şen et al., 1998; Şen, 2007; Temizel et al.,
2012). The basement of the eastern Pontides consists of early
Carboniferous metamorphic rocks (Topuz et al., 2004, 2007), and is
crosscut by granitoids of late Carboniferous age (Yılmaz, 1972;
Ço�gulu, 1975; Okay and Şahintürk, 1997; Topuz et al., 2010; Dokuz,
2011; Kaygusuz et al., 2012). The early Jurassic volcanic rocks of the
eastern Pontides unconformably lie on a Paleozoic heterogeneous
crystalline basement, and are crosscut by younger granitoids of
Jurassic to Paleocene age (Okay and Şahintürk, 1997; Dokuz et al.,
2006; Kaygusuz et al., 2008, 2009, 2010; Karslı et al., 2010).
Volcanic and volcano-sedimentary rocks of early and middle
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Jurassic ages are tholeiitic in character (Arslan et al., 1997; Şen,
2007). They are conformably overlain by middleelate
JurassiceCretaceous neritic and pelagic carbonates. The late
Cretaceous series that unconformably overlies these carbonate
rocks consists of sedimentary rocks in the southern part, and of
volcanic rocks in the northern part (Bektaş et al., 1987; Robinson
et al., 1995; Yılmaz and Korkmaz, 1999). The Cretaceous volcanic
rocks mainly belong to the tholeiitic and calc-alkaline series, and
host several volcanogenic massive sulphide deposits (Akçay et al.,
1998). The Eocene volcanic and volcaniclastic rocks unconform-
ably overlie the late Cretaceous volcanic and/or sedimentary rocks
(Güven,1993; Yılmaz and Korkmaz,1999), and are intruded by calc-
alkaline granitoids of similar age (Arslan and Aslan, 2006; Karslı
et al., 2007; Eyubo�glu et al., 2011b). Post-Cretaceous magmatic
rocks include the Paleocene plagioleucitites (Altherr et al., 2008;
Eyubo�glu, 2010), early Eocene “adakitic” granitoids (Topuz et al.,
2005; Eyubo�glu et al., 2011a, b, c, d), as well as middleelate
Eocene calc-alkaline to tholeiitic, basaltic to andesitic volcanic
rocks, and crosscutting granitoids exposed throughout the eastern
Pontides (e.g., Tokel, 1977; Arslan et al., 1997; Karslı et al., 2007;
Boztu�g and Harlavan, 2008; Temizel and Arslan, 2009; Temizel
et al., 2012). The post-Eocene uplift and erosion brought clastic
input into the locally developed basins (Korkmaz et al., 1995). From
the end of the middle Eocene, the region remained largely above
sea level, with minor volcanism and terrigenous sedimentation
that continue to the present-day (Okay and Şahintürk, 1997). The
Miocene and post-Miocene volcanic history of the eastern Pontides
is characterized by calc-alkaline to mildly alkaline volcanism
(Aydın, 2004; Yücel et al., 2011; Temizel et al., 2012) and the late
Miocene adakitic magmatism (Eyubo�glu et al., 2012).

The study area is located in the northern zone of the eastern
Pontides (Fig. 1C). The basement rocks consist of Paleozoic granites
(Kaygusuz et al., 2012). The granites are unconformably overlain by
early Jurassic volcanics that consist of basalts, andesites, and their
pyroclastic equivalents. These rocks are conformably overlain by
middleelate JurassiceCretaceous carbonates. These carbonates are
conformably overlain by late Cretaceous basic and acidic volcanic
rocks consisting of andesites, dacites, and their pyroclastic equiv-
alents interbedded with sedimentary layers. All these lithologies
are cut by late Cretaceous granitoids. According to field observa-
tions, the Turnagöl intrusion cuts late Cretaceous formations, and is
cut by aplitic, dacitic, as well as andesitic dykes. The intrusion was
dated as 78.07 � 0.73 Ma using U-Pb zircon dating on granodiorite
in this study.

3. Analytical methods

3.1. Whole-rock major and trace element analyses

Twenty-five samples were collected from the Turnagöl intrusion
(for sample location see Fig. 1D). On the basis of the petrographical
studies,10 of the freshest andmost representative rock samples from
the intrusion were selected for whole-rock major-, trace- and rare
earth-element (REE) analyses. Rock samples were crushed in steel
crushers and grinded in an agate mill to a grain size of <200 mesh.
Major, trace and REE analyses were carried out at ACME Analytical
Laboratories Ltd., Vancouver, Canada. Major and trace element
compositions were determined by ICP-MS after 0.2 g samples of rock
powder were fused with 1.5 g LiBO2 and then dissolved in 100mL 5%
HNO3. REE contents were analyzed by ICP-MS after 0.25 g samples of
rock powder were dissolved by four acid digestion steps. Loss on
ignition (LOI) is by weight difference after ignition at 1000 �C. Total
iron concentration is expressed as Fe2O3. Detection limits range from
0.002 wt.% to 0.04 wt.% for major oxides, from 0.1 to 8 ppm for trace
elements, and from 0.01 to 0.3 ppm for REE.
3.2. Zircon U-Pb dating

Zircon grains were extracted by heavy-liquid and magnetic
separation methods, and further purified by hand-picking under
a binocular microscope. Selected grains were mounted in an epoxy
resin and polished until half way through. Cathodoluminescence
(CL) images were acquired to check the internal structures of
individual zircon grains and to ensure a better selection of analyt-
ical positions.

U-Pb zircon dating was carried out by using LA-ICP-MS at the
Geologic Lab Center, China University of Geosciences (Beijing). A
quadrupole ICP-MS (Agilent 7500a) was connected with a UP-193
Solid-state laser (193 nm, New Wave Research Inc.) with an auto-
matic positioning system. Laser spot size was set to w36 mm, and
the energy density at 8.5 J/cm2 and repetition rate at 10 Hz. The
procedure of laser sampling was 5 s pre-ablation, 20 s sample-
chamber flushing and 40 s sampling ablation. The ablated mate-
rial was carried into the ICP-MS by a high-purity He gas streamwith
flux of 0.8 L/min. The whole laser path was fluxed with N2
(15 L/min) and Ar (1.15 L/min) in order to increase energy stability.
U-Pb isotope fractionation effects were corrected using zircon
91500 (Wiedenbeck et al., 1995) as external standard. Zircon
standard TEMORA (417 Ma, Black et al., 2003) was also used as
a secondary standard to monitor the deviation of age measure-
ment/calculation. Ten analyses of TEMORA yielded apparent
206Pb/238U ages of 417e418 Ma. Isotopic ratios and element
concentrations of zircons were calculated using the GLITTER soft-
ware (ver. 4.4, Macquarie University). Concordia ages and diagrams
were obtained using Isoplot/Ex 3.0 (Ludwig, 2003). Common lead
was corrected following the method of Andersen (2002).

3.3. Sr-Nd-Pb isotope analyses

Sr, Nd and Pb isotope compositions were measured on a Fin-
nigan MAT 262 multicollector mass spectrometer at the Institute of
Geosciences, Tübingen (Germany). For Sr-Nd isotope analyses,
approximately 50 mg of whole-rock powder was decomposed in
52% HF for 4 days at 140 �C on a hot plate. Digested samples were
dried and redissolved in 6 N HCl, dried again and redissolved in
2.5 N HCl. Sr and Nd were separated by conventional ion exchange
techniques and their isotopic compositions were measured on
single W and double Re filament configurations, respectively. The
isotopic ratios were corrected for isotopic mass fractionation by
normalizing to 86Sr/88Sr ¼ 0.1194 and 146Nd/144Nd ¼ 0.7219. The
reproducibility of 87Sr/86Sr and 143Nd/144Nd during the period of
measurement was checked by analyses of NBS 987 Sr and La Jolla
Nd standards yielding average values of 0.710235� 0.000015 (2SD,
n ¼ 3) and 0.511840 � 0.000008 (2SD, n ¼ 5), respectively. Total
procedural blanks were 20e50 pg for Sr and 40e66 pg for Nd.
Separation and purification of Pbwas carried out on Teflon columns
with a 100 mL (separation) and 40 mL bed (cleaning) of Bio-Rad AG1-
X8 (100e200 mesh) anion exchange resin using a HBr-HCl ion
exchange procedure. Pbwas loadedwith Si-gel and phosphoric acid
onto a Re filament andwas analyzed atw1300 �C in single-filament
mode. A factor of 1& per atomic mass unit for instrumental mass
fractionation was applied to the Pb analyses, using NBS SRM 981 as
reference material. Total procedural blanks for Pb during the
measurement period were between 20 and 40 pg. Sample repro-
ducibility is estimated at �0.02, �0.015 and �0.03 (2s) for
206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, respectively.

3.4. d18O isotope analyses

For stable isotopes, oxygenwas extracted using the BrF5 method
of Clayton and Mayeda (1963), and the d18O values were measured
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using a dual-inlet Finnigan MAT 252 isotopic ratio mass spec-
trometer at Queen’s University, Canada. The O isotope compositions
are reported in the d notation in units of per mil relative to the
standard V-SMOW. The d18O and dD values were reproducible to
�0.2 and�3 per mil, respectively. The oxygen isotope fractionation
factors used throughout this paper are those proposed by Wenner
and Taylor (1971) for water-chlorite, O’Neil and Taylor (1969) for
water-muscovite, as well as Fayek and Kyser (2000) for water-
uraninite. In previous studies, the water-illite fractionation factor
was used instead of water-muscovite. The dD values of the fluids
were 38 per mil higher at 250 �C using the muscovite-water frac-
tionation factors relative to those using illite-water. Therefore, we
preferred the muscovite-water fractionation factor of Vennemann
and O’Neil (1996).

4. Field and microscopic observation

The Turnagöl intrusion is located about 35 km southwest of
Trabzon and exhibits an NEeSW elongated shape (Fig. 1C and D).
The intrusion covers an area of approximately 25 km2. Similar
plutons are seen to the east and southern west of the Turnagöl
intrusion, around the Camibo�gazı and Torul regions. The Turnagöl
intrusion cuts the late Cretaceous andesitic rocks (Çatak Formation)
in the northeast and the dacitic rocks in the southwest (Kızılkaya
Formation). The contacts between the Turnagöl intrusion and the
country rocks are predominantly sharp and discordant. The contact
facies are finer-grained, and the shape of the pluton is elliptic. The
textures are massive, porphyritic, and granophyric; the granitoids
contain country rock xenoliths at the endocontact. In the eastern
part of the intrusion, a number of mafic microgranular enclaves
with ellipsoidal shapes (up to 10 cm in diameter) occur. Their
contacts with the host granodiorites vary from sharp to gradational.
The granodiorites are gray to light gray and have a fine- tomedium-
grained texture, which is feldspar porphyritic near the contact to
the country rocks. These are generally undeformed, slightly altered,
and minimally weathered. Most rocks are brick red to pink, and
a few are greenish chloritized zones.

The rock samples are generally holocrystalline, fine- tomedium-
grained, porphyric, poikilitic, myrmekitic, and rarely micrographic
in texture. Toward the contact with the volcanic country rocks, the
granitoids possess fine-grained textures; toward the center of the
intrusion, the medium-grained textures predominate. Porphyric
textures are generally seen close to the contact of the volcanic
country rocks. The intrusion contains mainly plagioclase, quartz,
K-feldspar, biotite, and hornblende. The accessory phases include
titanite, allanite, apatite, zircon, epidote, and some opaque
minerals. The secondary minerals comprise chlorite, calcite, ser-
icite, and clay minerals.

The plagioclase mostly forms subhedral to anhedral, normally
and reversely zoned prismatic, lath-shaped crystals. The grain sizes
vary from 0.2 mm for inclusions to 3 mm for large crystals.
Plagioclase shows oscillatory zoning, albite twinning, and
prismatic-cellular growth. A myrmekitic texture is observed at the
grain boundaries between orthoclase and plagioclase. Some
plagioclase crystals have poikilitic textures, in which large plagio-
clase crystals (up to 3 mm) may contain small crystals of plagio-
clase, hornblende, and biotite. Some large plagioclase crystals are
altered to sericite and clayminerals. The quartz is anhedral in shape
and fills interstices between other minerals. It generally shows
undulose extinction and its grain size becomes increasingly smaller
in the contact zones between the country rocks. The K-feldspar
forms anhedral, rarely subhedral, crystals of perthitic orthoclase.
The alteration to clay minerals is more common in the large
K-feldspar crystals than in plagioclase. The biotite is abundant in all
samples. It is euhedral and subhedral, reddish-brown, and forms
prismatic crystals as well as lamellas. In some samples, biotite is
altered into chlorite, epidote, or an opaque mineral along its
cleavage planes. The hornblende occurs as small euhedral to sub-
hedral, tablet-like prismatic crystals, with some minerals that are
altered into chlorite, calcite, and actinolite. Large hornblende
crystals (up to 2.5 mm) may contain small plagioclase and biotite
inclusions. The titanite forms euhedral and subhedral crystals in all
rocks. The allanite occurs as reddish, euhedral crystals in all rocks.
The needle-like crystals of apatite are mainly found in plagioclase.
Euhedral zircon is an accessory phase in all rocks and forms short
prismatic crystals.

5. Major and trace element geochemistry

The results of the major, trace, and rare earth-element (REE)
analyses of representative samples from the Turnagöl intrusion are
shown in Tables 1 and 2. In the classification diagram of
Middlemost (1994), all samples are found in the granodiorite field
(Fig. 2). The granodiorites span a narrow compositional range with
w(SiO2) between 67% and 70%, as well as a low Mg# (22e28)
(Table 1; Fig. 2). Their K2O/Na2O ratios vary between 0.59 and
0.87. The aluminium saturation index (ASI ¼ A/CNK) (molar Al2O3/
(CaOþNa2Oþ K2O)) values of samples from the Turnagöl intrusion
are between 0.97 and 1.11, indicating that the granodiorites are
peraluminous to slightly metaluminous (Table 1; Fig. 3A). Some
altered samples from the Turnagöl intrusion portray elevated ASI
values. They show sub-alkaline affinity and belong to the medium-
to high-K calc-alkaline series (Fig. 3B). Harker plots of the selected
major and trace elements (Fig. 4AeR) show the systematic varia-
tions in the element concentrations. The rocks define trends
without a compositional gap. The CaO, MgO, Al2O3, Fe2O

t
3, TiO2, and

P2O5 abundances decrease with increasing SiO2, whereas K2O and
Na2O increase (Fig. 4AeH). Ba, Rb, Th, Pb, and Nb show a positive
linear trend, whereas Sr, Ni, and Eu define a negative correlation
with increasing SiO2 content (Fig. 4JeO, and 4QeR). Zr and Y
remain nearly constant (Fig. 4I and P).

6. REE geochemistry

The general trends of the primitive mantle-normalized (Sun and
McDonough, 1989) element concentration diagrams are shown in
Fig. 5A. All rocks show the enrichment of large-ion lithophile
elements (LILEs) and the depletion of high-field-strength elements
(HFSEs). The depletion in HFSEs is best expressed by the negative
Nb, Ta, P, and Ti anomalies. Positive Pb anomalies are seen in the
samples (Fig. 5A).

The chondrite-normalized (Taylor and McLennan, 1985) REE
patterns of the Turnagöl samples (Fig. 5B) are generally character-
ized by concave-upward shapes (Lacn/Ybcn ¼ 7.1e9.3) and
pronounced negative Eu anomalies (Eucn/Eu*) of 0.69e0.82
(Table 2).

7. Temperatures

The apatite and zircon saturation temperatures (Watson and
Harrison, 1983; Harrison and Watson, 1984; Hanchar and Watson,
2003; Miller et al., 2003) calculated from the bulk-rock chemical
analyses of rock samples correspond to the maximum or minimum
temperature limits for the intruding magma, depending on
whether the melt was saturated or undersaturated with these
components. The Zr abundances in granodiorite samples from the
Turnagöl intrusion (122e135 ppm; Table 1) result in zircon satu-
ration temperatures of 758e773 �C. Subhedral zircon grains do not
occur in the cores of the large plagioclase and hornblende grains,
but are abundant in quartz, orthoclase, biotite, and the outer parts



Table 2
Rare earth-element analyses (ppm) from the Turnagöl intrusions.

Rock types Granodiorites

T84 T86 T162 T88 T28 T76 T82 T73 T51 T78

La 23.80 22.60 25.40 22.30 26.00 26.80 25.10 27.40 25.70 28.50
Ce 45.60 44.80 43.10 43.80 47.10 47.90 45.50 50.40 47.50 49.40
Pr 5.07 4.48 4.57 4.40 4.96 5.03 4.45 5.14 4.85 5.09
Nd 16.70 16.10 17.20 16.00 17.50 18.90 15.10 19.70 17.30 16.90
Sm 3.12 2.89 3.07 2.95 3.44 3.11 3.16 3.09 3.12 3.18
Eu 0.76 0.77 0.77 0.76 0.75 0.76 0.73 0.71 0.72 0.73
Gd 2.52 2.79 2.93 2.83 3.14 3.03 2.92 2.97 3.02 3.05
Tb 0.54 0.48 0.51 0.48 0.50 0.50 0.51 0.50 0.52 0.52
Dy 3.01 2.73 2.97 2.81 2.76 3.00 2.83 2.93 3.03 3.02
Ho 0.70 0.60 0.63 0.62 0.66 0.64 0.68 0.66 0.68 0.64
Er 2.03 1.88 1.90 1.80 2.06 2.01 1.93 1.96 2.06 1.99
Tm 0.32 0.27 0.30 0.28 0.32 0.31 0.32 0.34 0.32 0.33
Yb 2.28 2.01 2.05 1.98 2.15 2.11 2.13 2.14 2.23 2.08
Lu 0.37 0.33 0.32 0.31 0.33 0.33 0.32 0.36 0.35 0.35
(La/Lu)cn 6.66 7.09 8.22 7.45 8.16 8.41 8.12 7.88 7.60 8.43
(La/Sm)cn 4.80 4.92 5.21 4.76 4.76 5.42 5.00 5.58 5.18 5.64
(Gd/Lu)cn 0.85 1.05 1.14 1.13 1.18 1.14 1.13 1.02 1.07 1.08
(La/Yb)cn 7.05 7.60 8.37 7.61 8.17 8.58 7.96 8.65 7.79 9.26
(Tb/Yb)cn 1.01 1.02 1.06 1.04 0.99 1.01 1.02 1.00 1.00 1.07
Eu/Eu* 0.80 0.82 0.77 0.79 0.69 0.75 0.72 0.71 0.71 0.71

Eu*¼(Sm þ Gd)cn/2.

Table 1
Whole-rock major (wt.%) and trace (ppm) element analyses of representative samples and zircon and apatite crystallization temperatures from the Turnagöl intrusions.

Rock types Granodiorites

T84 T86 T162 T88 T28 T76 T82 T73 T51 T78

SiO2 67.27 67.50 67.56 68.05 68.62 68.64 69.09 69.17 69.22 70.16
TiO2 0.38 0.38 0.35 0.33 0.35 0.33 0.34 0.32 0.33 0.31
Al2O3 15.54 15.01 15.41 15.25 14.21 14.92 14.91 14.79 14.69 14.67
Fe2O

t
3 4.15 4.01 3.65 3.48 3.61 3.43 3.37 3.31 3.37 3.25

MnO 0.12 0.10 0.12 0.07 0.07 0.08 0.06 0.07 0.10 0.07
MgO 1.65 1.56 1.25 1.11 1.18 1.36 0.95 1.17 1.19 1.01
CaO 3.71 3.64 3.03 3.75 2.33 2.62 3.73 2.73 2.29 2.13
Na2O 3.34 3.53 3.42 3.53 4.19 3.50 3.35 3.54 3.67 3.78
K2O 2.09 2.10 2.59 2.74 3.11 2.97 2.80 2.98 3.14 3.30
P2O5 0.10 0.09 0.10 0.09 0.09 0.08 0.09 0.09 0.08 0.07
LOI 1.60 1.90 2.30 1.40 2.00 1.90 1.10 1.70 1.70 0.80
Total 99.95 99.82 99.78 99.80 99.76 99.83 99.79 99.87 99.78 99.55
Ni 2.1 1.6 1.1 1.2 1.5 1 1.4 1.0 1.1 0.9
V 95 66 55 55 50 56 53 55 64 47
Cu 6.8 2.2 1.8 3.7 3 3.2 3.1 1.9 4.7 4.5
Pb 8.4 6.4 5.3 7.5 23.2 9.6 13.4 10.2 6.3 20.1
Zn 47 34 45 25 35 34 25 29 28 22
W 1.2 1.5 1.3 1.2 1 1.2 0.9 0.6 1.1 2.4
Rb 50.8 51.5 57 75.1 70.6 71 75.2 75.5 80 88.1
Ba 930 1011 1237 1085 1086 1082 1126 1142 1198 1151
Sr 259.3 237.1 272.6 256.7 274.2 226.3 247.3 238.3 232.1 236.4
Ta 0.5 0.4 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.6
Nb 5.1 6.1 6.2 5.8 7.4 6.5 5.5 6.8 6.8 7.8
Hf 4.1 3.4 3.3 3.9 3.6 4 3.3 3.6 3.8 4.3
Zr 127.7 128.1 122.1 134.8 125.7 127.2 128.8 125.5 128.4 131.7
Y 19.6 17.6 20.3 17.2 24 20.3 15.1 20.6 20.9 20.4
Th 10 10.1 9.8 12 13.3 11.3 11.1 14.1 13.2 15.1
U 3.2 2.4 2.8 2.6 3.6 2.5 2.3 3.1 3.2 3.4
Ga 14.1 13.9 13.4 14.1 11.7 12.3 13 13.1 12.5 12.9
K2O/Na2O 0.63 0.59 0.76 0.78 0.74 0.85 0.84 0.84 0.86 0.87
K/Rb 341.5 338.5 377.2 302.9 365.7 347.3 309.1 327.7 325.8 310.9
K/Ti 7.65 7.69 10.30 11.55 12.36 12.52 11.46 12.96 13.24 14.81
Rb/Sr 0.20 0.22 0.21 0.29 0.26 0.31 0.30 0.32 0.34 0.37
Sr/Y 13.23 13.47 13.43 14.92 11.43 11.15 16.38 11.57 11.11 11.59
ASI 1.07 1.02 1.11 0.98 0.98 1.09 0.97 1.06 1.08 1.07
Mg# 28.45 28.01 25.51 24.18 24.63 28.39 21.99 26.12 26.10 23.71
Zircon (�C) 766 762 767 762 758 770 759 766 771 773
Apatite (�C) 876 867 879 873 879 868 884 885 874 871

Fe2O
t
3 is total iron as Fe2O3, LOI is loss on ignition, Mg# (Mg-number) ¼ 100 � MgO/(MgO þ Fe2O

t
3).

ASI ¼ molar Al2O3/(CaO þ Na2O þ K2O).
Watson and Harrison (1983) formulation used to calculate temperatures from zircon, and Harrison and Watson (1984) formulation used to calculate temperatures from
apatite.
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Figure 2. Chemical nomenclature diagram (Middlemost, 1994) for samples from the
Turnagöl intrusion. mnz gbr: monzogabbro; mnz di: monzodiorite; Q monz: quartz
monzonite.

A. Kaygusuz et al. / Geoscience Frontiers 4 (2013) 423e438428
of plagioclase grains. Thus, the crystallization of zircon started
relatively late at temperatures lower than that of the intruding
magma. This conclusion is supported by the fact that the Zr abun-
dances are not systematically related to the SiO2 concentration
(Fig. 4I). Therefore, the calculated zircon saturation temperatures
should be considerably lower than the temperature of the intruding
magma. On the other hand, apatite crystallization seems to have
started earlier because the apatite grains occur in early crystallized
plagioclase and hornblende (as well as in other phases), and the
bulk-rock P2O5 content decreases with increasing SiO2 (Fig. 4H).
Therefore, the temperatures of the intruding magmas were prob-
ably not much higher than the calculated apatite saturation
temperatures of 867e885 �C.

8. U-Pb zircon dating

The LA-ICP-MS U-Pb zircon dating results are presented in
Table 3 and shown as Concordia diagrams in Fig. 6. A granodiorite,
sample T86, from the Turnagöl intrusion contains abundant zircon
grains. Zircons are colorless, short to long prismatic, and perfectly
euhedral (Fig. 6A). The zircon grains are mostly fine-grained
(70e150 mm) and have aspect ratios of about 1e3. They exhibit
pyramidal terminations and oscillatory zoning (Fig. 6A). All these
features indicate that zircons are of magmatic origin (Pupin, 1980).
About 20 points were analyzed from different crystals. For U-Pb
isotope analyses, only the uncorroded inner parts of the grains
were investigated. Most analyses give concordant age data. Twenty
spots from sample T86 yield 206Pb/238U ages ranging from 75 to
Figure 3. (A) A/CNK vs. A/NK, with field boundaries between I-type and S-type, according to
and (B) w(K2O) vs. w(SiO2) diagram with field boundaries between medium-K, high-K an
(Na2O þ K2O þ CaO), A/NK ¼ molar Al2O3/(Na2O þ K2O). Refer Fig. 2 for explanation.
81 Ma with a weighted mean age of 78.07 � 0.73 Ma
(MSWD ¼ 0.96) (Table 3; Fig. 6B and C). Thus, a late Cretaceous age
is established for the intrusion by U-Pb zircon dating, and this age is
interpreted as the magmatic emplacement age. These results are in
agreement with stratigraphical and geological observations, which
indicate that the I-type Turnagöl intrusion intruded into the late
Cretaceous volcanic rocks in the region (Fig. 1D).
9. Sr, Nd and Pb isotopes

Sr, Nd and Pb isotopic data for the Turnagöl intrusion are listed
in Tables 4 and 5, and plotted in Fig. 7. The initial Sr, Nd and Pb
isotope ratios were calculated using the Rb, Sr, Sm, Nd, U, Th and Pb
concentration data obtained from ICP-MS analyses, by assuming
a granodiorite age of 78 Ma (see below). Samples from the Turn-
agöl intrusion show a narrow range of initial 87Sr/86Sr ratios
(0.7060e0.7063) and 3Ndi

values (�2.6 to �3.1). The corresponding
Nd model ages (TDM) of the granites range from 1.11 to 1.16 Ga. As
illustrated in Fig. 7A, the samples plot within the right quadrants of
a conventional Sr-Nd isotope diagram.

In the SiO2 vs. (87Sr/86Sr)i and (143Nd/144Nd)i diagrams (Fig. 7B
and C, respectively), the samples define nearly horizontal trends
that indicate fractional crystallization (FC). However, a slightly
positive correlation is shown in the (87Sr/86Sr)i vs. MgO plot
(Fig. 7D).

In Fig. 7A, the Turnagöl intrusion is compared with other
Cretaceous plutons from the eastern Pontides. The studied samples
have 3Ndi

and (87Sr/86Sr)i ratios similar to those from Torul and
Sarıosman plutons, but have lower (87Sr/86Sr)i ratios than those
from the Da�gbaşı pluton. The Da�gbaşı, Torul, Sarıosman, Köprübaşı,
and Harşit samples show a negative correlation between 3Ndi

and
(87Sr/86Sr)i, whereas the Turnagöl samples show no obvious
correlation between these two parameters.

The samples from the Turnagöl intrusion have similar
isotopic compositions: (206Pb/204Pb)i ¼ 18.63e18.65,
(207Pb/204Pb)i ¼ 15.62e15.63, and (208Pb/204Pb)i ¼ 38.53e38.55
(Table 5; Fig. 7E and F). In the (207Pb/204Pb)i vs. (206Pb/204Pb)i
diagram (Fig. 7E), the samples plot to the left of the geochron and
above the Northern Hemisphere Reference Line (Hart, 1984). In the
(206Pb/204Pb)i vs. (207Pb/204Pb)i diagram (Fig. 7F), the studied
samples form a close cluster within the field of arc magmas
(Zartman and Doe, 1981). In the Fig. 7E, the Turnagöl samples fall
within the fields of rocks from the lower crust (LC) described by
Kempton et al. (1997) and are similar field of Torul samples
(Kaygusuz et al., 2010).
Chappell and White (1974) and peraluminous and metaluminous fields of Shand (1947)
d shoshonitic series according to Peccerillo and Taylor (1976). A/CNK ¼ molar Al2O3/



Figure 4. Variation diagrams of SiO2 vs. major oxides (wt%) and trace elements (ppm) for samples from the Turnagöl intrusions. Refer Fig. 2 for explanation.
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Figure 5. (A) Primitive mantle-normalized trace-element patterns (normalizing values from Sun and McDonough, 1989) and (B) Chondrite-normalized rare earth-element patterns
(normalizing values from Taylor and McLennan, 1985) for samples from the Turnagöl intrusions. Refer Fig. 2 for explanation.
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10. Oxygen isotopes

The whole-rock oxygen isotopic data are listed in Table 5 and
plotted in Fig. 8AeD. The d18O values of the Turnagöl intrusion vary
between þ8.1& and þ9.1&, similar to those commonly found in I-
type granitoids (e.g., Clarke, 1992). In the 3Ndi

-d18O diagram
(Fig. 8B), these samples define a weak trend of slightly increasing
d18O with decreasing 3Ndi

. A slightly positive correlation between
the d18O values and SiO2 is observed for the samples (Fig. 8C).

For comparison, the eastern Pontide arc-related plutonic rocks
are plotted in the same diagram (Fig. 8D). The Turnagöl samples are
found to have higher d18O and lower (87Sr/86Sr)i values than the
Torul samples (Kaygusuz et al., 2008).

11. Discussion

11.1. Age constraints

In previous works, the emplacement age of the Cretaceous to
Paleocene granitoids in the eastern Pontides was estimated from
contact relationships, stratigraphic criteria, or biostratigraphic data.
Table 3
LA-ICP-MS U-Pb zircon dating results of the Turnagöl intrusions.

Spot Measured ratios

207Pb/206Pb 1s 207Pb/235U 1s 206Pb/238U 1s 208Pb/232T

T86-01 0.04732 0.00133 0.07815 0.00223 0.01197 0.00016 0.00403
T86-02 0.07142 0.00125 0.12344 0.0023 0.01253 0.00016 0.00451
T86-03 0.04642 0.00210 0.08039 0.00362 0.01256 0.00019 0.00407
T86-04 0.05268 0.00208 0.08841 0.00348 0.01217 0.00018 0.00413
T86-05 0.04794 0.00126 0.08000 0.00214 0.01210 0.00016 0.00404
T86-06 0.04744 0.00151 0.07804 0.00250 0.01193 0.00017 0.00396
T86-07 0.04722 0.00117 0.07663 0.00195 0.01177 0.00016 0.00396
T86-08 0.04721 0.00177 0.08164 0.00306 0.01254 0.00018 0.00395
T86-09 0.04924 0.00093 0.08271 0.00165 0.01218 0.00016 0.00397
T86-10 0.04739 0.00160 0.08002 0.00272 0.01224 0.00017 0.00394
T86-11 0.04787 0.00171 0.08360 0.00300 0.01266 0.00018 0.00425
T86-12 0.04948 0.00160 0.08632 0.00281 0.01265 0.00018 0.00410
T86-13 0.04916 0.00124 0.08333 0.00215 0.01229 0.00016 0.00405
T86-14 0.05427 0.00168 0.09394 0.00293 0.01255 0.00018 0.00425
T86-15 0.15889 0.00283 0.31943 0.00594 0.01458 0.0002 0.01062
T86-16 0.04972 0.00115 0.08033 0.00192 0.01172 0.00016 0.00377
T86-17 0.05041 0.00188 0.08712 0.00324 0.01253 0.00018 0.00392
T86-19 0.04779 0.00154 0.08166 0.00265 0.01239 0.00017 0.00394
T86-20 0.05180 0.00127 0.08613 0.00216 0.01206 0.00016 0.00406
T86-22 0.04921 0.00113 0.08162 0.00193 0.01203 0.00016 0.00404

Errors are 1s, 206Pb/238U age (1) values used in the text as the weighted mean.
However, such data, are often imprecise or difficult to obtain due to
rock deformation or tectonic displacement. Thus, an age reassess-
ment in light of new geochronological data appears essential.
Yılmaz (1977) determined a U-Th-Pb age of 142 Ma on granite
samples from the Çaykara intrusion. Gediko�glu (1979) gave K-Ar
cooling ages ranging from 115 to 65 Ma on quartz diorite and
granodiorite samples from the Harşit pluton. Giles (1974), Taner
(1977), and Moore et al. (1980) obtained K-Ar cooling ages
ranging from 132 to 62 Ma on granodiorite and tonalite samples
from the _Ikizdere (Kaçkar) pluton. Moore et al. (1980) reported K-Ar
cooling ages ranging from 84 to 71 Ma on a granodiorite sample
from the Dereli intrusion. Jica (1986) determined a K-Ar cooling age
of 68 Ma on granodiorite samples from the Kürtün pluton. Oyman
et al. (1995) obtained K-Ar cooling ages ranging from 82 to 60 Ma
from the Şebinkarahisar intrusions. Yılmaz-Şahin (2005) as well as
Boztu�g and Harlavan (2008) gave K-Ar hornblende cooling ages
ranging from 138 to 61Ma on a granodiorite sample from the Bo�galı
and Uzuntarla intrusions of the Araklı-Trabzon region. Kaygusuz
et al. (2009) determined a U-Pb zircon age of 82.7 � 1.5 Ma on
monzogranite samples from the Sarıosman pluton. Kaygusuz and
Aydınçakır (2009) reported U-Pb zicon ages of 88.1 � 1.7 and
Corrected ages (Ma)

h 1s 238U/232Th 1s 207Pb/235U 1s 206Pb/238U 1s 208Pb/232Th 1s

0.00006 1.6391 0.02 76 2 77 1 81 1
0.00005 0.99484 0.01 84 4 78 2 77.5 1
0.00009 1.79782 0.02 79 3 80 2 82 2
0.00009 1.86733 0.02 78 4 77 2 77 1
0.00006 1.50949 0.02 78 2 78 2 81 1
0.00006 1.25409 0.01 76 2 76 2 80 1
0.00005 1.38852 0.01 75 2 75 2 80 1
0.00007 1.63663 0.02 80 3 80 2 80 1
0.00004 0.83535 0.01 75 3 78 2 78.4 1
0.00007 1.72501 0.02 78 3 78 2 79 1
0.00008 1.79574 0.02 82 3 81 2 86 2
0.00007 1.61840 0.02 84 3 81 2 83 1
0.00005 1.52172 0.02 81 2 79 1 82 1
0.00007 1.67485 0.02 82 4 80 3 79.6 1
0.00012 1.47949 0.01 78 3 80 2 86 3
0.00004 0.98667 0.01 78 2 75 2 76.1 1
0.00008 1.85421 0.02 85 3 80 2 79 2
0.00007 1.61340 0.02 80 2 79 2 79 1
0.00005 1.47402 0.01 75 3 77 2 77 1
0.00005 1.25134 0.01 80 2 77 1 81 1



Figure 6. (A) CL images of zircons from sample T86; (B) and (C) Concordia diagram
showing LA-ICP-MS U-Pb analyses of zircons from a granodiorite (sample T86) of the
Turnagöl intrusions.

Table 4
Rb-Sr and Sm-Nd isotope data from the Turnagöl intrusions.

Sample Type Age
(Ma)

Rb
(ppm)

Sr
(ppm)

87Rb/86Sr 87Sr/86Sr 2s (87Sr/86Sr)i Sm
(p

T86 gd 78 41.50 237.10 0.5064 0.706818 0.000010 0.70626 2.8
T88 gd 78 75.10 256.70 0.8464 0.707018 0.000010 0.70608 2.9
T76 gd 78 71.00 226.30 0.9077 0.707182 0.000011 0.70618 3.1
T73 gd 78 75.50 238.30 0.9166 0.707024 0.000010 0.70601 3.0

a
3Ndi

values are calculated based on present-day 147Sm/144Nd ¼ 0.1967 and 143Nd/144
b Single stage model age (TDM), calculated with depleted mantle present-day paramet
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82.9 � 1.3 Ma for tonalite and monzogranite samples, respectively,
from the Da�gbaşı pluton. Kaygusuz et al. (2008, 2010) determined
U-Pb zircon ages ranging from 78.8 � 1.2 Ma to 80.1 � 1.6 Ma on
monzogranite, quartz monzonite, and quartz monzodiorite
samples, as well as an Rb/Sr age of 77.9 � 0.3 Ma on syenogranite
samples from the Torul pluton. Karslı et al. (2010) gave an Ar-Ar
hornblende age of 79 Ma from the Harşit Pluton. Kaygusuz and
Şen (2011) obtained a U-Pb zircon age of 79.3 � 1.4 Ma on grano-
diorite samples from the Köprübaşı intrusion.

Prior to this study, information on the emplacement age of the
Turnagöl intrusions was unsatisfactory for reconstructing their
geological history. Based on contact relationships and stratigraphic
criteria, an Upper Cretaceous and Eocene age was conjectured
(Yalçınalp, 1992; Güven, 1993). However, our new LA-ICP-MS U-Pb
zircon age on the Turnagöl intrusion is 78.07 � 0.73 Ma
(MSWD ¼ 0.96). This age is more or less coeval with the
emplacement age of the Torul, Sarıosman, Da�gbaşı (Kaygusuz and
Aydınçakır, 2009; Kaygusuz et al., 2010), and Harşit (Karslı et al.,
2010) plutons.
11.2. Petrogenetic considerations

Petrogenetic models for the origin of felsic arc magmas fall into
two broad categories: (1) felsic arc magmas are derived from
basaltic parent magmas by FC or assimilation and FC (AFC)
processes (e.g., Grove and Donnelly-Nolan, 1986; Bacon and Druitt,
1988); or (2) basaltic magmas provide heat for the partial melting
of crustal rocks (e.g., Bullen and Clynne,1990; Roberts and Clemens,
1993; Tepper et al., 1993; Guffanti et al., 1996). The first model has
been considerably questioned because the granitoid and volcanic
rocks of the study area as well as its adjacent regions are volumi-
nous, and none has basaltic composition (all samples have an
w(SiO2) content > 67%; Fig. 4). Such voluminous felsic magmas
cannot be generated by differentiation of mantle-derived mafic
magmas. The rock compositions do not represent a fractionation
sequence from basalt to granodiorite or leucogranite. The lowMgO
concentrations (w(MgO) ¼ 1.0%e1.7%; Mg# ¼ 22e29; Table 1) in
the samples of the Turnagöl intrusion, as well as other geochemical
parameters, rule out a direct derivation from the mantle wedge. A
derivation of intrusions frommafic magmas through AFC processes
can also be excluded because all rocks show little variation in their
initial Sr-Nd isotope ratios with SiO2 (Fig. 7B and C). Greater
isotopic variability is expected if such a process had occurred.
Granitoids representing mixtures of basaltic and granitic magmas
are also unlikely because coeval basaltic members are lacking in the
study area. There is abundant experimental evidence that the
hydrous melting of basalt can produce tonalitic and trondhjemitic
magmas (e.g., Wyllie, 1984) that may evolve (by FC and/or crustal
contamination) toward more granitic compositions. The samples in
the Fig. 4 plot present almost linear trends, and their bulk-rock
composition can be related to partial melting (Caskie, 1984).
Therefore, a crustal origin of magmas can be considered for the
Turnagöl intrusion.
pm)
Nd
(ppm)

147Sm/144Nd 143Nd/144Nd 2s (143Nd/144Nd)i 3Ndi

a TDM
b

9 16.10 0.1090 0.512458 0.000007 0.51240 �2.64 1.11
5 16.00 0.1120 0.512454 0.000009 0.51240 �2.75 1.11
1 18.90 0.0999 0.512428 0.000007 0.51238 �3.13 1.16
9 19.70 0.0952 0.512439 0.000010 0.51239 �2.87 1.14

Nd ¼ 0.512638 (Jacobsen and Wasserburg, 1980).
ers 143Nd/144Nd ¼ 0.513151 and 147Sm/144Nd ¼ 0.219, gd: granodiorite.



Table 5
Pb and d18O isotope data from the Turnagöl intrusions.

Sample Type Age
(Ma)

w(SiO2)
(%)

Pb (ppm) U (ppm) Th (ppm) 206Pb/204Pb (206Pb/204Pb)i 207Pb/204Pb (207Pb/204Pb)i 208Pb/204Pb (208Pb/204Pb)i d18O (&)

T86 gd 78 67.50 6.40 2.40 10.10 18.92 18.63 15.63 15.62 38.94 38.53 8.1
T88 gd 78 68.05 7.50 2.60 12.00 18.92 18.65 15.64 15.63 38.96 38.55 8.6
T76 gd 78 68.64 9.60 2.50 11.30 na na na na na na 8.4
T73 gd 78 69.17 10.20 3.10 14.10 na na na na na na 8.7
T78 gd 78 70.16 20.10 3.40 15.10 na na na na na na 9.1

gd: granodiorite, na: not analyzed.
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The partial melting of the lower crustal metabasalt yield
a variety of granitoids whose compositions are controlled by the
amount of H2O (Tepper et al., 1993). Experimental studies have
shown that amphibolites start to melt at relatively high
Figure 7. (A) 3Ndi
values vs. (87Sr/86Sr)i ratio; (B) and (C) (87Sr/86Sr)i and (143Nd/144Nd)i vs.

(206Pb/204Pb)i ratios. EM I e enriched mantle type I (Zindler and Hart, 1986); HIMU e High-m
in Sr); LC � lower crust; NHRL � Northern Hemisphere Reference Line (Hart, 1984); UC � up
pelagic sediments are from Zartman and Doe (1981). For explanation, refer Fig. 2.
temperatures (800e900 �C) and at pressures <1 GPa under
anhydrous conditions, whereas dehydration melting commences
at temperatures as low as 750 �C and at w1 GPa (Wyllie and
Wolf, 1993; Wolf and Wyllie, 1994; Lopéz and Castro, 2001). The
w(SiO2), respectively; (D) (87Sr/86Sr)i vs. w(MgO); (E) and (F) Plot of (207Pb/204Pb)i vs.
(m ¼ 238U/204Pb) (Lustrino and Dallai, 2003); EM II e enriched mantle type II (enriched
per crust. The area of mantle (MORB), orogene, upper crust (UC), lower crust (LC), and



Figure 8. (A) Oxygen isotopic composition of the Turnagöl intrusions compared to those of typical terrestrial materials, granitoids and some S-I-A type granites; (B), (C) and (D) d18O
values vs. 3Ndi

, w(SiO2) and (87Sr/86Sr)i, respectively. Data sources: 1 e Craig (1961); 2 e Ohmoto (1986); 3e5 e Taylor and Sheppard (1986); 6e8 e Taylor (1978); 9e11 e Harris
et al. (1997); 12 e Kaygusuz et al. (2008). Dividing lines between altered, mixed, mantle and supracrustal rocks are taken from Whalen et al. (1996). Refer Fig. 2 for explanation.
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specific melt composition resulting from the partial melting of the
mafic lower crust is controlled by the water content, source
composition, degree, and the P-T conditions of the melting (Rapp
et al., 1991; Şen and Dunn, 1994; Wolf and Wyllie, 1994; Rapp
and Watson, 1995; Winther, 1996; Lopéz and Castro, 2001). Based
on data from the experimental partial melting of common crustal
rocks, Roberts and Clemens (1993) stated that high-K, I-type, calc-
alkaline granitoid magmas can be derived from the partial melting
of hydrous, calc-alkaline mafic to intermediate metamorphic rocks
in the crust. Recent experimental data have also shown that the
partial melting of the mafic lower crust can generate melts of
metaluminous granitic composition, and that the melt composition
is largely independent of the degree of partial melting (Rushmer,
1991; Roberts and Clemens, 1993; Tepper et al., 1993; Wolf and
Wyllie, 1994; Rapp and Watson, 1995).

11.3. FC and crustal contamination

Major and trace element variation trends (Fig. 4) bear evidence
that FC has occurred during the evolution of the Turnagöl intrusion.
The decrease in CaO, MgO, Al2O3, Fe2O3, TiO2, P2O5, and Sr, as well
as the increase of K2O and Rb with increasing silica (Fig. 4), is
related to the fractionation of plagioclase, hornblende, apatite, and
titanite. Plagioclase fractionation results in lower abundances of Ba
and Sr, low Sr/Nd ratios, as well as negative Eu anomalies in the
chondrite-normalized REE patterns of the melts. The fractionation
of hornblende causes an increase in the LREE/HREE in the residual
melt, but a concave-upward shape (e.g., Romick et al., 1992) char-
acterizes the resulting chondrite-normalized REE pattern of the
melt. The increase in K2O and Rb with increasing silica indicates
that K-feldspar and biotite were not early-fractionation phases. This
finding is in line with the late appearance of both minerals in
the crystallization sequence. The depletion of P results from the
removal of apatite during FC. The negative Ti anomalies in the
spidergrams (Fig. 5) are consistent with titanite or titanomagnetite
fractionation. The fractionation of accessory phases such as zircon,
allanite, and titanite can account for the depletion of Zr and Y.
In addition to FC, crustal contamination can also be an impor-
tant process during the evolution of magmatism in active conti-
nental margins. The continental crust has highly fractionated and
enriched LREE, flat HREE, as well as a positive Pb anomaly, but
negative Nb-Ta anomalies (Taylor and McLennan, 1985). The
Turnagöl intrusion rocks are characterized by pronounced negative
Nb-Ta and positive Pb anomalies (Fig. 5A), thus implying the
subduction signature and a possible minor amount of crustal
contribution in their evolution. In Fig. 7BeD, the (87Sr/86Sr)i and
(143Nd/144Nd)i ratios are plotted against SiO2 and MgO to evaluate
the role of FC or AFC processes. The positive and negative trends
indicate that the magmas were affected by AFC processes, whereas
the nearly constant trends indicate significant FC. The
(143Nd/144Nd)i and (87Sr/86Sr)i contents of the Turnagöl samples vs.
SiO2 exhibit nearly constant trends (Fig. 7B and C). The (87Sr/86Sr)i
ratios are somewhat positively correlated with MgO (Fig. 7D).

11.4. Source rocks of the Turnagöl intrusion

The Turnagöl intrusion, composed of medium- to high-K calc-
alkaline rocks, is characterized by pronounced negative Sr, Nb, Ta,
and Ti anomalies but enriched Rb, Th, K, and Pb anomalies. These
features are compatible to those of typical crustal melts, e.g.,
granitoids of the Lachlan Fold belt (Chappell and White, 1992) and
Himalayan leucogranites (Harris et al., 1986; Searle and Fryer,1986).
Therefore, a derivation from crustal sources is apparent.

Several experimental studies (Wolf and Wyllie, 1994; Rapp and
Watson, 1995) have shown that extremely high temperatures in
excess of w1100 �C are needed to produce mafic metaluminous
low-silica (w58 wt.%) melts by the dehydration melting of meta-
basic crustal rocks. The compositional differences among magmas
produced by the partial melting of different source rocks, such as
amphibolites, metagraywackes, tonalitic gneisses, and metapelites,
under variable melting conditions, may be visualized in terms of
molar oxide ratios or major oxide ratios (Fig. 9). The dehydration
melting of metapelites and metagraywackes (Rapp et al., 1991;
Rapp, 1995; Rapp and Watson, 1995) yields higher values of Mg#,



Figure 9. Chemical composition of the Turnagöl intrusions: outlined fields denote compositions of partial melts obtained in experimental studies by dehydration melting of various
bulk compositions. MB, metabasalts (solid line); MA, metaandesites (solid line); MGW, metagreywackes (dashed line); MP, metapelites (solid line); FP, felsic pelites (solid line); AMP,
amphibolites (solid line). Data sources: Vielzeuf and Holloway (1988); Patiño Douce and Johnston (1991); Rapp et al. (1991); Gardien et al. (1995); Rapp (1995); Rapp and Watson
(1995); Patiño Douce and Beard (1996); Stevens et al. (1997); Skjerlie and Johnston (1996); Patiño Douce (1997); Patiño Douce and McCarthy (1998); Patiño Douce (1999). Consult
Fig. 2 for explanation.
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K2O/Na2O and (Na2Oþ K2O)/(FeOt þMgOþ TiO2), but lower values
of (CaO þ FeOt þ MgO þ TiO2) compared with the investigated
rocks (Fig. 9). The chemical compositions of the Turnagöl intrusions
are thus rather compatible with an origin by dehydration melting
from mafic lower crustal rocks. The chondrite-normalized REE
diagrams (Fig. 5B) suggest that garnet is not stable in the source,
whereas the negative Eu and Sr anomalies reveal that plagioclase is
stable in the source of the Turnagöl intrusive rocks. A similar
mechanism (partial melting from mafic lower crust) was also
suggested for the origin of the arc-related Torul pluton by Kaygusuz
et al. (2008) and Şebinkarahisar plutons by _Ilbeyli (2008) in the
eastern Pontides.

12. Tectonic implications

Numerous studies suggest that trace elements can be used as
discriminatory tools to distinguish among different tectonic
settings of granitoid magmas. In the A/CNK vs. A/NK diagram
(Fig. 3A), the samples plot within the I-type granite fields. In the
FeOt/MgO vs. (ZrþNbþ Ceþ Y) tectonic-discrimination diagram of
Whalen et al. (1987), all samples are grouped within the I-type
granite field (Fig. 10A). Applying the discrimination criteria of
Pearce et al. (1984), all samples plot within the fields of volcanic-arc
granites (VAG) (Fig. 10B). Difficulties exist in discriminating
between collisional and arc-type granitoids (Brown et al., 1984;
Pearce et al., 1984), and the Rb-Hf-Ta ratios of granitoids are often
used to separate the collision-zonemagmatism from the arc setting
(Harris et al., 1986). The Rb/30-Hf-Ta�3 ternary diagram of Harris
et al. (1986) provides a better distinction between volcanic-arc
granites and pre-syn-late collisional granites. The Turnagöl
samples plot within the VAG field of this diagram (Fig. 10C). Brown
et al. (1984) established that the abundances of incompatible
elements in granites can be correlated with the degree of arc
maturity. An increase in the Nb and Y content with increasing Rb/Zr



Figure 10. (A) FeOt/MgO vs. (Zr þ Nb þ Ce þ Y) classification diagram (Whalen et al., 1987); (B) Rb-(Y þ Nb) discrimination diagrams (Pearce et al., 1984); (C) Rb/30-Hf-Ta�3
triangular diagram (Harris et al., 1986); (D) Nb vs. Rb/Zr diagram (Brown et al., 1984) and (E) Sr/Y vs. Y for samples from the Turnagöl intrusions. Adakites and island-arc fields are
adopted from Drummond and Defant (1990). FG, fractionated granitoid; OGT, unfractionated; VAG, volcanic-arc granites; Syn-COLG, syn-collisional granites; WPG, within-plate
granites; ORG, ocean-ridge granites; L-P-COLG, late-post-collisional granites. ASI (aluminium saturation index) ¼ molar Al2O3/(Na2O þ K2O þ CaO). Refer Fig. 2 for explanation.
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ratios is in accordance with the arc maturity, from primitive to
mature. A comparison of the Turnagöl intrusion with the arc-type
granitoids is presented in the Nb vs. Rb/Zr diagram (Fig. 10D). All
samples from the pluton plot within the normal arc fields (Fig. 10E).
On the Sr/Y vs. Y diagram (Fig. 10E), all samples plot within the low
Sr/Y and high Y areas, which is similar to the modern island-arc
field. The (La/Yb)n vs. Ybn diagram (not shown) yields the same
results.

13. Conclusions

The Turnagöl intrusion is considered a part of the late Creta-
ceous arc-related igneous activity in an active continental margin. It
consists of granodiorite and yields an emplacement age of
78.07 � 0.73 Ma by LA-ICP-MS U-Pb zircon dating.

The Turnagöl intrusion in the eastern Pontides is peraluminous
to metaluminous, is medium- to high-K calc-alkaline, and has I-
type characteristics. Its rocks are enriched in LILE and deficient in
HFSE, showing features of arc-related intrusive rocks. Samples
from the intrusion display concave-upward chondrite-normalized
REE patterns with pronounced negative Eu anomalies. These
features, combined with the decrease in CaO, MgO, Al2O3, Fe2O3,
P2O5, TiO2, and Sr with increasing silica, suggest that the intrusion
underwent fractionation of plagioclase, hornblende, apatite, and
titanite. All rock types of the pluton show a small range of Sr-Nd-
Pb-O values.
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The geochemical and isotopic data indicate that the intrusion
was generated by the partial melting of mafic lower crustal sources.
These plutons are related to the subduction of the Neo-Tethyan
Ocean beneath the Eurasian plate during Cretaceous times, and
were probably formed during the normal stage of a subduction
setting.
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Bektaş, O., Çapkıno�glu, Ş., 1997. Neptunian dikes and block tectonics in the eastern
Pontide Magmatic Arc, NE Turkey: implications for the kinematics of the
Mesozoic basins. Geosound 30, 451e461.
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Gümüşhane and Rize granitic plutons and their comparison]. Unpublished
Dissertation Thesis, _Istanbul Technical University (in Turkish with English
abstract).

Craig, H., 1961. Standards for reporting concentrations of deuterium and oxygen 18
in natural waters. Science 133, 1833e1834.

Delaloye, M., Ço�gulu, E., Chessex, R., 1972. Etude ge’ochronometrique des massifs
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