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Abstract

Using Krattenthaler's operator method, we give a new proof of Warnaar's recent elliptic extension of Kratten-
thaler's matrix inversion. Further, using a theta function identity closely related to Warnaar’s inversion, we derive
summation and transformation formulas for elliptic hypergeometric series of Karlsson—Minton type. A special case
yields a particular summation that was used by Warnaar to derive quadratic, cubic and quartic transformations for
elliptic hypergeometric series. Starting from another theta function identity, we derive yet different summation and
transformation formulas for elliptic hypergeometric series of Karlsson—Minton type. These latter identities seem
quite unusual and appear to be new already in the trigonometrici(i=eQ) case.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Matrix inversions provide a fundamental tool for studying hypergeometric and basic hypergeomet-
ric (or g-) series. For instance, they underlie the celebrated Bailey trangigrrror multiple hyper-
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geometric series, multidimensional matrix inversions have similarly proved to be a powerful tool, see
[2,3,14-18,23-25]

Recently, a new class of generalized hypergeometric series was introduced, the elliptic hypergeometric
series of Frenkel and Turad@]. In [31], Warnaar found an elliptic matrix inversion and used it to
obtain several new quadratic, cubic and quartic summation and transformation formulas for elliptic
hypergeometric series.

Warnaar’'s matrix inversion can be stated as foll§84& Lemma 3.2]If

o= H_,;;J%O(ajck)o(aj/ck)
k= [T —ki20(cic)0(c;/cr)

(1.1a)

and

cbaenOa/cr) T—is10@jc0(a;/ci)
8kl =

= — : (1.1b)
ckOakei)0ar/co) T15270(cjcr)0(c;/cx)

then the infinite lower-triangular matric€g,x), rc» and (g ;7 areinversesof each other, i.e., the
orthogonality relations

n

> fukgi=0u. foralinlez (1.2)
k=l

and (equivalently)

n
Zgnkfkl = Onl, foralln,l ez (13)
k=l

hold. In (1.1a) and (1.1b))\(x) is thetheta functiondefined by

0(x) = 0(x; p) = [ [ = xp/)(L = p/ /),
j=0

for |p| < 1.

Note thatf(x) reduces to 1 x for p = 0. In this case Warnaar’s matrix inversion reduces to a result
of Krattenthalel{13, Corollary] which in turn generalizes a large number of previously known explicit
matrix inversions.

The present paper can be viewed as a spin-off of an attempt to obtain multivariable extensions of
Warnaar’s matrix inversion and use these to study elliptic hypergeometric series related to classical root
systems. This led us to discover several aspects of Warnaar’s result which are interesting already in the
one-variable case. Multivariable extensions of these ideas are postponed to future publications.

Warnaar's proof of his inversion is based on Eq. (1.3), which is obtained as a special case of a more
general identity, the latter being easily proved by induction. This approach seems difficult (though inter-
esting) to generalize to the multivariable case. On the other hand, as was pointefRaiittime identity
(1.2) for Warnaar’s inversion is equivalent to a partial fraction-type expansion for theta functions due to
Gustafson, (2.2) below. This leads to a short proof of Warnaar's (and thus also Krattenthaler’'s) matrix
inversion, which is described in Section 2.
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In another direction, Krattenthaler’s proof of the case- 0 used a certain “operator method”, cf.
Lemma 3.1 below. In Section 3 we extend Krattenthaler’s proof to the elliptic case. This requires some
non-obvious steps, essentially because addition formulas for theta functions are more complicated than
those for trigonometric functions implicitly used by Krattenthaler.

We hope that both the elementary proof of Warnaar’s inversion given in Section 2 and the operator
proof given in Section 3 will be useful for finding multivariable extensions.

Apart from the matrix inversion (1.1), another important tool in Warnaar’s paper is the idg3itity
Theorem 4.1]see (1.11) below for the notation), which we write as

i 0(ag®™)  (a,q7.b,a/biq)  (cq" aq/ci @) o
0@  (a° aq ™05 ag’ /b, bq'; q* ) @q> N /e, ¢ Qi |

_ (aq*.q";q )N (c/b,bc/asq)y (1.4)
(bq*,aq’/b;q*)y (¢, c/asq)y
Here,sis a positive andN a nonnegative integer. [[81], this was obtained by combining (1.2) for the
inverse pair (1.1) with a certain bibasic summation. Identity (1.4) was then applieds with 3 and 4,
to obtain quadratic, cubic and quartic elliptic hypergeometric identities, respectively.
A characteristic property of (1.4) is that certain quotients of numerator and denominator parameters

(such adoverbg® andeg” overc) are integral powers af. Classical and basic hypergeometric series with
the analogous property have been cakedisson—Minton-typand @-)IPD-type (for Integral Parameter
Differences) series. A seminal result for such series is Minton’s summation foffr}la

k=0

r

—N,b,c1+mq,...,c, +m, ) N! (ci = D).
r+2Fr11 1) = L, 15
+2Lr+ ( b+1c1,...,c b+1y 11:!_ (Ci)m,- (1.5)

where it is assumed that; are nonnegative integers witlr| := ) *;m; <N. This has been extended to
nonterminating, bilateral and well-poised sef$,7,8,11,27hand further to multiple serigf0,22,26]
However, for elliptic hypergeometric series, (1.4) has until now been an isolated result.
At first sight, (1.4) looks somewhat different from known Karlsson—Minton-type identities. However,
writing
=, xq, .. xq* "L g% (1.6)
itis not hard to check that it can be obtained as a special case of the more conventional summation formula

N _ r .
ZG(an‘) (a,q=N,b,a/b; q)x qkl—[ (cjq™i,aq/cj; @)

0a) (q,aq"** aq/b,ba; @)~ 7 (ag*™"i/cj.cji q)y
_ (aq.q: @y 1 (€i/b cjblas @)m,
(bq,aq/b; q)n pik] (¢js€j/as @m,

k=0

, |m|=N 2.7)

(with g replaced by*). This result will be proved in Section 4. When= 0, (1.7) reduces to a special
case of an identity of Gaspf8, Eq. (5.13)] which in turn contains (1.5) as a degenerate case.

Gasper’s proof of (1.7) in the cage= 0 does not immediately extend to the elliptic case. A different
proofwas given by Ch[5], who independently obtained and generalized Gasper's identity by recognizing
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it as a special case of a partial fraction expansion. In Section 4 we use Chu’s method to generalize (1.7)
in a different direction, namely, to a multiterm Karlsson—Minton-type transformation, Theorem 4.1. Itis
obtained as a special case of Gustafson’s identity (2.2), or equivalently of (1.2) for Warnaar’s inversion.
Theorem 4.1 may be viewed as an elliptic analogue of Sears’ transformation for well-poised series, cf.
Remark 4.4.

In Section 5, we repeat the analysis of Section 4, starting from a different elliptic partial fraction identity,
(5.1). Thisleads to some exotic summation and transformation formulas for Karlsson—Minton-type elliptic
hypergeometric series, which appear to be new also wherd.

Finally, in the Appendix we give an alternative proof of (1.7), using inductioNowe hope that the
two proofs we give for this identity will both be useful for finding multivariable extensions of (1.7), and
of related quadratic, cubic and quartic identities fri@1].

Notation: We have already introduced the theta functian) =0(x; p). The nomepis fixed throughout
and will be suppressed from the notation. We sometimes write

0(x1, ..., xy) = 0(x1) - 0(xp) (1.8)
for brevity. We will frequently use the following two properties of theta functions:
0(x) = —x 0(1/x) (1.9)

and theaddition formula
O(xy,x/y,uv,u/v) — 0(xv, x/v,uy,u/y) = “ O(yv, y/v, xu, x/u) (2.120)
y

(cf.[32, Example 5, p. 45}]
We denoteelliptic shifted factorialsy

(@; q)i := 0(@)0(aq) - - - 0(ag"™), (1.11a)
and write
(a1, ..., an; @)x = (a1; Qi - (@n; Qi (1.11b)

These symbols satisfy similar identities as in the gase0 [9, Appendix I} In particular, we mention
that

(@ @k _ (g)’%a; 94> /b (1.12)
(b; @)k a) (b;q)n(q*"/a; @y

and
@ q), (a\* (@ "/a;q),
— =) . 1.13
(b; @) <b) (q¥"/b; @), (113)

2. Warnaar’s matrix inversion and elliptic partial fractions

In this section, we give an easy proof of Warnaar's matrix inversion. Since thencaskis triv-
ial, it is enough to prove that the left-hand side of (1.2) vanishes:fsrl. Writing this side out
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explicitly gives
-1
" [Tie0@jen)0@ /e c0(aenitar/c) TTi—ip10(@je)0(a;/er)
/<1 H?—k+19(cjck)0(cj/ck) CkO(Gka)O(ak/Ck) n];;}H(CjCk)(‘)(Cj/Ck)

[Tj=i110Gajc)0(a;/cr)
et j0(cje0(c /)

= c/0Caren)0(ar/cp) Z T

Thus, it is enough to prove that

Z i H;!;lilo(ajck)o(aj/ck) B
Ck H?:l,j;éko(cjck)o(cj'/ck) -

k=l

n>l, (2.1)

where (as a matter of relabeling) we may assuisel.
We are now reduced to a theta function identity of Gustafé@nLemma 4.14]which we write as

" al[1}Z50(akb)0(ax /b))
=1 H?:l, j;ﬁk@(akaj)e(ak/aj)

=0, n>2 (2.2)

The casep =0 is equivalent to an elementary partial fraction expansion, so we refer to (2.2) as an elliptic
partial fraction identity. To identify (2.1) with (2.2) it is enough to replagenith a;, a; with b;_1 and
then use (1.9) repeatedly.
Gustafson’s proof of (2.2) uses Liouville’s theorem and is thus analytic in nature. We r§2d1 for
an elementary proof (using only (1.9) and (1.10)), as well as some further comments on this identity.

3. An operator proof of Warnaar’s matrix inversion

In [12] Krattenthaler gave a method for solving Lagrange inversion problems, which are closely con-
nected with the problem of inverting lower-triangular matrices. In particular, Krattenthaler applied this
method in[13] to derive a very general matrix inversion, namely, phe 0 case of (1.1). In the following,
we provide a proof of Warnaar’s elliptic matrix inversion using Krattenthaler’s operator method. Like in
Warnaar's proof, the essential ingredient is the addition formula (1.10).

By aformal Laurent seriesre mean a series of the form,, - a,,z", for somek € 7. Given the formal
Laurent serieg(z) andb(z), we introduce the bilinear forr, ) by

(a(2), b(2)) = [z°1a(2) - b(2)),

where[z%]c(z) denotes the coefficient @f in ¢(z). Given any linear operatdracting on formal Laurent
series,L* denotes the adjoint df with respect td, ); i.e. (La(z), b(z)) = (a(z), L*b(z)) for all formal
Laurent serieg(z) andb(z). We need the following special case[@®, Theorem 1]

Lemma 3.1. Let F = (fux),.1cz b€ an infinite lower-triangular matrix witlf, # O for all k € Z. For
k € 7, define the formal Laurent serigi(z) andgi (z) by fi () =", = 2" andge(2) =" < pguiz ",
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where (gx)x. 7z IS the uniquely determined inverse matrix of F. Suppose that far Z a system of
equations of the form

Uf(@)=wiVfi(2) (3.1)

holds where U V are linear operators acting on formal Laurent seri¥sbeing bijectiveand (wg)c7
is an arbitrary sequence of different nonzero constants. JTihép(z) is a solution of the dual system

U*hi(2) = we V hi(2) (3.2)

with 7 (z) # Ofor all k € 7, the series(z) is given by

1
= V*h . 3.3
8k (2) e V@) k(2) (3.3)

In order to prove Warnaar's elliptic extension of Krattenthaler's matrix inversion (1.1), wg Get=
>k fuk2k with £ given as in (1.1a). Obviously, for>k,

O(cnck, cn/ck) fuk = 0(an—1¢k, an—1/ck) fn—1.k- (3.4)

We now introduce a “multiplier” after which we apply the addition formula for theta functions and separate
the variables depending anand onk appearing in (3.4). Namely, we multiply both sides of (3.4) by
O(uv, u/v) whereu, v are two new auxiliary independent variables, which gives

0(cnCks Cn/Crs uv, u/v) fur = 0(an—1ck, an—1/ck, uv, u/v) fu_1.x- (3.5)
Next, we apply the addition formula (1.10) to each side of (3.5) and obtain
[H(Cnv, e Vs ek, ufc) + — O(vey, ci /v, eq, cn/u)] Juk
Ck

u
= [ﬁ(an—lv, an-1/v,uck, u/cr) + o O(vek, ck/v, an—1u, an—l/u)] fa—1k-

If we define the linear operatorg and® by .«/zF = a;z* and%z* = ¢z, for all k € 7, this may be
rewritten in the form

[9(%, €/v, uck, u/cy) + ci O(vey, ck /v, Gu, ‘g/u):| fr (@)
k
=z |:9(=;ziv, v, uck, u/cy) + Cu—k O(veg, ck /v, ALu, ,szf/u):| Jx(2),

or, equivalently,
[0(Bv, €/v) — z 0(Av, o )V)] fr(z)

= M[Z 0(fu, o/ Ju) — 0(6u, €/u)l fr(2), (36)
cr O(ucy, u/cy)

valid for allk € 7.
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Equation (3.6) is a system of equations of type (3.1) with
U=0%v,%/v) —z0(Av, o/v),
V =z70(ALu, o/u) — 0(6u, €/u)
and
~uB(vey, ¢ /v)
ek Ouck, ufcr)
The dual equations (3.2) for the auxiliary formal Laurent sefjgs) = Zzgkhklz_[ in this case read
[0(*v, € Jv) — 0(L " v, L™ |v) 2]k (2)

_u O(veg, cx/v) [0, 7 Ju) 2 — 06, 6* Ju) hy (2). (3.7)
cx O(uck, u/cy)

Since.7*z 7% = arz7F and%*z =% = ¢,z %, by comparing coefficients af ! in (3.7) we obtain
[Q(sz, /v, uck, u/cg) + - O(veg, ck /v, cru, Cl/”)j| i
Ck

u
= [9(010, a/v, uck, u/cg) + - O(veg, ck /v, aju, al/u)] hii+1,
%

which, after application of the addition formula (1.10) and dividing both side&#y, u/v), reduces to
OCcick, cr/cidhi = 0(ack, ar/ce)hi,i+1.

If we seth;; =1, we get

15/ 0@jc. aj/c)

]_[I;;llﬁ(qck, cj/ck) .

Taking into account (3.3), we compute

V*hi(z) = 002 u, 4% Ju) 2 — 0(6*u, €* Ju)1hi(2)
o@icr, a;
B Z |:0(0le, c1/ck) Oapu, ai/u) — Oy, Cl/u)] [[;2/0@jck, aj/ci) -

—1
it OCaicx, ar/ck) [1;50(cjck. cj/ex)

a0(aycr, er/ap) 115210 e aj/ce)
= Ze(ckv,ck/v) 7 =) Z
i<k ck 0aick, ar/ci) Hj:l O(cjck, cj/ck)

hi =

(3.8)

where we again have used the addition formula (1.10). Now, sfpce 1, the pairing fx (z), V*hi (2))
is simply the coefficient of =% in (3.8). Thus, (3.3) reads

1 k
8k(z) = _H(CTCk/U)V hi(2), (3.9)

whereg (z) = Z[gkgklz_l. Hence, extracting coefficients of’ in (3.9) we obtain exactly (1.1b).
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4. Elliptic Karlsson—Minton-type identities
As was mentioned in the introduction, we can obtain a generalization of the Karlsson—Minton-type

identities (1.4) and (1.7) as a special case of the partial fraction identity (2.2). To this end, we make the
substitutions

(a1, ...,ap) — (a1,a1q, ..., alqll, R N Y7 I asqls), (4.1a)
(b1, ...,bp—2)
> (b1, big™?, o g MY b beg M beg M (4.1b)

in (2.2), withm; and/; nonnegative ang; positive integers satisfying
1|+ s =|m|+2. (4.2)

The resulting special case of (2.2) may be written

. i—1 . ;
L aiq" 1)l T2 0aiq*bjq' aiq" /bjq'") 0
)3 i _ lj e
i=1 k=0 [T/—0, 1z 0(afq" . g O Tjy, ja Tl o0aigka;q" aiq* /a;q")

It is now straightforward to rewrite the productstiim terms of elliptic shifted factorials, giving

mj—1 (a;b; mj/yj. ,1/y;
, . , ivjq 5 g )y ik
[1 0@d*bia" = @ibjg"; ¢, = (@ibj; a0, 1
-0 (aibj; g7y k
and similarly
m;—1 (Cl‘ 1/y; e q1/yj
g~ [bj g™ )y
0(a;g* /b g1y = (a;qY")/% b2 g/Viy ! T
tl:([) (Clzq / j4q ) (alq / i 4 )mj (aiq(l_mj)/yj/bj;ql/yj)yjk
1 B 1 0@?q?) (@ qn
Mo p0@?qk)  (afqiq), 0@f) (afq" i q)
1 _ 1 gign
[T mla) @50 @k
1 _ 1 (aiaj; q)g
Hi’izog(aiqkath) (aiaj; @)1;+1 (aiaqu-’+1; Di’
1 1 (aiq™'1/aj; @)

Hi’izoe(aiqk/ath) - (aiq ™" /aj; Dipr1 (@iq/aj; @i

We thus arrive at the following result.
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Theorem 4.1. Letly, ..., Iy andma, ..., m, be nonnegative integers such that- s = |m| + 2, and let
v1, ..., ¥, be positive integers. Then the following identity holds

XS: ai[Tj=q(aibj, aig =01 /bj; g1y,

— (@?q,q7"; @), [Tj1, ji(aiag, aig™' faj; @), 11

" Z 0(aq?) kﬁ (aiaj, aig7i/aj; )
0(a?)

I+1.
P ; =1 (aiq/aj, aiajq"i*>; q);

HF (aibjq™i’, aig"i /bj; qMi)y 0
X = .
=Y (aig "D fbj, aibj; M)y

Remark 4.2. It is clear from the proof that Theorem 4.1 is actually equivalent to its special case
wheny; = 1. This may be checked directly using (1.6). However, in view of the work of War-
naar[31], the form given above seems more useful for potential application to quadratic and higher
identities.

Remark 4.3. In principle, one can obtain an even more general identity by replacing (4.1) with a substi-
tution involving independent bases, that is,

I ,
(a1, ...,ap) — (al,...,alqll,...,as,...,asqiﬂ),
1 o
(b1, . by—) b (b1, ..., bipi by B p Y.

However, the inner sums in the resulting identity will not be elliptic hypergeometric.

Remark 4.4. In the basic casgs =0, Theorem 4.1 may be obtained as a special case of Sears’ transfor-
mation for well-poised serig28]. More precisely, if we start from the special case giveirExercise
4.7], replace by r + s and choose the parametéts, ..., b,.) there as

mi+1 qmr+l

(q_ll/a17 "'7q_ls/aS7q /aS-i-lv ceey /a}"-f—s)v

we obtain an identity equivalent to the cgse= 0 of Theorem 4.1. This is exactly the case of Sears’
transformation when all series involved are terminating, very-well-poised and balanced. Since these
restrictions are natural in the elliptic cd28], we may view Theorem 4.1 as an elliptic analogue of Sears’

transformation.

For applications, the case= 2 of Theorem 4.1 seems especially useful, and we give it explicitly in
the following corollary. We have made the substitutions az, I1, [>, b;) — (/a,b/\/a, N, L,cj/\/a)
and used (1.13) to simplify some of the factors.
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Corollary 4.5. Let L, N andmj, ..., m, be nonnegative integers withe| = L + N, and letys, ..., y,
be positive integers. Then

i H(ank) (a, q—N’b’aq—L/b; D qk IL[ (chmj/Y_i,aql/J’_i/cj; ql/Yj)yjk

0@) (q.aq"*t aq/b.bg" i q) " [ (aq IR fej eiigti)
_ aq.q: 9y (bq.bq/aiq)y {7 (/b cib/aiqti),,
(bg, aq/b; @)y (b%q/a,4; D1 ;5 (cjocj/aiq ),

k=0

L _ _

0b?q* Ja)  (b*/a,q7 " b,bg N /asq) 4
= 00%/a) (g, q"+1b2/a, bg/a, bg" T q);
d (bc]-qu/y//a,bql/yf'/c]';ql/yf)yjk

X .
jnzl (bq =15 ¢, bejja; g i

If we let L = 0 in Corollary 4.5 we obtain the following summation formula.

Corollary 4.6. Letys, ..., y. be positive integers ana1, ..., m, be nonnegative integers with; +
...+ m, = N. Then the following identity holds

i 0(ag?) (a,q7N,b,a/b; q) y 11[ (cjq™i™i, aq"ifcjs gty

0@) (q.aq" "% aq/b.bg: )~ 5 (ag® =" /ej ¢ q )y
_ (aq.qin 1 (eifbiciblai gDy,
(bq,aq/b;q)Nj:1 (Cj,Cj/a;ql/Yj)mj

k=0

Note that the case= 1 of Corollary 4.6 is equivalent to (1.4), and that the case= 1 is (1.7).

5. Some exotic Karlsson—Minton-type identities

Besides (2.2), we are aware of another elliptic partial fraction expansion, namely,

" [Ta0a/by)
= =1 j0an/a))

ap---ap=>by---by, (5.1)

which goes back at least to the 1898 treatise of Tannery and [0]lp. 34] Again, we refer tg21] for
an elementary proof and some further comments.

It does not seem possible to obtain a matrix inversion from (5.1) in a similar way as Warnaar’s inversion
was obtained from (2.2) in Section 2. However, it is straightforward to imitate the analysis of Section
4 and obtain Karlsson—Minton-type summation and transformation formulas from (5.1). The resulting
identities seem quite exotic and appear to be new even in thepcade
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Thus, we make the substitutions (4.1) into (5.1). In place of (4.2), we now have the two conditions
lI| + s = |m| and

(Fhat(53h, ll+1 Ii+1

1 mq 1 mr
T +t50(F) ,
. dlt =g g, (5.2)

Clearly, the resulting transformation can be obtained from Theorem 4.1 by deleting thedadtor
together with all factors involving products (rather than quotients) of the paramegtérsThis gives the

following result.

Theorem 5.1. Letls, ..., Iy andmy, ..., m, be nonnegative integers ang, . . ., y, be positive integers.
Assume thall| + s = |m|, and that(5.2) holds. Then

s ITjmsasa 0 i,
— (g7 ) [Tjen, jiC@iqa™ /aj; @)1 41

i=1
in(a,q f/aj,q)kl—[ (@igt /by gty
(@iq/aj; Dx 53 (@q =" [bjz g i)y

k=0 j=1

Next we write down the case= 2 of Theorem 5.1 explicitly. For this we make the substitutions
(a1, a2, 11,12, bj) > (bq", 1, N, L, bg "™ i="itD15 /¢y,

(Since we may multiply ali; andb ; in (5.1) with a common factor, the assumptigr=1is no restriction.)
This yields that ifim| = N + L + 2 and

N+1 1 ,m 1 ,my
(L-Zo—l)bL-i-l — q( 2 )+71( 21)+"'+y7( 2 )CTl c M (53)

roo

q

then

[T)= 1(Cj'q1/y-")m, N N b g (cjq™ili; gy, ik
(N )N b; @) 41 ,;) (q.bg" " q)y ]1_[1 (cjiq /y’)yjk
1@ ei/bia™ N, gt g7 2N /b g,
e DV e R DS e SR C N Y D)
(q TR ici /b M)y
(/b gy i

X =0.

j=1

To make this look nicer we repladeby L — k in the second sum. After repeated application of (1.12)
and some further simplification, we arrive at the following transformation formula.



388 H. Rosengren, M. Schlosser / Journal of Computational and Applied Mathematics 178 (2005) 377-391

Corollary 5.2. LetL,Nandmy, ..., m, be nonnegative integers wilh| =N + L +2,and letys, ..., y,
be positive integers. Theassuming als@5.3),one has the identity

i b q)k l_[ (C qmj/\rj ql/yj)yj
@ ba" g gy

Ni1@ Onbg: @)1 1—[ (cj/bs g™y,
(bg: N (@G DL (g,

(bg™¥i/cji gM¥0)

(g tbig)
k
X
,;,(q,qu“, Dr 1_[ L (bg i e ql/y,) n

WhenL = 0, Corollary 5.2 reduces to the following summation formula.

Corollary 5.3. Letmy1, ..., m, and N be nonnegative integers wjth| = N + 2, and letys, ..., y, be
positive integers. Themssuming also

N+1 1 mq 1 my
o (At e
b—q () (2 cll---c’,"’,

one has the identity

1 .
Z N by q)y l—[ (cjq™i"; q /V’)yz _ N+l g Dn 1—[ (cj/b; q* ])m,f
= @b 5 (gt bg; @)y o (cji gy,

The evaluation in Corollary 5.3 looks so unusual that it is worth pointing out that we believe it is free
from misprints. In particular, the factaf is not missing from the left-hand side. Like for other results
in the paper, special cases have been confirmed by numerical calculations.

Using the results gR29] it is easy to check that the sum in Corollary 5.3riedular(that is, invariant
under a natural action of 2, Z) on(p, g)-space) and, in particuldralancedn the sense of Spiridonov.
However, the special cage= 0 is not balanced in the usual sense of basic hypergeometric Eries
This is another indication of the importance of modular invariance and Spiridonov’s balancing condition
for elliptic hypergeometric series.

Appendix A. An alternative proof of (1.7)

Gasper’s proof of the cage= 0 of (1.7) uses induction on As was remarked in the introduction,
this proof does not immediately extend to the general case. However, we were able to find a proof by
induction onN, which is different in details from Gasper’s proof, but closer to standard methods for basic
hypergeometric serig9] than the proof given in Section 4. We include this proof here since it may have
independent interest and be useful for generalizations, for instance, to multiple series. For brevity, we
will write (a); = (a; q), for the elliptic shifted factorials in (1.11a).
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To start our inductive proof of (1.7), we assume that it holds for fiXexhd consider the sum

N+1

-y 0ag?) (a.q N1 b.a/b), kl—[ (cjq™, aq/cj)
0(a) (q,aqN*2,aq/b,bq); " ] (ag*™"i[cj )y

k=0

wherem1 + --- 4+ m, = N + 1. By symmetry, we may assume > 1.
We multiply the sunStermwise by
B 1
- Q(an—f—l’ q—N—l’ erm"+k_l, aql—m,+k/cr)
[9(aqk+N+1, qk*Nfl’ ermrfl, aqlfmr/cr)
q "V Y0aq". 4" crq" N Lag? N Je),

which is equivalent to (1.10) with the replacements

(u, v, x,y) = (Va,q" e, /a, " a, ¢*Va).

Since the factor§(¢*~¥ 1) andd(¢¥) vanish at the end-poinis= N + 1 andk = 0, respectively, this
gives an identity of the form

N+1

S = Z( )+Z(

Replacingk by £ + 1 in the last sum and simplifying gives

o Z 0(ag®) (a,q~N,b,a/b,c,q™ L aq/c); kl—[ (c;jq™i,aq/cii
0(a) (q agN*tt, aq /b, bq, ag® " [cy, cp)y 1 (ag™™ mf/c],c»k

v 0ag.aq® b.a/b,c:q"*N, ag/c;, aqz—mr“v/c) 1—[ 0(cjq™ . aq/c;)
0(aq /b, bq,aqN 1, agN+2 aqgl—mr /c,, aq? mr/cr,cr) H(aql Mifcj, )

N —
0(aqg®*?) (aq? qN,bq,aq/b, c q" ,aq?/cr) 4
“ 0(aq?) (q.aqN+3, aq?/b,bg?, aq® " er, crq)s

r—1 . l+mj 2 C:
% l—[ (qu ,aq”“/ ])k

i1 (ag®>™ifcj. i@
Both sums are now evaluated by the induction hypothesis, giving
_ (aq.q9)n (cr/b.c/bja),, 1 1_[1 (cj/b.cib/a)y,
(bq’aQ/b)N (Crv Cr/a)mr—l =1 (ijcj/a)mj

{1 0(b,a/b, c,g" " agNtE fcy) }
X — .
0bg"**, agN /b, crgmr =2 agtm fcr)
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Using again (1.10), this time with

,v,x,y) — (Va,q" e, /Va, " a, b/Va),

we find that the factor within brackets equals

O(qN+1’ an+1’ qm"flcr/b, qm"flcrb/a)
9(qu+1, an—i-l/b, qmr—lcr, qmr—lcr/a)’

and thus

_ (aq,q)n+1 - (Cj/b’cjb/a)mj
(bc],aq/b)l\urlj:1 (cjrci/@,

This completes our alternative proof of (1.7).
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