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Abstract

Using Krattenthaler’s operator method, we give a new proof of Warnaar’s recent elliptic extension of Kratten-
thaler’s matrix inversion. Further, using a theta function identity closely related to Warnaar’s inversion, we derive
summation and transformation formulas for elliptic hypergeometric series of Karlsson–Minton type. A special case
yields a particular summation that was used by Warnaar to derive quadratic, cubic and quartic transformations for
elliptic hypergeometric series. Starting from another theta function identity, we derive yet different summation and
transformation formulas for elliptic hypergeometric series of Karlsson–Minton type. These latter identities seem
quite unusual and appear to be new already in the trigonometric (i.e.,p = 0) case.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Matrix inversions provide a fundamental tool for studying hypergeometric and basic hypergeomet-
ric (or q-) series. For instance, they underlie the celebrated Bailey transform[1]. For multiple hyper-
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geometric series, multidimensional matrix inversions have similarly proved to be a powerful tool, see
[2,3,14–18,23–25].
Recently, a new class of generalized hypergeometric series was introduced, the elliptic hypergeometric

series of Frenkel and Turaev[6]. In [31], Warnaar found an elliptic matrix inversion and used it to
obtain several new quadratic, cubic and quartic summation and transformation formulas for elliptic
hypergeometric series.
Warnaar’s matrix inversion can be stated as follows[31, Lemma 3.2]. If

fnk =
∏n−1
j=k�(aj ck)�(aj /ck)∏n
j=k+1�(cj ck)�(cj /ck)

(1.1a)

and

gkl = cl�(alcl)�(al/cl)

ck�(akck)�(ak/ck)

∏k
j=l+1�(aj ck)�(aj /ck)∏k−1
j=l �(cj ck)�(cj /ck)

, (1.1b)

then the infinite lower-triangular matrices(fnk)n,k∈Z and(gkl)k,l∈Z are inversesof each other, i.e., the
orthogonality relations

n∑
k=l

fnkgkl = �nl, for all n, l ∈ Z (1.2)

and (equivalently)

n∑
k=l

gnkfkl = �nl, for all n, l ∈ Z (1.3)

hold. In (1.1a) and (1.1b),�(x) is thetheta function, defined by

�(x)= �(x;p) :=
∞∏
j=0
(1− xpj )(1− pj+1/x),

for |p|<1.
Note that�(x) reduces to 1− x for p = 0. In this case Warnaar’s matrix inversion reduces to a result

of Krattenthaler[13, Corollary], which in turn generalizes a large number of previously known explicit
matrix inversions.
The present paper can be viewed as a spin-off of an attempt to obtain multivariable extensions of

Warnaar’s matrix inversion and use these to study elliptic hypergeometric series related to classical root
systems. This led us to discover several aspects of Warnaar’s result which are interesting already in the
one-variable case. Multivariable extensions of these ideas are postponed to future publications.
Warnaar’s proof of his inversion is based on Eq. (1.3), which is obtained as a special case of a more

general identity, the latter being easily proved by induction. This approach seems difficult (though inter-
esting) to generalize to the multivariable case. On the other hand, as was pointed out in[21], the identity
(1.2) for Warnaar’s inversion is equivalent to a partial fraction-type expansion for theta functions due to
Gustafson, (2.2) below. This leads to a short proof of Warnaar’s (and thus also Krattenthaler’s) matrix
inversion, which is described in Section 2.
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In another direction, Krattenthaler’s proof of the casep = 0 used a certain “operator method”, cf.
Lemma 3.1 below. In Section 3 we extend Krattenthaler’s proof to the elliptic case. This requires some
non-obvious steps, essentially because addition formulas for theta functions are more complicated than
those for trigonometric functions implicitly used by Krattenthaler.
We hope that both the elementary proof of Warnaar’s inversion given in Section 2 and the operator

proof given in Section 3 will be useful for finding multivariable extensions.
Apart from the matrix inversion (1.1), another important tool in Warnaar’s paper is the identity[31,

Theorem 4.1](see (1.11) below for the notation), which we write as

N∑
k=0

�(aq2ks)

�(a)

(a, q−Ns, b, a/b; qs)k
(qs, aq(N+1)s, aqs/b, bqs; qs)k

(cqN, aq/c; q)sk
(aq1−N/c, c; q)sk q

sk

= (aqs, qs; qs)N
(bqs, aqs/b; qs)N

(c/b, bc/a; q)N
(c, c/a; q)N . (1.4)

Here,s is a positive andN a nonnegative integer. In[31], this was obtained by combining (1.2) for the
inverse pair (1.1) with a certain bibasic summation. Identity (1.4) was then applied, withs = 2, 3 and 4,
to obtain quadratic, cubic and quartic elliptic hypergeometric identities, respectively.
A characteristic property of (1.4) is that certain quotients of numerator and denominator parameters

(suchasboverbqs andcqN overc) are integral powersofq. Classical andbasic hypergeometric serieswith
the analogous property have been calledKarlsson–Minton-typeand (q-)IPD-type (for Integral Parameter
Differences) series. A seminal result for such series is Minton’s summation formula[19]

r+2Fr+1
(−N, b, c1 +m1, . . . , cr +mr

b + 1, c1, . . . , cr
;1

)
= N !
(b + 1)N

r∏
i=1

(ci − b)mi

(ci)mi
, (1.5)

where it is assumed thatmi are nonnegative integers with|m| := ∑
imi�N . This has been extended to

nonterminating, bilateral and well-poised series[4,5,7,8,11,27]and further to multiple series[20,22,26].
However, for elliptic hypergeometric series, (1.4) has until now been an isolated result.
At first sight, (1.4) looks somewhat different from known Karlsson–Minton-type identities. However,

writing

(x; q)sk = (x, xq, . . . , xqs−1; qs)k, (1.6)

it is not hard to check that it can be obtained as a special case of themore conventional summation formula

N∑
k=0

�(aq2k)

�(a)

(a, q−N, b, a/b; q)k
(q, aqN+1, aq/b, bq; q)k q

k
r∏
j=1

(cjq
mj , aq/cj ; q)k

(aq1−mj /cj , cj ; q)k

= (aq, q; q)N
(bq, aq/b; q)N

r∏
j=1

(cj /b, cjb/a; q)mj
(cj , cj /a; q)mj

, |m| =N (1.7)

(with q replaced byqs). This result will be proved in Section 4. Whenp = 0, (1.7) reduces to a special
case of an identity of Gasper[8, Eq. (5.13)], which in turn contains (1.5) as a degenerate case.
Gasper’s proof of (1.7) in the casep = 0 does not immediately extend to the elliptic case. A different

proofwas given byChu[5], who independently obtained andgeneralizedGasper’s identity by recognizing
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it as a special case of a partial fraction expansion. In Section 4 we use Chu’s method to generalize (1.7)
in a different direction, namely, to a multiterm Karlsson–Minton-type transformation, Theorem 4.1. It is
obtained as a special case of Gustafson’s identity (2.2), or equivalently of (1.2) for Warnaar’s inversion.
Theorem 4.1 may be viewed as an elliptic analogue of Sears’ transformation for well-poised series, cf.
Remark 4.4.
InSection 5,we repeat the analysis of Section 4, starting fromadifferent elliptic partial fraction identity,

(5.1).This leads to someexotic summationand transformation formulas forKarlsson–Minton-typeelliptic
hypergeometric series, which appear to be new also whenp = 0.
Finally, in the Appendix we give an alternative proof of (1.7), using induction onN. We hope that the

two proofs we give for this identity will both be useful for finding multivariable extensions of (1.7), and
of related quadratic, cubic and quartic identities from[31].
Notation:Wehave already introduced the theta function�(x)=�(x;p). The nomep is fixed throughout

and will be suppressed from the notation. We sometimes write

�(x1, . . . , xn) := �(x1) · · · �(xn) (1.8)

for brevity. We will frequently use the following two properties of theta functions:

�(x)= −x �(1/x) (1.9)

and theaddition formula

�(xy, x/y, uv, u/v)− �(xv, x/v, uy, u/y)= u

y
�(yv, y/v, xu, x/u) (1.10)

(cf. [32, Example 5, p. 451]).
We denoteelliptic shifted factorialsby

(a; q)k := �(a)�(aq) · · · �(aqk−1), (1.11a)

and write

(a1, . . . , an; q)k := (a1; q)k · · · (an; q)k. (1.11b)

These symbols satisfy similar identities as in the casep = 0 [9, Appendix I]. In particular, we mention
that

(a; q)n−k
(b; q)n−k =

(
b

a

)k
(a; q)n(q1−n/b; q)k
(b; q)n(q1−n/a; q)k (1.12)

and

(a; q)n
(b; q)n =

(a
b

)n (q1−n/a; q)n
(q1−n/b; q)n . (1.13)

2. Warnaar’s matrix inversion and elliptic partial fractions

In this section, we give an easy proof of Warnaar’s matrix inversion. Since the casen = l is triv-
ial, it is enough to prove that the left-hand side of (1.2) vanishes forn> l. Writing this side out
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explicitly gives

n∑
k=l

∏n−1
j=k�(aj ck)�(aj /ck)∏n
j=k+1�(cj ck)�(cj /ck)

cl�(alcl)�(al/cl)

ck�(akck)�(ak/ck)

∏k
j=l+1�(aj ck)�(aj /ck)∏k−1
j=l �(cj ck)�(cj /ck)

= cl�(alcl)�(al/cl)
n∑
k=l

1

ck

∏n
j=l+1�(aj ck)�(aj /ck)∏n
j=l, j =k�(cj ck)�(cj /ck)

.

Thus, it is enough to prove that

n∑
k=l

1

ck

∏n−1
j=l+1�(aj ck)�(aj /ck)∏n
j=l, j =k�(cj ck)�(cj /ck)

= 0, n> l, (2.1)

where (as a matter of relabeling) we may assumel = 1.
We are now reduced to a theta function identity of Gustafson[10, Lemma 4.14], which we write as

n∑
k=1

ak
∏n−2
j=1�(akbj )�(ak/bj )∏n

j=1, j =k�(akaj )�(ak/aj )
= 0, n�2. (2.2)

The casep=0 is equivalent to an elementary partial fraction expansion, so we refer to (2.2) as an elliptic
partial fraction identity. To identify (2.1) with (2.2) it is enough to replacecj with aj , aj with bj−1 and
then use (1.9) repeatedly.
Gustafson’s proof of (2.2) uses Liouville’s theorem and is thus analytic in nature. We refer to[21] for

an elementary proof (using only (1.9) and (1.10)), as well as some further comments on this identity.

3. An operator proof of Warnaar’s matrix inversion

In [12] Krattenthaler gave a method for solving Lagrange inversion problems, which are closely con-
nected with the problem of inverting lower-triangular matrices. In particular, Krattenthaler applied this
method in[13] to derive a very general matrix inversion, namely, thep=0 case of (1.1). In the following,
we provide a proof of Warnaar’s elliptic matrix inversion using Krattenthaler’s operator method. Like in
Warnaar’s proof, the essential ingredient is the addition formula (1.10).
By a formal Laurent serieswemean a series of the form

∑
n�kanz

n, for somek ∈ Z. Given the formal
Laurent seriesa(z) andb(z), we introduce the bilinear form〈 , 〉 by

〈a(z), b(z)〉 = [z0](a(z) · b(z)),
where[z0]c(z) denotes the coefficient ofz0 in c(z). Given any linear operatorL acting on formal Laurent
series,L∗ denotes the adjoint ofL with respect to〈 , 〉; i.e. 〈La(z), b(z)〉 = 〈a(z), L∗b(z)〉 for all formal
Laurent seriesa(z) andb(z). We need the following special case of[12, Theorem 1].

Lemma 3.1. LetF = (fnk)n,k∈Z be an infinite lower-triangular matrix withfkk = 0 for all k ∈ Z. For
k ∈ Z, define the formal Laurent seriesfk(z) andgk(z) byfk(z)=∑

n�kfnkz
n andgk(z)=∑

l�kgklz
−l ,
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where(gkl)k,l∈Z is the uniquely determined inverse matrix of F. Suppose that fork ∈ Z a system of
equations of the form

Uf k(z)= wkVf k(z) (3.1)

holds, where U, V are linear operators acting on formal Laurent series, V being bijective, and(wk)k∈Z

is an arbitrary sequence of different nonzero constants. Then, if hk(z) is a solution of the dual system

U∗hk(z)= wkV
∗hk(z) (3.2)

with hk(z) /≡ 0 for all k ∈ Z, the seriesgk(z) is given by

gk(z)= 1

〈fk(z), V ∗hk(z)〉V
∗hk(z). (3.3)

In order to proveWarnaar’s elliptic extension of Krattenthaler’s matrix inversion (1.1), we setfk(z)=∑
n�kfnkz

k with fnk given as in (1.1a). Obviously, forn�k,

�(cnck, cn/ck)fnk = �(an−1ck, an−1/ck)fn−1,k. (3.4)

Wenow introducea “multiplier” afterwhichweapply theaddition formula for theta functions and separate
the variables depending onn and onk appearing in (3.4). Namely, we multiply both sides of (3.4) by
�(uv, u/v) whereu, v are two new auxiliary independent variables, which gives

�(cnck, cn/ck, uv, u/v)fnk = �(an−1ck, an−1/ck, uv, u/v)fn−1,k. (3.5)

Next, we apply the addition formula (1.10) to each side of (3.5) and obtain
[
�(cnv, cn/v, uck, u/ck)+ u

ck
�(vck, ck/v, cnu, cn/u)

]
fnk

=
[
�(an−1v, an−1/v, uck, u/ck)+ u

ck
�(vck, ck/v, an−1u, an−1/u)

]
fn−1,k.

If we define the linear operatorsA andC byAzk = akz
k andCzk = ckz

k, for all k ∈ Z, this may be
rewritten in the form[

�(Cv,C/v, uck, u/ck)+ u

ck
�(vck, ck/v,Cu,C/u)

]
fk(z)

= z

[
�(Av,A/v, uck, u/ck)+ u

ck
�(vck, ck/v,Au,A/u)

]
fk(z),

or, equivalently,

[�(Cv,C/v)− z �(Av,A/v)]fk(z)
= u �(vck, ck/v)

ck �(uck, u/ck)
[z �(Au,A/u)− �(Cu,C/u)]fk(z), (3.6)

valid for all k ∈ Z.
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Equation (3.6) is a system of equations of type (3.1) with

U = �(Cv,C/v)− z �(Av,A/v),

V = z �(Au,A/u)− �(Cu,C/u)

and

wk = u �(vck, ck/v)

ck �(uck, u/ck)
.

The dual equations (3.2) for the auxiliary formal Laurent serieshk(z)= ∑
l�khklz

−l in this case read

[�(C∗v,C∗/v)− �(A∗v,A∗/v) z]hk(z)
= u �(vck, ck/v)

ck �(uck, u/ck)
[�(A∗u,A∗/u) z− �(C∗u,C∗/u)]hk(z). (3.7)

SinceA∗z−k = akz
−k andC∗z−k = ckz

−k, by comparing coefficients ofz−l in (3.7) we obtain[
�(clv, cl/v, uck, u/ck)+ u

ck
�(vck, ck/v, clu, cl/u)

]
hkl

=
[
�(alv, al/v, uck, u/ck)+ u

ck
�(vck, ck/v, alu, al/u)

]
hk,l+1,

which, after application of the addition formula (1.10) and dividing both sides by�(uv, u/v), reduces to

�(clck, cl/ck)hkl = �(alck, al/ck)hk,l+1.

If we sethkk = 1, we get

hkl =
∏k−1
j=l �(aj ck, aj /ck)∏k−1
j=l �(cj ck, cj /ck)

.

Taking into account (3.3), we compute

V ∗hk(z)= [�(A∗u,A∗/u) z− �(C∗u,C∗/u)]hk(z)
=

∑
l�k

[
�(clck, cl/ck)

�(alck, al/ck)
�(alu, al/u)− �(clu, cl/u)

] ∏k−1
j=l �(aj ck, aj /ck)∏k−1
j=l �(cj ck, cj /ck)

z−l

=
∑
l�k

�(ckv, ck/v)
al �(alcl, cl/al)

ck �(alck, al/ck)

∏k−1
j=l �(aj ck, aj /ck)∏k−1
j=l �(cj ck, cj /ck)

z−l , (3.8)

where we again have used the addition formula (1.10). Now, sincefkk = 1, the pairing〈fk(z), V ∗hk(z)〉
is simply the coefficient ofz−k in (3.8). Thus, (3.3) reads

gk(z)= − 1

�(ckv, ck/v)
V ∗hk(z), (3.9)

wheregk(z)= ∑
l�kgklz

−l . Hence, extracting coefficients ofz−l in (3.9) we obtain exactly (1.1b).
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4. Elliptic Karlsson–Minton-type identities

As was mentioned in the introduction, we can obtain a generalization of the Karlsson–Minton-type
identities (1.4) and (1.7) as a special case of the partial fraction identity (2.2). To this end, we make the
substitutions

(a1, . . . , an) �→ (a1, a1q, . . . , a1q
l1, . . . , as, asq, . . . , asq

ls ), (4.1a)

(b1, . . . , bn−2)

�→ (b1, b1q
1/y1, . . . , b1q

(m1−1)/y1, . . . , br , brq1/yr , . . . , brq(mr−1)/yr ) (4.1b)

in (2.2), withmi andli nonnegative andyi positive integers satisfying

|l| + s = |m| + 2. (4.2)

The resulting special case of (2.2) may be written

s∑
i=1

li∑
k=0

aiq
k
∏r
j=1

∏mj−1
t=0 �(aiqkbjqt/yj , aiqk/bjqt/yj )∏li

t=0, t =k�(a2i qk+t , qk−t )
∏s
j=1, j =i

∏lj
t=0�(aiqkajqt , aiqk/ajqt )

= 0.

It is now straightforward to rewrite the products int in terms of elliptic shifted factorials, giving

mj−1∏
t=0

�(aiq
kbjq

t/yj )= (aibjq
k; q1/yj )mj = (aibj ; q1/yj )mj

(aibjq
mj/yj ; q1/yj )yj k

(aibj ; q1/yj )yj k
,

and similarly

mj−1∏
t=0

�(aiq
k/bjq

t/yj )= (aiq
(1−mj )/yj /bj ; q1/yj )mj

(aiq
1/yj /bj ; q1/yj )yj k

(aiq
(1−mj )/yj /bj ; q1/yj )yj k

,

1∏li
t=0, t =k�(a2i qk+t )

= 1

(a2i q; q)li
�(a2i q

2k)

�(a2i )

(a2i ; q)k
(a2i q

li+1; q)k
,

1∏li
t=0, t =k�(qk−t )

= 1

(q−li ; q)li
(q−li ; q)k
(q; q)k ,

1∏lj
t=0�(aiqkajqt )

= 1

(aiaj ; q)lj+1
(aiaj ; q)k

(aiajq
lj+1; q)k

,

1∏lj
t=0�(aiqk/ajqt )

= 1

(aiq
−lj /aj ; q)lj+1

(aiq
−lj /aj ; q)k

(aiq/aj ; q)k .

We thus arrive at the following result.
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Theorem 4.1. Let l1, . . . , ls andm1, . . . , mr be nonnegative integers such that|l| + s = |m| + 2,and let
y1, . . . , yr be positive integers. Then the following identity holds:

s∑
i=1

ai
∏r
j=1(aibj , aiq(1−mj )/yj /bj ; q1/yj )mj

(a2i q, q
−li ; q)li

∏s
j=1, j =i(aiaj , aiq−lj /aj ; q)lj+1

×
li∑
k=0

�(a2i q
2k)

�(a2i )
qk

s∏
j=1

(aiaj , aiq
−lj /aj ; q)k

(aiq/aj , aiajq
lj+1; q)k

×
∏r

j=1
(aibjq

mj/yj , aiq
1/yj /bj ; q1/yj )yj k

(aiq
(1−mj )/yj /bj , aibj ; q1/yj )yj k

= 0.

Remark 4.2. It is clear from the proof that Theorem 4.1 is actually equivalent to its special case
when yj ≡ 1. This may be checked directly using (1.6). However, in view of the work of War-
naar[31], the form given above seems more useful for potential application to quadratic and higher
identities.

Remark 4.3. In principle, one can obtain an even more general identity by replacing (4.1) with a substi-
tution involving independent bases, that is,

(a1, . . . , an) �→ (a1, . . . , a1q
l1
1 , . . . , as, . . . , asq

ls
s ),

(b1, . . . , bn−2) �→ (b1, . . . , b1p
m1−1
1 , . . . , br , . . . , brp

mr−1
r ).

However, the inner sums in the resulting identity will not be elliptic hypergeometric.

Remark 4.4. In the basic case,p= 0, Theorem 4.1 may be obtained as a special case of Sears’ transfor-
mation for well-poised series[28]. More precisely, if we start from the special case given in[9, Exercise
4.7], replacer by r + s and choose the parameters(b1, . . . , br+s) there as

(q−l1/a1, . . . , q−ls /as, qm1+1/as+1, . . . , qmr+1/ar+s),

we obtain an identity equivalent to the casep = 0 of Theorem 4.1. This is exactly the case of Sears’
transformation when all series involved are terminating, very-well-poised and balanced. Since these
restrictions are natural in the elliptic case[29], wemay viewTheorem 4.1 as an elliptic analogue of Sears’
transformation.

For applications, the cases = 2 of Theorem 4.1 seems especially useful, and we give it explicitly in
the following corollary.We havemade the substitutions(a1, a2, l1, l2, bj ) �→ (

√
a, b/

√
a,N,L, cj /

√
a)

and used (1.13) to simplify some of the factors.
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Corollary 4.5. Let L, N andm1, . . . , mr be nonnegative integers with|m| = L+ N , and lety1, . . . , yr
be positive integers. Then,

N∑
k=0

�(aq2k)

�(a)

(a, q−N, b, aq−L/b; q)k
(q, aqN+1, aq/b, bqL+1; q)k

qk
r∏
j=1

(cjq
mj/yj , aq1/yj /cj ; q1/yj )yj k

(aq(1−mj )/yj /cj , cj ; q1/yj )yj k

= (aq, q; q)N
(bq, aq/b; q)N

(bq, bq/a; q)L
(b2q/a, q; q)L

r∏
j=1

(cj /b, cjb/a; q1/yj )mj
(cj , cj /a; q1/yj )mj

×
L∑
k=0

�(b2q2k/a)

�(b2/a)

(b2/a, q−L, b, bq−N/a; q)k
(q, qL+1b2/a, bq/a, bqN+1; q)k

qk

×
r∏
j=1

(bcjq
mj/yj /a, bq1/yj /cj ; q1/yj )yj k

(bq(1−mj )/yj /cj , bcj /a; q1/yj )yj k
.

If we letL= 0 in Corollary 4.5 we obtain the following summation formula.

Corollary 4.6. Let y1, . . . , yr be positive integers andm1, . . . , mr be nonnegative integers withm1 +
. . .+mr =N . Then the following identity holds:

N∑
k=0

�(aq2k)

�(a)

(a, q−N, b, a/b; q)k
(q, aqN+1, aq/b, bq; q)k q

k
r∏
j=1

(cjq
mj/yj , aq1/yj /cj ; q1/yj )yj k

(aq(1−mj )/yj /cj , cj ; q1/yj )yj k

= (aq, q; q)N
(bq, aq/b; q)N

r∏
j=1

(cj /b, cjb/a; q1/yj )mj
(cj , cj /a; q1/yj )mj

.

Note that the caser = 1 of Corollary 4.6 is equivalent to (1.4), and that the caseyj ≡ 1 is (1.7).

5. Some exotic Karlsson–Minton-type identities

Besides (2.2), we are aware of another elliptic partial fraction expansion, namely,

n∑
k=1

∏n
j=1�(ak/bj )∏n

j=1, j =k�(ak/aj )
= 0, a1 · · · an = b1 · · · bn, (5.1)

which goes back at least to the 1898 treatise of Tannery and Molk[30, p. 34]. Again, we refer to[21] for
an elementary proof and some further comments.
It does not seem possible to obtain amatrix inversion from (5.1) in a similar way asWarnaar’s inversion

was obtained from (2.2) in Section 2. However, it is straightforward to imitate the analysis of Section
4 and obtain Karlsson–Minton-type summation and transformation formulas from (5.1). The resulting
identities seem quite exotic and appear to be new even in the casep = 0.
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Thus, we make the substitutions (4.1) into (5.1). In place of (4.2), we now have the two conditions
|l| + s = |m| and

q(
l1+1
2 )+···+( ls+12 )a

l1+1
1 · · · als+1s = q

1
y1
(
m1
2 )+···+ 1

yr
(
mr
2 )b

m1
1 · · · bmrr . (5.2)

Clearly, the resulting transformation can be obtained from Theorem 4.1 by deleting the factoraiq
k,

together with all factors involving products (rather than quotients) of the parametersai , bi . This gives the
following result.

Theorem 5.1. Let l1, . . . , ls andm1, . . . , mr be nonnegative integers andy1, . . . , yr be positive integers.
Assume that|l| + s = |m|, and that(5.2)holds. Then,

s∑
i=1

∏r
j=1(aiq(1−mj )/yj /bj ; q1/yj )mj

(q−li ; q)li
∏s
j=1, j =i(aiq−lj /aj ; q)lj+1

×
li∑
k=0

s∏
j=1

(aiq
−lj /aj ; q)k

(aiq/aj ; q)k
r∏
j=1

(aiq
1/yj /bj ; q1/yj )yj k

(aiq
(1−mj )/yj /bj ; q1/yj )yj k

= 0.

Next we write down the cases = 2 of Theorem 5.1 explicitly. For this we make the substitutions

(a1, a2, l1, l2, bj ) �→ (bqL,1, N,L, bq(Lyj−mj+1)/yj /cj ).

(Sincewemaymultiply allaj andbj in (5.1)with a common factor, theassumptiona2=1 is no restriction.)
This yields that if|m| =N + L+ 2 and

q(
L+1
2 )bL+1 = q

(
N+1
2 )+ 1

y1
(
m1
2 )+···+ 1

yr
(
mr
2 )c

m1
1 · · · cmrr , (5.3)

then

∏r
j=1(cj ; q1/yj )mj

(q−N ; q)N(b; q)L+1

N∑
k=0

(q−N, b; q)k
(q, bqL+1; q)k

r∏
j=1

(cjq
mj /yj ; q1/yj )yj k
(cj ; q1/yj )yj k

+
∏r
j=1(q−Lcj/b; q1/yj )mj

(q−L; q)L(q−L−N/b; q)N+1

L∑
k=0

(q−L, q−L−N/b; q)k
(q, q1−L/b; q)k

×
r∏
j=1

(q(mj−Lyj )/yj cj /b; q1/yj )yj k
(q−Lcj/b; q1/yj )yj k

= 0.

To make this look nicer we replacek by L − k in the second sum. After repeated application of (1.12)
and some further simplification, we arrive at the following transformation formula.
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Corollary 5.2. Let L,Nandm1, . . . , mr be nonnegative integers with|m|=N+L+2,and lety1, . . . , yr
be positive integers. Then, assuming also(5.3),one has the identity

N∑
k=0

(q−N, b; q)k
(q, bqL+1; q)k

r∏
j=1

(cjq
mj /yj ; q1/yj )yj k
(cj ; q1/yj )yj k

= bN+1(q; q)N(bq; q)L
(bq; q)N(q; q)L

r∏
j=1

(cj /b; q1/yj )mj
(cj ; q1/yj )mj

×
L∑
k=0

(q−L, b; q)k
(q, bqN+1; q)k

r∏
j=1

(bq1/yj /cj ; q1/yj )yj k
(bq(1−mj )/yj /cj ; q1/yj )yj k

.

WhenL= 0, Corollary 5.2 reduces to the following summation formula.

Corollary 5.3. Letm1, . . . , mr and N be nonnegative integers with|m| = N + 2, and lety1, . . . , yr be
positive integers. Then, assuming also

b = q
(
N+1
2 )+ 1

y1
(
m1
2 )+···+ 1

yr
(
mr
2 )c

m1
1 · · · cmrr ,

one has the identity

N∑
k=0

(q−N, b; q)k
(q, bq; q)k

r∏
j=1

(cjq
mj/yj ; q1/yj )yj k
(cj ; q1/yj )yj k

= bN+1 (q; q)N
(bq; q)N

r∏
j=1

(cj /b; q1/yj )mj
(cj ; q1/yj )mj

.

The evaluation in Corollary 5.3 looks so unusual that it is worth pointing out that we believe it is free
from misprints. In particular, the factorqk is not missing from the left-hand side. Like for other results
in the paper, special cases have been confirmed by numerical calculations.
Using the results of[29] it is easy to check that the sum in Corollary 5.3 ismodular(that is, invariant

under a natural action of SL(2,Z) on(p, q)-space) and, in particular,balancedin the sense of Spiridonov.
However, the special casep = 0 is not balanced in the usual sense of basic hypergeometric series[9].
This is another indication of the importance of modular invariance and Spiridonov’s balancing condition
for elliptic hypergeometric series.

Appendix A. An alternative proof of (1.7)

Gasper’s proof of the casep = 0 of (1.7) uses induction onr. As was remarked in the introduction,
this proof does not immediately extend to the general case. However, we were able to find a proof by
induction onN, which is different in details fromGasper’s proof, but closer to standard methods for basic
hypergeometric series[9] than the proof given in Section 4. We include this proof here since it may have
independent interest and be useful for generalizations, for instance, to multiple series. For brevity, we
will write (a)k = (a; q)k for the elliptic shifted factorials in (1.11a).
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To start our inductive proof of (1.7), we assume that it holds for fixedN and consider the sum

S =
N+1∑
k=0

�(aq2k)

�(a)

(a, q−N−1, b, a/b)k
(q, aqN+2, aq/b, bq)k

qk
r∏
j=1

(cjq
mj , aq/cj )k

(aq1−mj /cj , cj )k
,

wherem1 + · · · +mr =N + 1. By symmetry, we may assumemr�1.
We multiply the sumStermwise by

1= 1

�(aqN+1, q−N−1, crqmr+k−1, aq1−mr+k/cr)
× [�(aqk+N+1, qk−N−1, crqmr−1, aq1−mr /cr)
− q−N−1�(aqk, qk, crqmr+N, aq2−mr+N/cr)],

which is equivalent to (1.10) with the replacements

(u, v, x, y) �→ (
√
a, qmr−1cr/

√
a, qN+1√a, qk√a).

Since the factors�(qk−N−1) and�(qk) vanish at the end-pointsk = N + 1 andk = 0, respectively, this
gives an identity of the form

S =
N∑
k=0
(· · ·)+

N+1∑
k=1

(· · ·).

Replacingk by k + 1 in the last sum and simplifying gives

S =
N∑
k=0

�(aq2k)

�(a)

(a, q−N, b, a/b, crqmr−1, aq/cr)k
(q, aqN+1, aq/b, bq, aq2−mr /cr , cr)k

qk
r−1∏
j=1

(cjq
mj , aq/cj )k

(aq1−mj /cj , cj )k

− q−N �(aq, aq2, b, a/b, crqmr+N, aq/cr, aq2−mr+N/cr)
�(aq/b, bq, aqN+1, aqN+2, aq1−mr /cr , aq2−mr /cr , cr)

r−1∏
j=1

�(cjqmj , aq/cj )

�(aq1−mj /cj , cj )

×
N∑
k=0

�(aq2k+2)
�(aq2)

(aq2, q−N, bq, aq/b, crqmr , aq2/cr)k
(q, aqN+3, aq2/b, bq2, aq3−mr /cr , crq)k

qk

×
r−1∏
j=1

(cjq
1+mj , aq2/cj )k

(aq2−mj /cj , cjq)k
.

Both sums are now evaluated by the induction hypothesis, giving

S = (aq, q)N

(bq, aq/b)N

(cr/b, crb/a)mr−1
(cr , cr/a)mr−1

r−1∏
j=1

(cj /b, cjb/a)mj

(cj , cj /a)mj

×
{
1− �(b, a/b, crqN+mr , aqN+2−mr /cr)

�(bqN+1, aqN+1/b, crqmr−1, aq1−mr /cr)

}
.
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Using again (1.10), this time with

(u, v, x, y) �→ (
√
a, qmr−1cr/

√
a, qN+1√a, b/√a),

we find that the factor within brackets equals

�(qN+1, aqN+1, qmr−1cr/b, qmr−1crb/a)
�(bqN+1, aqN+1/b, qmr−1cr , qmr−1cr/a)

,

and thus

S = (aq, q)N+1
(bq, aq/b)N+1

r∏
j=1

(cj /b, cjb/a)mj

(cj , cj /a)mj
.

This completes our alternative proof of (1.7).
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