TCT-360
Appropriate Intravascular Ultrasound Measurement Intervals for Assessment of Cardiac Allograft Vasculopathy after Heart Transplantation
Kozo Okada1, Hideki Kitaibara1, Kyuhachi Otargi2, Shigemitsu Tanaka3, Yuhei Kobayashi1, Paul Yock1, Alan Yeung1, Peter J. Fitzgerald1, Hannah A. Valentine1, Kitan K. Khush1, William F. Fearon4, Yasuhiro Honda1
1Stanford University, Stanford, CA

Background: Cardiac allograft vasculopathy (CAV) is typically characterized by concentric intimal thickening diffusely distributed throughout the coronary arterial tree. This study aimed to test the hypothesis that the accuracy of CAV assessment by IVUS is maintained at wider measurement intervals than the standard 1-mm intervals used for the analysis of atherosclerotic lesions.

Methods: In 20 heart transplant recipients, baseline (4-6 weeks post-transplant) and 1-year IVUS were analyzed at 1-mm, 2-mm and 3-mm intervals in the first 50 mm of the LAD artery. 2D IVUS indices, including maximum intimal thickness (MIT), minimum lumen area (MLA) and maximum plaque burden (Max PB), were also determined based on the volumetric datasets. The measurements obtained at 1-mm intervals were used as a gold standard.

Results: At baseline, both volumetric and 2D indices were comparable at 1-mm and 2-mm intervals, and statistically significant differences were only observed with at least 3-mm intervals for vessel and lumen volumes (p < 0.01), MIT (p < 0.05) and MLA (p < 0.05). At 1 year, volumetric IVUS indices did not differ significantly among the three intervals. On the other hand, both 2-mm and 3-mm intervals showed statistically significant differences in MIT, MLA and Max PB from 1-mm intervals (Figure).

Conclusions: The diffuse nature of CAV appears to allow simple volumetric assessment at wider measurement intervals. However, 2D IVUS indices, reflecting the worst site and proven to predict long-term outcomes, are likely best captured by the standard 1-mm intervals established for the analysis of atherosclerosis.

TCT-361
Can we improve the diagnostic efficacy of angiography and intravascular ultrasound in assessing intermediate lesions?
Slawomir Golebiewski1, Dobrin Vasilev1, Matusz Kaczynski1, Przemyslaw J. Kwiatkorski2, Piotr Kwiatkowski2
1CSK MSW, Warsaw, Poland, 2National Heart Hospital, Sofia, Bulgaria

Background: Minimal lumen area (MLA) and minimal lumen diameter (MLD) are the best known parameters of bad prognosis in left main stenosis (LMS). In our prospective study we introduced plaque volume index (PVI=plaque area volume (PAV)/vessel area volume (VAV)) as an additional parameter patients during IVUS procedure. PVI is a parameter for level of arteriosclerosis.

Methods: The patients population with ambiguous lesions in left coronary artery (LCA) were referred to IVUS assessment (n=100). Patients were divided into three groups according to MLA in left main: gr.1 with MLA<6mm² (n=26), gr. 2 with 6<MLA<8mm² (n=37) and gr. 3 with MLA>8mm² (n=37). According to ESC recommendations patient from gr.1 were referred to the Heart team. Patient from gr 2 and gr 3 were treated with optimal medical therapy (OMT).

Results: The demographic and clinical characteristics of the 3 groups were not statistically different. In analysis PVI (AUC=0.6246, p=0.0075) was not worse than MLA (AUC=0.6341, p=0.0721) in predicting MACE, difference AUC=0.0095, p=0.8982 (fig.1). No complications occurred during ICUS procedures. At 12 months observation follow was obtained by phone in whole group. The MACE occurred in 17% (17/100).

Conclusions: PVI can be additional parameter in decision making process in borderline cases, PVI accurate describes level of arteriosclerosis and could predict an advancement in whole coronary tree.

TCT-362
Relation between renal function and neointimal tissue characteristics after drug-eluting stent implantation: virtual histology-intravascular ultrasound analysis
Young Joon Hong1, Myung Ho Jeong2, Hyun Kuk Kim2, Ju Han Kim3, Seung Uk Lee4, Youngkeun Ahn4
1Heart Research Center, Chonnam National University Hospital, Gwangju, Korea, Republic of, 2Heart Center of Chonnam National University Hospital, Gwangju, Korea, Republic of, 3Kwang Ju Christian Hospital, Gwangju, Korea, Republic of

Background: Few data are available about neointimal tissue characteristics after drug-eluting stent (DES) implantation in patients with decreased renal function. We used virtual histology-intravascular ultrasound (VH-IVUS) to assess the neointimal tissue characteristics according to the baseline renal function.

Methods: We compared neointimal tissue components between patients with chronic kidney disease (CKD) (n=19, estimated creatinine clearance (CrCl)<60 mL/min) and those without CKD (n=229). The region of interest was placed between the luminal border and the inner border of the stent struts and tissue components were reported as percentages of neointimal volume.

Results: Mean follow-up durations between DES implantation and follow-up VH-IVUS study were 12.0±4.1 months in CKD group and 11.4±5.6 months in non-CKD group (p=0.519). At follow-up, neointima volume was significantly greater (72.4±26 mm³ vs. 47.2±26 mm³, p=0.001) and %neointima necrotic core (NC) volume was significantly greater (25.0±11.4% vs. 17.9±10.2%, p=0.012) in CKD group compared with non-CKD group. There was negative correlation between CrCl and neointima volume (r=-0.250, p<0.001), however, there was no significant correlation between CrCl and %neointima NC volume (r=-0.034, p=0.591). Only independent predictor of follow-up %neointima NC volume >10% was neointima volume (odds ratio 1.025, 95% confidence interval 1.013-1.036, p<0.001).

Conclusions: Renal function was associated with in-stent neointimal growth, but it was not associated with neointima NC formation, instead the amount of neointima was associated with more neoatherosclerosis in patients who underwent DES implantation.

TCT-363
Precision of a Novel High-Definition 60MHz IVUS in Quantitative Measurement: Comparison with Conventional 40MHz IVUS and Optical Coherence Tomography
Yuhei Kobayashi1, Hideki Kitaibara1, Shigemitsu Tanaka2, Kaori Nakagawa2, Kozo Okada1, Kyuhachi Otargi1, Paul Yock1, Peter Fitzgerald1, Fumiaki Ieno1, Yasuhiro Honda1
1Stanford University Medical Center, Stanford, CA

Background: Previous validation studies have shown that optical coherence tomography (OCT) can provide superior precision in quantitative measurements to conventional 40MHz IVUS. This study aimed to evaluate the accuracy of a novel high-definition 60MHz IVUS in head-to-head comparison with currently available intravascular imaging devices.

Methods: Five coronary models with known diameters were imaged using Fourier-domain OCT (Dragonfly, St. Jude Medical), 40MHz IVUS (OptiCross, Boston Scientific) and 60MHz IVUS (Klaron, Toshiba). The models were imaged in 3 different regions: near, mid and distal. Five measurements were performed at each site: vessel area, intimal area, media area, lumen area and lumen volume. The measurements were compared with OCT using Bland-Altman analysis. The results were also compared using linear regression analysis.

Results: The linear regression analysis showed a significant correlation between OCT and 60MHz IVUS (r=0.98, p<0.001) and OCT and 40MHz IVUS (r=0.95, p<0.001). The Bland-Altman analysis showed a mean bias of 0.13% for vessel area, 0.22% for intimal area, 0.16% for media area, 0.10% for lumen area and 0.08% for lumen volume. The correlation coefficient was 0.98 for all measurements.

Conclusions: The novel high-definition 60MHz IVUS is highly accurate and precise in quantitative measurements compared to OCT and conventional 40MHz IVUS. This study provides evidence that 60MHz IVUS can be used as a reliable quantitative imaging tool for coronary artery disease.
Difference Of Stent Expansion Between Thin Strut Cobalt Chromium Platform TCT-364 across the wide range of lumen diameter from 1.5 to 5.0 mm. 

Results: Overall, OCT and 40MHz IVUS consistently overestimated mean LD (0.07±0.03 and 0.15±0.03 mm, respectively), while 60MHz IVUS showed slight underestimation (-0.08±0.03 mm). In all diameter models, absolute differences in mean LD were significantly larger in 40MHz IVUS than OCT and 60MHz IVUS (p<0.01 for all). 60MHz IVUS was comparable or superior to OCT in phantoms. OCT showed excellent near-field precision in small diameter phantoms (±0.02 mm).

Conclusions: There is a significant difference of expansion between thin cobalt and thick stainless stents in calcified lesions. When thin strut stent is deployed in calcified lesions, careful evaluation of stent expansion and adequate post dilatation may be necessary.

Imaging Intravascular - OCT

Washington Convention Center, Lower Level, Hall A
Saturday, September 13, 2014, 5:00 PM–7:00 PM
Abstract nos: 365-397

TCT-365

Incomplete Stent Apposition Causes High Shear Flow Disturbances and Delay in Neointimal Coverage as a Function of Strut-to-wall Detachment Distance

Nicolas Foin1, Shimpie Nakatomi2, Christos Bourantas3, Sayan Sen1, Sukhjinder S. Nijjer5, Ricardo Petracco6, Matteo Ghione7, Yoshinobu Onuma8, Darrel P. Francis4, Carlo Di Mario4, Justin E. Davies4, Patrick W. Serruys9

1National Heart Centre Singapore, London, United Kingdom, 2ThoraxCenter, Erasmus Medical Center, Rotterdam, Netherlands, 3Thoraxcenter, Rotterdam, Netherlands, 4Imperial College London, London, United Kingdom, 5Imperial College London, London, 6Imperial College, London, United Kingdom, 7Royal Brompton Hospital, London, United Kingdom, 8Thorax Center, Erasmus University, Rotterdam, Netherlands, 9Thoraxcenter, Rotterdam, MD

Background: Lack of re-endothelialisation and neointimal coverage on stent struts has been put forward as the main underlying mechanism leading to late stent thrombosis. Incomplete Stent Apposition (ISA) has been frequently observed in patients with very late stent thrombosis after DES implantation, suggesting a role of ISA in the pathogenesis of this adverse event. The aim of this study was to evaluate the impact of different degrees of ISA severity on abnormal shear rate and healing response with coverage, due to its potential implications for stent optimization in clinical practice.

Methods: We characterized flow profile and shear distribution in different cases of ISA with increasing strut-wall detachment distance (ranging from 100 μm to 500 μm). Protruding strut and strut malapposed with moderate detachment (ISA detachment distance < 100μm) have minimal disturbance to blood flow as compared with floating strut that has more significant ISA distance. In-vivo impact on strut coverage was assessed retrospectively using Optical Coherence Tomography evaluation on 72 stents (48 patients) sequentially at baseline and after 6 months follow-up.