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a b s t r a c t

By reformulating a learning process of a set system L as a game between Teacher and
Learner, we define the order type of L to be the order type of the game tree, if the tree
is well-founded. The features of the order type of L (dim L in symbol) are (1) we can
represent any well-quasi-order (wqo for short) by the set system L of the upper-closed
sets of the wqo such that the maximal order type of the wqo is equal to dim L; (2) dim L
is an upper bound of the mind-change complexity of L. dim L is defined iff L has a finite
elasticity (fe for short), where, according to computational learning theory, if an indexed
family of recursive languages has fe then it is learnable by an algorithm from positive
data. Regarding set systems as subspaces of Cantor spaces, we prove that fe of set systems
is preserved by any continuous function which is monotone with respect to the set-
inclusion. By it, we prove that finite elasticity is preserved by various (nondeterministic)
language operators (Kleene-closure, shuffle-closure, union, product, intersection, . . .). The
monotone continuous functions represent nondeterministic computations. If a monotone
continuous function has a computation tree with each node followed by at most n
immediate successors and the order type of a set system L is α, then the direct image of
L is a set system of order type at most n-adic diagonal Ramsey number of α. Furthermore,
we provide an order-type-preserving contravariant embedding from the category of quasi-
orders and finitely branching simulations between them, into the complete category of
subspaces of Cantor spaces and monotone continuous functions having Girard’s linearity
between them.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A set system L over a set T , a subfamily of the power set P(T ), is a topic of (extremal) combinatorics [1,2], as well as a
target of an algorithm to learn in computational learning theory of languages [3].

By reformulating a learning process of a set system L as a game between Teacher and Learner, we define the order type
of L ⊆ P(T ) to be the order type of the game tree. The features of the order type of L (dimL in symbol) are the following:

• We can represent any well-quasi-order (wqo for short) by the set system of the upper-closed sets of the wqo such that
themaximal order type [4] of the wqo is equal to the dimL.

• dimL is an upper bound of the mind-change complexity [5] of L which is recently studied in relation to Noetherian
property of algebras, set-theoretical topology and reverse mathematics [6–9]. dim L is defined if and only if L has a
finite elasticity (fe for short), where, according to computational learning theory [10,3], if an indexed family of recursive
languages has fe then it is learnable by an algorithm from positive data.
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In computational learning of languages, a set system algorithmically learnable from positive data is often a combination
of set systems (e.g. extended pattern languages [3]). To discuss which combinatorial operations for set systems preserve
fe, quantitatively with the order type of the set systems, let us consider a motivating example. Suppose L is the class of
arithmetical progressions over N. Observe the class of binary unions of arithmetical progressions over N, that is, L ∪ L :=

{L ∪ M ; L,M ∈ L} is more difficult to learn than L ⊎ L := {L ⊎ M ; L,M ∈ L}, where L ⊎ M is the disjoint union
of L and M , i.e., the union of the progression L colored red and the progression M colored black. The difficulty of L ∪ L is
because the discoloration brings nondeterminism to Teacher and/or Learner. By the discoloration of L ⊎ M , we mean L ∪ M ,
and by that of L ⊎ L, we mean L ∪ L. We can notice that the discolorization of the direct product L × M of languages
L,M is the concatenation L · M , and observe that L × L = {L × M ; L,M ∈ L} is easier to learn than the discolorization
L· L = {L · M ; L ∈ L}.

Following questions are central in this paper:

Question 1. Does discoloration preserve finite elasticity?

Question 2 ([11–14]). Which operations for set systems preserve finite elasticity?

Question 3. What is the nondeterminism brought by operations that preserve finite elasticity?

Question 4. How much do such operations increase the order type of set systems?

Question 1 is yes, because Ramsey’s theorem [15] implies any dichromatic coloring of any infinite game sequence of
L ∪ L has an infinite, monochromatic game subsequence of L. This is another saying of Motoki–Shinohara–Wright’s
theorem [16,10]. This argument leads to a solution of Question 4 with Ramsey number [15].

For Question 2, first observe that the discoloration L∪M of L⊎M is the inverse image R−1
[L⊎M] = {s ; ∃u ∈ L⊎M. R(s, u)}

by a following finitely branching relation: R(s, u) : ⇐⇒ u = ⟨ s, red ⟩ or u = ⟨ s, black ⟩. For a relation R ⊆ X × Y , the
inverse images of a setM and a set system M are, by definition, respectively

R−1
[M] := {x ∈ X ; ∃y ∈ M. R(x, y)}, R−1[M] := {R−1

[M] ; M ∈ M}. (1)

Let us abbreviate ‘‘a set systemwith finite elasticity’’ by an fess. In [13,14], Kanazawaderived ‘‘the inverse image of an fess by
a finitely branching relation again an fess’’ from König’s lemma, and established not only the union but also the permutation
closure and so on preserves fesss. We generalize his lemma further as: ‘‘the direct image L of an fess M by a continuous
function which is monotone with respect to the set-inclusion is again an fess.’’ Here we regard L and M as subspaces of
Cantor spaces, which are the product topological spaces {0, 1}


L, {0, 1}


M of copies of finite discrete topological space

{0, 1}.
Interestingly, a monotone, continuous function is a stable function [17] plus a modest nondeterministic computation, so

to say. To explain the relation among monotone, continuous functions, (linear) stable functions and nondeterminism, let us
consider a following characterization by Tychonoff’s theorem: a monotone, continuous function is a function O : M → L
such that there is a finitely branching relation R ⊆ (


L) ×


M

<ω satisfying that for all x ∈


L and all M ∈ M,

O(1M)(x) =


1, (∃v ⊆ M. R(x, v)) ;

0, (otherwise),

where


M
<ω is the class of finite subsets of


M and 1M is the indicator function of the set M . From linear logic [17]

point of view, when L and M are coherence spaces and #{v ; R(x, v)} ≤ 1 for all x, then O becomes a stable function from
L to M, and if further ∀x∀v. (R(x, v) ⇒ #v ≤ 1) holds, then O becomes a linear stable function [17]. Kanazawa’s lemma is
nothing but ‘‘the direct image of an fess by a linear, monotone, continuous function is again an fess’’ where the relation R in
the lemma is the trace [17] of the linear function.

For Question 3, the nondeterminism brought by the (linear) monotone, continuous functions O are the ‘‘finite
OR-parallelism’’ caused by finite sets v’s. The degree of the nondeterminism is #{v ; R(x, v)}. In other words, the trace
R of the monotone, continuous function is finitely branching, while that of stable function has at most one branching. So we
can easily prove that there are monotone, continuous functions 1L → 1L∗ and 1L → 1L~ where L~ is the shuffle-closure [18]
of L. Here are a non-example and an example of nondeterminism.

• Because a Π-continuous function [6] can represent an unbounded search unlike monotone, continuous functions, the
direct image of an fess by a Π-continuous function is not necessarily an fess (see Theorem 6.)

• We define the category QOFinSim of quasi-orders and finitely branching simulations between them. Here a usual order-
homomorphism is an instance of a finitely branching simulation which appears in concurrency theory. Let SS be the
complete category of set systems and monotone, continuous functions between them. We provide an order-type-
preserving contravariant embedding from QOFinSim to SS. By this embedding, each quasi-order is sent to the family of
upper-closed sets. When the branching of the relation is at most 1, it is sent to a stable (sequential) function [17] in SS.
In fact, the category of coherence spaces and stable functions between them, introduced in [17] embeds in SS.
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As for Question 4, the Ramsey number argument for Question 1 establishes: If a monotone, continuous function O with
the trace R has n such #{v ; R(s, v)} ≤ n for each s, then the direct image of L by O has order type at most the n-adic
diagonal Ramsey number of dimL + 2.

This paper is organized as follows. In the next section, we review parts of order theory, various (closure) operations of
languages from algebraic theory [18,19] of languages and automata, and finite elasticity of computational learning theory.
In Section 3, we introduce the order type of a set system, and then represent every quasi-order by a set system having the
same order type as the quasi-order. We prove that if the set system L is an indexed family of recursive languages, as in the
case of computational learning theory, and if moreover the indexing is without repetition, then dimL is exactly a recursive
ordinal. In Section 4, we prove ‘‘the direct image of an fess by amonotone, continuous function is again an fess.’’ In Section 5,
we employ Ramsey numbers to answer Question 4. In Section 6, we embed the category QOFinSim and a categorical model of
linear logic in the category SS. In Appendix A, we record the proof of Theorem 9 on the categorical structure of SS, SSlin and
SSseq, where SSlin is the subcategory induced by linear functions and SSseq by sequential functions. We prove the category
SSseq does not have a binary coproduct because the sequential function does not represent a nondeterministic computation.
And then we discuss whether SS has the duality operator and the bang operator as the category of coherence spaces.

2. Preliminaries

Let R ⊆ S × U be a relation. If the cardinality BR(s) of {u ∈ U ; R(s, u)} is finite for all s ∈ S, then we say R is finitely
branching. If BR(s) ≤ 1 for all s ∈ S, then we say R is a partial function. For a set U, let [U]<α be the class of subsets A of U such
that #A < α.

2.1. Order theory

A quasi-order (qo for short) over a set X is a pair X = (X, ≼) where ≼ is a reflexive, transitive relation. A bad sequence
is a possibly infinite sequence ⟨a0, a1, . . . , an(, . . .)⟩ such that ai ⋠ aj whenever i < j. A well-quasi-order (wqo for short) is
a quasi-order that has no infinite bad sequences. For A ⊆ X , let A ↑ X := {x ∈ X ; ∃a ∈ A. a ≼ x }.
Definition 1. For a quasi-order X = (X, ≼), let a set system ss (X) be the complete lattice of upper-closed subset of X with
respect to X.
Proposition 1 ([20, Theorem 2.1]). For every quasi-ordered set X, the following are equivalent:
1. X is a wqo.
2. Finite basis property: Every A ↑ X is B ↑ X for some B ∈ [X]<ω .
3. Ascending chain condition: ss (X) is a complete lattice with ascending chain condition. That is, there is no infinite, strictly

ascending sequence of members.
The length of a sequence σ = ⟨b1, . . . , bm⟩ is, by definition, ln(σ ) = m, and the length of an infinite sequence σ is, by

definition, ln(σ ) = ∞.
By a tree, we mean a set T of finite sequences such that any initial segment of a sequence in T is in T . A tree T is said to

be well-founded if there is no infinite sequence ⟨a1, a2, . . .⟩ such that ⟨a1, . . . , an⟩ is in T for each n.
Let T be a well-founded tree. For each node σ of T , let the ordinal number |σ | be the supremum of |σ ′

| + 1 such that
σ ′

∈ T is an immediate extension ofσ . Then the order type |T | of thewell-founded tree T is defined by the ordinal number |⟨ ⟩|

assigned to the root ⟨ ⟩ of T . For a tree T which is not well-founded, let |T | be ∞. For the sake of convenience, we set α < ∞

for all ordinal numbers α. As in [21], we define the order type otp(X) of a wqo X to be the order type of the well-founded
tree of bad sequences in X. According to [21, Section 2], otp(X) is equal to themaximal order type of de Jongh–Parikh [4].

By an embedding from a tree T to a tree T ′, we mean an injection f : T → T ′ such that f (v ⊔ u) = f (v) ⊔ f (u) for all
vertices u, v in T , where v ⊔ u is the greatest common ancestor of a pair of vertices u, v.
Fact 1. If there is an embedding from a tree T to a tree T ′, then |T | ≤ |T ′

|.

2.2. Computational learning theory for languages

A set system is a subfamily of a power set. We use L, M, N , . . . to represent set systems.
We say a set system L over X has an infinite elasticity, if there are infinite sequences t0, t1, . . . ∈ X and L1, L2, . . . ∈ L

such that {t0, . . . , ti−1} ⊆ Li ∌ ti for every positive integer i. Otherwise, we say L has a finite elasticity (fe.) A set system
with an fe is abbreviated as an fess.

Let N be the set of nonnegative integers.
Example 1. 1. The class of integer lattices contained in Zd and the class of ideals over Z[x, y, z] are fesss, because Zd and

Z[x, y, z] are is a Noetherian module and a Noetherian ring respectively [22, p. 112].
2. The class of finitely generated free sub-semigroups of (N2, +) is not an fess [23].
3. The class of (extended) pattern languages with bounded number of variables is an indexed family of recursive languages,

and is an fess ([10]. For an elementary proof, see [23].)
4. Singl := {{x} ; x ∈ N} of singletons is an fess.
5. The class Dcl := {{y ; y ≤ x} ; x ∈ N} ⊆ P(N) is not an fess.
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Definition 2. By an indexed family of recursive languages (ifrl for short), wemean a pairL = (ν : J → X, γ : I× J → {0, 1})
such that I, J ⊆ N, ν is a bijection, and γ is recursive. Put Li

:= {ν(j) ∈ X ; γ (i, j) = 1} for i ∈ I . An ifrlwithout repetition
is just an ifrl such that Li

≠ Lj for distinct i, j.

Proposition 2 ([16,10]). Every ifrl with an fe is learnable from positive data by an algorithm.

By an alphabet we mean a finite nonempty set. Let Σ be an alphabet. Denote the empty word by ε. For words u,
v ∈ Σ∗, the shuffle product u � v of u and v is, by definition, the set of all the words u1v1u2v2 . . . unvn such that
∃n ≥ 1∃u1, u2, . . . , un, v1, v2, . . . , vn ∈ Σ∗ we have u = u1u2 · · · un and v = v1v2 · · · vn. For L,M ⊆ Σ∗, let
L � M :=


{u � v ; u ∈ L, v ∈ M}. Put L�

:= L ∪ (L � L) ∪ (L � L � L) ∪ · · ·. Let us call L~
:= L�

∪ {ε} the shuffle-
closure of L. The shuffle-product and shuffle-closure are studied in algebraic theory of automata and languages [18,19], for
example.

Let a disjoint union of languages Bi (i ∈ I) be
i∈I

Bi := {⟨ b, i ⟩ ; b ∈ Bi, i ∈ I }.

For a language M , let Mm be

m  
M · M · · · · · M (m ≥ 1), let us call M+

:=


m≥1 M
m the positive Kleene-closure, and let M∗

be the Kleene-closure. LetM~ be the shuffle-closure ofM , 1
2 (M) be the half initial segment.

For all Li ⊆ P(Xi) (1 ≤ i ≤ n) and an operation ⊙ on languages of arity n, put⊙ (L1, . . . , Ln) := {⊙(L1, . . . , Ln) ; Li ∈ Li, (1 ≤ i ≤ n) }.

Here is an application of Ramsey’s theorem:

Proposition 3 (Motoki–Shinohara–Wright [16,10]). If L1 and L2 are fesss, so is L1 ∪ L2.

In fact, it is derived from a weak principle: König’s lemma.

Proposition 4 (Moriyama–Sato [12]). For a fixed finite alphabet, the family of language classes with fe is closed under ∪, ∪,·,∩, ∗, +, and m for every positive integer m, but not under elementwise complement.

Independently, Kanazawa [13,14] proved a following nice result by using König’s lemma:

Proposition 5 (Kanazawa [13,14]). If M ⊆ P(Y ) is an fess and R ⊆ X × Y is finitely branching, then R−1[M] ⊆ P(X) is so.

In fact, without invoking König’s lemma, he showed

Lemma 1 ([13,14]). If dimL, dimM < ∞, then dimL ⊎ M.

Then he proved various language operations preserves fesss, by applying Proposition 5.

Corollary 1 (Kanazawa [13,14]). For a fixed alphabet, the family of language classes with an fe is closed under ∪, elementwise
permutation closures,�, and1

2 (·). For each nonerasing homomorphism h : Σ∗

1 → Σ∗

2 , if a language class L ⊆ P(Σ∗

1 ) has an fe,
so doesh[L] ⊆ P(Σ∗

2 ). If L is a class of ε-free languages with an fe, then so is {L1 · L2 · · · · · Ln ; n ≥ 1, L1, . . . , Ln ∈ L}.

3. Order types of set systems and WQOs

We introduce order types of set systems, study the set system of upper-closed subsets of a qo from viewpoint of order
types and algebraic theory of lattices [24].

We regard a learning process of a set system L ⊆ P(T ), as a game between Teacher T and Learner L where in each
inning i ≥ 1 Teacher presents a ‘‘fresh’’ example ei−1 ∈ T and Learner submits a hypothesis Hi ∈ L that explains examples
presented so far, that is, {e0, . . . , ei−1} ⊆ Hi. By a ‘‘fresh’’example ei−1, we mean ei ∉ Hi. The well-foundedness of the game
tree coincides with the finite elasticity [16,10] of the set system L, which was introduced in computational learning theory
of languages [3]. If L is further an ifrl, then some algorithm can learn L from positive data [16,10]. First, we introduce the
order type dimL of the set system L by the order type of the game tree.

Definition 3 (Production Sequence). A production sequence of a set system L is a sequence ⟨⟨ t0, L1 ⟩, ⟨ t1, L2 ⟩, . . . ,
⟨ tm−1, Lm ⟩⟩ (m ≥ 0) or an infinite sequence ⟨⟨ t0, L1 ⟩, ⟨t1, L2⟩, . . .⟩ such that

{t0, . . . , ti−1} ⊆ Li ∈ L (i = 1, 2, . . . (,m)) and Lj ∌ tj (j = 1, 2, . . . (,m − 1)).

Let Prod(L) be the set of all production sequences of L.

Clearly a sequence ⟨L1, L2, . . .⟩ is a bad sequence in a poset (L, ⊇), because i < j implies Lj \ Li ∋ ti.

Definition 4 (Dimension). The dimension of L, denoted by dimL, is defined to be |Prod(L)|.
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By Fact 1, L ⊆ L′ implies dimL ≤ dimL′.
Let us see examples of order types of set systems.
We note that any ordinal α is the dimension of the set system of upper-closed subsets of α.
As in [25, p. 384], we understand that a recursive ordinal is an ordinal number α such that α = |T | for some recursive

well-founded tree T .

Theorem 1. If an ifrl L without repetition is an fess, then dimL is a recursive ordinal. Conversely, for every recursive ordinal
α there is an ifrl L without repetition such that α = dimL.

Proof. Let L be an ifrl without repetition by a pair of functions ν, γ . Define a set TL ⊂ N inductively as follows. We
also use symbols ‘⟨’ and ‘⟩’ for sequence numbers, and Odifreddi’s notation [25, p. 88] of operations on sequence numbers.
(1) ⟨ ⟩ ∈ TL. (2) If γ (e, j0) = 1, then ⟨⟨j0, e⟩⟩ ∈ TL. (3) If σ ∈ TL, γ


(σ )ln(σ )−1


1 , j


= 0, and γ (e, j) = 1 = γ (e, ((σ )k)0)

∀k < ln(σ ), then σ ∗ ⟨⟨j, e⟩⟩ ∈ TL. Clearly TL is a recursive tree.
Let ϕ : Prod(L) → TL take any ⟨⟨t0, L1⟩, ⟨t1, L2⟩, . . . , ⟨tl−1, Ll⟩⟩ ∈ Prod(L) to a node ⟨⟨ j0, e1 ⟩, ⟨ j1, e2 ⟩, . . . , ⟨ jl−1, el ⟩⟩

of TL where ei is the unique number such that Li = Lei and ji is the unique number such that ν(ji) = ti. Then ji is well-defined
because ν is bijective, and ei is too because L is an ifrl without repetition. The function ϕ is obviously an surjective order-
homomorphism that preserves glb’s, and in fact an injection becauseL is an ifrlwithout repetition. Therefore dimL = |TL|.
Since L is an fess, TL is a recursive well-founded tree, so dimL is a recursive ordinal number.

Next we prove the second assertion. The ordinal number α is constructive by [26, Theorem XX, Ch.11]. So there is a
recursively related, univalent system assigning a notation to α by [26, Theorem XIX, Ch.11]. Therefore, there is an injective
function ν from some set J ⊆ N onto an initial segment {β ; 0 ≤ β ≤ α} = α + 1 of the ordinal numbers such that

{⟨x, y⟩ ; x, y ∈ J, ν(x) ≤ ν(y)} ⊆ N is recursive. (2)

In particular, J is recursive. When J is infinite, there is a recursive strictly monotone function d with the range being J . Put
L := {Li ; i ∈ N}, and Li := {β ; ∃j ∈ J. β = ν(j) ≥ ν(d(i))}. Because ν is a bijection to α + 1, Li is an upper-closed subset
of α + 1. Define a function γ : N × J → {0, 1} by γ (i, j) = 1 if ν(j) ≥ ν(d(i)), 0 otherwise. From (2), γ is recursive. In fact,
L is ss ((α + 1, ≤)) because the range of d is exactly J and ν(J) = α + 1. Then L is an ifrl. Moreover L is an ifrl without
repetition because d and ν are injective. By Theorem 2(1), dimL = otp ((α + 1, ≤)) = α. When J is finite, we can prove
the assertion similarly. �

Next we introduce a left-inverse of ss (•).

Definition 5. For a set system L ⊆ P(X), define a quasi-order

x ≼L y : ⇐⇒ ∀L ∈ L (x ∈ L ⇒ y ∈ L.) qo (L) := (X, ≼L .)

Below, we prove that ss (•) is an order-type preserving representation of qos by set systems. In other words, the order
type of a wqo turns out to be the difficulty in learning the class of upper-closed subsets of the wqo. Then we prove that
ss (•) indeed has qo (•) as the left-inverse.

Theorem 2 (Representation of QO). Let X = (X, ≼) be a quasi-order.

1. otp(X) = dim ss (X).
2. X = qo (ss (X)).

Proof. We prove the assertion (1), by a transfinite induction using

∃L1, . . . , Ll. ⟨⟨t0, L1⟩, ⟨t1, L2⟩, . . . , ⟨tl−1, Ll⟩⟩ ∈ Prod(ss (X))

⇐⇒ ⟨t0, . . . , tl−1⟩ is a bad sequence of X.

The ⇒-part is demonstrated as follows: We have {t0, . . . , ti−1} ⊆ Li ∌ ti (1 ≤ i ≤ l − 1). Because each Li ∈ ss (X) is
upper-closed, for any nonnegative integers j < i ≤ l − 1, tj ⋠ ti. The ⇐-part is witnessed by Li := {t0, . . . , ti−1}↑X.
(2) Assume x ≼ss(X) y. Then ∀L ∈ ss (X) . (x ∈ L ⇒ y ∈ L). Take L := {y ∈ X ; x ≼ y} ∈ ss (X). Hence x ≼ y. Conversely,
assume x ≼ y. Then because every L ∈ ss (X) is upper-closedwith respect to≼, x ∈ L implies y ∈ L. Therefore x ≼ss(X) y. �

Theorem 3. If qo (L) is a wqo, L is an fess but not conversely. Actually dimL ≤ otp(qo (L)) ≤ ∞ and dim(Singl ) = 1 <
otp(qo (Singl )).

Proof. Observe that for every ⟨⟨t0, L1⟩, ⟨t1, L2⟩, . . . , ⟨tl−1, Ll⟩⟩ ∈ Prod(L), a sequence ⟨t0, t1, . . . , tl−1⟩ is a bad sequence of
qo (L). So we can prove the inequality by a transfinite induction [27] on Prod(L). The equality dimL = otp(qo (L)) is
not necessarily true. For example, although dim Singl = 1, a quasi-order qo (Singl ) = (N, =) has an infinite bad sequence
⟨0, 1, 2, 3, . . .⟩, which implies otp(qo (Singl )) = ∞. �

Proposition 6 ([9, p. 41]). If L has a finite thickness and L has no infinite anti-chain with respect to ⊆, then qo (L) is a wqo.
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We will study structure of the representation of qos by set systems from viewpoint of algebraic theory of lattices [24].
From [24], we recall ‘‘atom,’’ ‘‘atomic,’’ and ‘‘compact’’ (and the dual notions).

Let L be a complete lattice. By a coatom of L, we mean any nontop element C such that every nontop c ∈ L is codisjoint
from C (i.e. c ∪ C is top) or less than or equal to C . A coatomic, complete lattice is, by definition, a complete lattice such that
for any nontop element C0 there is a coatom greater than or equal to C0. We say an element c in a complete lattice L is called
compact if whenever c ≤


S there exists a finite subset T ⊆ S with c ≤


T .

Proposition 7 ([24]). Every element of a complete lattice L is compact if and only if L satisfies the ascending chain condition.

Theorem 4. Let X = (X, ≼) be a quasi-order.

1. The following are equivalent:
(a) X is a wqo.
(b) ss (X) is an fess.
(c) ss (X) is a complete lattice such that every element is compact.

2. If X is a wqo, then ss (X) is a coatomic, complete lattice.

Proof. As for the assertion (1), the equivalence between the conditions (a) and (b) follows from Theorem 4(1). The
equivalence between the conditions (a) and (c) is by Proposition 1 and Proposition 7.
(2) Let X = (X, ≼). {∅, X} is obviously a coatomic, complete lattice. So assume ss (X) ≠ {∅, X}. By the assertion (1), the
complete lattice ss (X) is an fess. If ss (X) is not coatomic, then there exists C0 ∈ ss (X) \ {X} such that

∀C ∈ ss (X) \ {X}

C0 ⊆ C H⇒ ∃c ∈ ss (X) (c ∪ C ≠ X & c \ C ≠ ∅)


. (3)

We can construct an infinite ⟨⟨x0, C1⟩, ⟨x1, C2⟩, . . .⟩ ∈ Prod(ss (X)) as follows: Because ss (X) ) {∅, X}, we can take a pair
of C1 ∈ ss (X) \ {X} and x0 ∈ C1 such that C0 ⊆ C1. Suppose we have a pair of Ci ∈ ss (X) \ {X} and xi−1 ∈ Ci such that
C0 ⊆ Ci. Once we can find a pair of Ci+1 ∈ ss (X) \ {X} and xi ∈ Ci+1 \ Ci such that C0 ⊆ Ci+1, then by iterating this process,
we can construct an infinite production sequence of ss (X). Because C0 ⊆ Ci and (3), there exist ci ∈ ss (X) and xi ∈ ci \ Ci
such that ci ∪ Ci ≠ X . So, let Ci+1 := Ci ∪ ci. Then it is in ss (X) \ {X} because ss (X) is closed under the union. Moreover
xi ∈ Ci+1 \ Ci because xi ∈ ci \ Ci. Clearly C0 ⊆ Ci ⊆ Ci ∪ ci = Ci+1. �

This section suggests a close similarity betweenwqos and finitely elastic set systems, so it is worth studying whether the
closure properties for wqos solve the questions of which operation on set systems preserves finite elasticity. According to
[28], the study on closure properties for wqos (Higman’s theorem for wqos on finite sequences [20], Kruskal’s theorem for
wqos on finite trees [29], Nash-Williams’ theorem for better-quasi-orders on transfinite sequences [30],. . . ) can be advanced
via set-theoretic topological methods and a Ramsey-type argument. So, to advance the study on the questions of which
operation on set system preserves finite elasticity, it is natural for us to employ set-theoretic topology (see Section 4) and a
Ramsey-type argument (see Section 5).

4. Continuous deformations of set systems

For nonempty finite set U , the product topological space {0, 1}U is called a Cantor space. Subspaces of Cantor spaces are
represented by C, D, E, . . ..

Definition 6. For every set system L ⊆ P(X), define a function

i : L → iL :=


1L ∈ {0, 1}


L

; L ∈ L


; L → 1L.

Then iL is a topological space, induced from a Cantor space {0, 1}


L. For C ⊆ {0, 1}X , put

fld(C) :=


i−1(C) ⊆ X .

Let us identify g ∈ D with an infinite sequence (g(y))y∈fld(D). For each x ∈ fld(C), let πx : C → {0, 1} be the canonical
projection to the x-th component. So πx(f ) = f (x) for every x ∈ fld(C). Recall that a Cantor space {0, 1}fld(C) is generated
by a class of sets π−1

x [{b}] such that x ∈ fld(C) and b ∈ {0, 1}. Let us call each π−1
x [{b}] a generator of C. Then an open set

of C is exactly an arbitrary union of finite intersections of generators. Note that each generator of C is clopen.
A Boolean formula over a set Y is built up from the truth values 0, 1, or elements of Y , by means of negation, finite

conjunction, and finite disjunction.

Lemma 2. A function O : D → C is continuous, if and only if there is a sequence (Bx)x∈fld(C) of Boolean formulas over fld(D)
such that for every g ∈ D and every x ∈ fld(C), the value O(g)(x) is the truth value of Bx under the truth assignment g.
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Proof. (If-part) The inverse imageO−1

π−1
x [{b}]


of a generatorπ−1

x [{b}] is the class of the truth assignments g ∈ D under
which the truth value of Bx is b. Because the Boolean formula Bx is equivalent to a finite disjunction of finite conjunctions
of elements of fld(D) and the negations of elements of fld(D), the inverse image O−1


π−1
x [{b}]


is just a finite union of

finite intersections of generators of D , while O−1

π−1
x [{0}]


is just a finite intersection of finite unions of generators of D .

Therefore, the inverse image O−1

π−1
x [{b}]


is open.

(Only-if-part) Because O is continuous and {b} (b = 0, 1) is clopen in the finite discrete topology {0, 1}, the inverse image
O−1


π−1
x [{b}]


of a generator π−1

x [{1}] by O is clopen, which is an arbitrary union of intersections of generators.
Because {0, 1} is compact, Tychonoff’s theorem implies the compactness of {0, 1}fld(C) and thus that of C. Moreover, C is

a Hausdorff space, because for all distinct f , g ∈ C, there is x ∈ fld(C) such that f (x) ≠ g(x), which implies that π−1
x [{f (x)}]

and π−1
x [{g(x)}] are open sets such that f ∈ π−1

x [{f (x)}] and g ∈ π−1
x [{g(x)}].

Since every closed subset of a compact Hausdorff space is compact, the clopen setO−1

π−1
x {b}


is

m
i=1

ni
j=1 π−1

yij


bij


for some nonnegative integers m, ni (1 ≤ i ≤ m), some yij ∈ fld(D), and some bij ∈ {0, 1} (1 ≤ i ≤ m, 1 ≤ j ≤ ni). So,
define a Boolean formula over fld(D) by

m
i=1

ni
j=1(bij ↔ yij), where each bij ↔ yij represents a Boolean formula yij for

bij = 1 and the negation yij for bij = 0. Clearly we have O(g)(x) = 1 iff g ∈ O−1

π−1
x [{1}]


iff g satisfies Bx. �

For functions f , g ∈ {0, 1}Z , we write f ≤ g if f (z) ≤ g(z) for all z ∈ Z .

Definition 7 (Monotone Functions). Let C ⊆ {0, 1}X and D ⊆ {0, 1}Y . We say a function O : D → C is monotone, if f ≤ g
implies O(f ) ≤ O(g).

We say a Boolean formula positive if it does not contain a negation.

Definition 8. Let S and U be two (not necessarily distinct) sets of objects, and R be a R ⊆ S × [U]<ω . For M ⊆ U and
M ⊆ P(U), define

R−1
[[M]] :=


s ; ∃v ∈ [M]<ω . R(s, v)


, R−1[[M]] :=


R−1

[[M]] ; M ∈ M

.

Define !M := {[M]<ω
; M ∈ M}. Then


!M ⊆


M

<ω .

Lemma 3. 1. Following conditions are equivalent:
(a) A function O : D → C is monotone and continuous.
(b) O is a function of g ∈ D and x ∈ fld(C) such that it first produces a positive Boolean formula Bx over fld(D), and then

queries to an oracle g whether g satisfies Bx or not.
2. If R ⊆ fld(C) × [fld(D)]<ω is a finitely branching relation, then

OR(g)(x) :=


R(x,v)


y∈v

(g(y) = 1) , (g ∈ D, x ∈ fld(C)) (4)

defines a monotone, continuous function from D to C such that,R−1[[M]] = i−1 (OR [iM]) ⊆ P (fld(C)) , ( M ⊆ P(fld(D)) ) . (5)

In fact, every monotone, continuous function from D to C is written as (4).

Proof. (1) By Lemma 2. Positivity of a Boolean formula is equivalent to absence of negation in the formula. (2) follows from
(1). �

Lemma 4. R−1[[M]] = R−1[!M].

Proof. L ∈ R−1[[M]] iff there exists M ∈ M such that L = R−1
[[M]] = {x ; ∃v ∈ [M]<ω . R(x, v)} = R−1


[M]<ω


∈R−1 [ !M]. �

Theorem 5. If M is an fess, so is !M.

Proof. Otherwise there exist an infinite sequence v0, v1, . . . of elements of


!M and an infinite sequence
[M1]<ω , [M2]<ω , . . . of elements of !M such that for each n ≥ 1 we have {v0, . . . , vn−1} ⊆ [Mn]<ω

∌ vn, which impliesn−1
i=1 vi ⊆ Mn ⊉ vn. Put v′

i := vi \ Mi (i = 0, 1, . . .). Then v′

i ∩ v′

j = ∅ (0 ≤ i < j) and each v′

i is a nonempty finite set.
Therefore {v′

i ; i ∈ N} satisfies the Hall’s condition of the marriage theorem [31, Theorem 3.41]: for each finite set F ⊂ N
we have #


i∈F v′

i


≥ #F . By the marriage theorem, {v′

i ; i ∈ N} has a system of distinct representative {yi ; i ∈ N}, i.e.,
yi ≠ yj (0 ≤ i < j) and yi ∈ v′

i (i = 0, 1, . . .). Then for each n ≥ 1 {y0, . . . , yn−1} ⊆
n−1

i=0 vi ⊆ Mn, while yn ∉ Mn because
yn ∈ v′

n = vn \ Mn. This contradicts the fe of M. �

The previous theorem generalizes Proposition 5 which is useful in Section 4.

Corollary 2. Let M ⊆ P(U) be an fess and let R ⊆ S × [U]<ω be a finitely branching relation. Then L = R−1[[M]] ⊆ P(S) is
also an fess.
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Proof. By Theorem 5, Lemma 4 and Proposition 5. �

Conversely, Theorem 5 follows from Corollary 2 with U :=


M, S :=


M
<ω , and a following:

Definition 9.

R! :=


(v, v) ; v ∈


M

<ω
, and !M =

R−1
!

[[M]].

In terms of topology, the previous corollary becomes a following:

Corollary 3. Assume L and M are set systems and O : iM → iL is a monotone, continuous function. Then if M is an fess, so is
i−1 (O [iM]).

Proof. By Lemma 3(2), O(1M)(x) =


R(x,v)


y∈v(y ∈ M) where R ⊆


L ×


M

<ω is a finitely branching relation.
Therefore we have L = R−1

[[M]] ⇐⇒ L = {x ; ∃v (R(x, v) & v ⊆ M)} ⇐⇒ 1L = O(1M). Hence the family i−1 (O [iM])
is R−1[[M]], which is an fess by Corollary 2. �

Although themind-change complexity of language identification from positive data is characterized by using the positive
information topology [6,8,9], Corollary 3 does not hold for positive information topology. Recall that the positive information
topology C ⊆ {0, 1}X is induced by the product topology of the topology {0, 1} where the only nontrivial open subset of
{0, 1} is {1}. So the basic open sets of the positive information topology are

UC
F = {f ∈ C; f [F ] = {1}} where F is an arbitrary finite subset of X . (6)

Let us abbreviate ‘‘continuous with respect to the positive information topology’’ by ‘‘Π-continuous.’’

Lemma 5. A monotone, continuous function is Π-continuous.

Proof. Let O : D → C be a monotone, continuous function and let UC
F be a basic open set of the positive information

topology C where F is a finite subset of fld(C). By Lemma 3(1), there are positive Boolean formulas Bx over fld(D) (x ∈ F )
such that for every F ∈ [fld(C)]<ω the inverse image O−1


UC
F


is


x∈F {g ∈ D ; g satisfies Bx}. Observe that each Bx is

equivalent to
nx

i=1


Fx,i for some nx ≥ 0 and some Fx,i ∈ [fld(D)]<ω (1 ≤ i ≤ nx). Therefore O−1

UC
F


is


x∈F

nx
i=1 U

D
Fx,i

,
which is open with respect to positive information topology because F is finite. �

Recall that Singl = {{n} ; n ∈ N} is an fess. For L ⊆ N, let ↓ L ⊆ N be the downward closure {n ; n ≤ m (∃m ∈ L)} of L.
To decide whether n ∈↓ L, we must carry out unbounded search to find somem ∈ L ∩ [n, ∞).

Theorem 6. 1. A function O↓ : {0, 1}N
→ {0, 1}N that sends 1L to 1↓L is monotone and Π-continuous but i−1O↓ [ iSingl ] is

not an fess; and
2. There is a non-monotone, continuous, non-Π-continuous function O¬ : {0, 1}N

→ {0, 1}N such that i−1O¬ [ iSingl ] is not
an fess.

Proof. A basic open set (6) with C = {0, 1}N is simply written UF below: (1) The monotonicity of O↓ is obvious. The
function O↓ is Π-continuous, because for every basic open set UF with finite F ⊆ N, the inverse image by O↓ is an open set

B⊆F


UF\B ∩


b∈B


x>b U{x}


where


b∈B · · · is {0, 1}N if B = ∅. However i−1O↓ [ i Singl ] = Dcl is not an fess.

(2) Moriyama–Sato [12] observed that the elementwise complement does not preserve the fe of set systems. Define

O¬(g)(x) = 1 − g(x).

Then i−1O¬[ iSingl ] = {N \ {y} ; y ∈ N} has an infinite elasticity: 0, N \ {1}, 1, N \ {2}, 2, . . . . If O¬ is Π-continuous,
then O−1

¬


U{0}


should be


G UG where G ranges over a certain class of finite subsets of N. For such a finite set G, g = 1G

belongs to the inverse image by O¬, but the support should be N \ {0}. Contradiction. �

5. The order types of nondeterministically deformed set systems

We present a typical application of Corollary 3, and answer Question 4 ‘‘Howmuch do such operations increase the order
type of set systems?’’ by a Ramsey number argument.

Fix an alphabet Σ . To know whether a word w belongs to the Kleene closure L∗
=


n≥0 L

n of a language L, we need to
guess n nondeterministically. Nondeterministic operations such as the Kleene closure operator (·)∗ and the shuffle-closure
operator (·)~ are representable by monotone, continuous functions. So Corollary 3 is useful in deriving the following:

M ⊆ P(Σ∗) is an fess ⇒ M∗ and M
+ are fesss. (7)

Let us see the proof to generalize for the case of the shuffle-closure. AssumeM is an fess. Let ε be the empty word and let
O1(1M) := 1M\{ε} andO3(1M) := 1M∪{ε}. ThenO1 andO3 aremonotone and continuous. LetO2(1L) be computed by a Turing
machinewith the oracle tape being 1L as follows: if an input s ∈ Σ∗ is ε then the oracle Turingmachine returns 0. Otherwise,
it tries to find a partition s1, . . . , sm of s such that s = s1 · · · sm, ln(si) > 0 (1 ≤ i ≤ m), m ≥ 1 and {s1, . . . , sm} ⊆ L. If
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such a partition is found, then the oracle Turing machine returns 1, and 0 otherwise. The number of queries the oracle
Turing machine makes is bounded by the number of partitions of s, which implies the continuity of O2. It is easy to see O2
is monotone. Observe O2(1L) = 1L+ for all L ⊆ Σ∗

\ {ε}. We can prove, for everyM ⊆ Σ∗,

(M \ {ε})+ = M+
\ {ε}, (M \ {ε})+ ∪ {ε} = M∗.

So we have O3 ◦ O2 ◦ O1(1M) = 1M∗ . By Corollary 3, M∗ is an fess.
Assume M+ has an infinite production sequence


⟨t0,M+

1 ⟩, ⟨ t1, M+

2 ⟩, . . .

. Note that there is at most one i such that

ti = ε. Removal of such ⟨ ti, Mi ⟩ from the infinite production sequence ofM+ results in still an infinite production sequence
of M+ . By adjoining the empty word ε to each language in the infinite production sequence, we have an infinite production
sequence of M∗ , becauseM+

∪ {ε} = M∗. But this is a contradiction against the fe of M∗ . So, M+ is an fess.

Remind that to find such a partition can be done by a nondeterministic computation. We can prove the counterpart of
(7) for the shuffle-closures (·)~, as follows:

Corollary 4. If L ⊆ P(Σ∗) is an fess, so is L~.
Proof. The proof is similar to that of (7) except O2(1L) is computed by another Turing machine with the oracle tape being
1L as follows: if an input s ∈ Σ∗ is ε, then it returns 0. Otherwise, it tries to find a sequence s1, . . . , sm such that s is an
‘‘interleaving merge’’ of s1, . . . , sm, ln(si) > 0 (1 ≤ i ≤ m), m ≥ 1 and {s1, . . . , sm} ⊆ L. Then O2 is clearly monotone and
continuous. Moreover O2(1L) = 1L� for every L ⊆ Σ∗

\ {ε}. We can prove, for everyM ⊆ Σ∗,

(M \ {ε})� = M�
\ {ε}, (M \ {ε})� ∪ {ε} = M~.

So we have O3 ◦ O2 ◦ O1(1M) = 1M~ . By Corollary 3, we have done. �

We can see that (7) also holds for tree languages [32].

Next we answer Question 4 ‘‘Howmuch do such operations increase the order type of set systems?’’ by a Ramsey number
argument.

The finitely branching relation

Rn(s, u) : ⇐⇒

n−1
i=0

(u = {⟨s, i⟩} .) (n = 2, 3, . . .) (8)

satisfies R−1
n


[L1 ⊎ · · · ⊎ Ln]


= L1 ∪ · · · ∪ Ln. So, if Li’s are all fesss, then so is L1 ⊎ · · · ⊎ Ln by Lemma 1. By

Corollary 2, L1 ∪ · · · ∪ Ln is an fess, too.
On the other hand, in [16], Wright proved that ‘‘if L1 and L2 are fesss, then so is L1 ∪ L2,’’ by using Ramsey’s theorem

‘‘for any dichromatic coloring of an infinite complete graph, there is a monochromatic infinite complete subgraph.’’ By
adapting his proof, we can provide an explicit upper bound of the dimension by using a Ramsey number [33]:

Proposition 8 ([33, Section 1.1]). For all positive integers n, l1, . . . , ln, there exists a positive integer k such that any edge-
coloring with colors 1, . . . , n for the complete graph of size k has a complete subgraph of size li colored homogeneously by some
color i ∈ {1, . . . , n} . Such minimum integer k, denoted by Ram(l1, . . . , ln, n), is called the Ramsey number of l1, . . . , ln. When
l1 = · · · = ln, we call it the n-adic diagonal Ramsey number of l1, and write it as Ram(l1; n). For the sake of convenience, put
Ram(l; 1) = l for every nonzero ordinal number (and hence every positive integer) l.

By [15, Section 4.2], Ram(l,m) ≤


m + l − 2
l − 1


≤ c4max(l,m)/

√
max(l,m) for some constant c .

Lemma 6. For every positive integer n, if dimLi < ω (i = 1, . . . , n), then

dim

L1 ∪ · · · ∪ Ln


+ 1 < Ram(dim(L1) + 2, . . . , dim(Ln) + 2).

Proof. When n = 1 the assertion is trivial. Consider the case n = 2. Suppose that k+ 1 ≥ Ram(dim(L) + 2, dim(M) + 2),
and suppose there are a sequence t0, . . . , tk−1, a sequence L1, . . . , Lk of L and a sequenceM1, . . . ,Mk of M such that

{t0, . . . , ti−1} ⊆ Li ∪ Mi (i = 1, 2, . . . , k) and Lj ∌ tj (j = 1, . . . k − 1). (9)

By the definition of Ramsey number,

k ≥ dim(L) + 1, dim(M) + 1.

Consider a complete graph Gwith the vertices being 0, . . . , k − 1. For any edge {i, j}(i ≠ j), color it by red if 0 ≤ i < j ≤

k − 1 and ti ∈ Lj, while color it by black otherwise.
Assume k + 1 ≥ Ram(dim(L) + 2, dim(M) + 2). By Ramsey’s theorem, the colored complete graph G has either a red

clique of size dim(L) + 2 or a black clique of size dim(M) + 2. When a red clique of size dim(L) + 2 exists, write it as
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{u0 < · · · < udim(L)+1}. Then we have {tu0 , . . . , tui−1} ⊆ Lui (i = 1, . . . , dim(L) + 1) but Luj ∌ tuj (j = 1, 2, . . . , dim(L)),
which contradicts the definition of dimL.

Otherwise, a black clique of size dim(M) + 2 exists, so we write it as {u0 < · · · < udim(M)+1}. Then we have
{tu0 , . . . , tui−1} ∩ Lui = ∅ (i = 1, . . . , dim(M) + 1). By (9), we have {tu0 , . . . , tui−1} ⊆ Lui ∪ Mui and Luj ∪ Muj ∌ tuj
(j = 1, . . . , dim(M)), so {tu0 , . . . , tui−1} ⊆ Mui and Muj ∌ tuj (j = 1, . . . , dimM), which contradicts the definition of
dim(M).

Consider the case n ≥ 3. Suppose that k + 1 ≥ Ram(dimL1 + 2, . . . , dimLn + 2), and suppose there are a sequence
t0, . . . , tk−1 and a sequence L(l)

1 , . . . , L(l)
k ofLl (1 ≤ l ≤ n) such that {t0, . . . , ti−1} ⊆

n
l=1 L

(l)
i (i = 1, . . . , k) and

n
l=1 L

(l)
j ∌ tj

(j = 1, . . . , k−1). For any edge {i, j} (i ≠ j), if 0 ≤ i < j ≤ k−1 and ti ∈ L(1)
j , color {i, j} by the color 1; else if 0 ≤ i < j ≤ k−1

and ti ∈ L(2)
j , color it by the color 2; else if . . .; else if 0 ≤ i < j ≤ k − 1 and ti ∈ L(n−1)

j , color it by the color n − 1; else color
{i, j} by the color n. Then apply the same argument as above. �

The lemma generalizes for any relation R with sups #{v ; R(s, v)} ≤ n.

Theorem 7. Assume R ⊆


L ×


M
<ω has a bound n ≥ 1 of #{v ; R(x, v)} (x ∈


L). If M is an fess, then

dim R−1[[M]] + 1 < Ram(dimM + 2; n),

provided dimM is finite or n = 1. Actually, when n = 1,

dim R−1 [[M]] ≤ dim M (10)

where the equality holds if each y ∈


M has ξ(y) ∈


L such that R(ξ(y), {y}).

Proof. To show the inequality for n = 1, by Fact 1, it is sufficient to build an embedding f from a well-founded tree
Prod(R−1[[M]]) to a well-founded tree Prod(M). Suppose

a = ⟨⟨ s0, L1 ⟩, . . . , ⟨ sl−1, Ll ⟩⟩ ∈ Prod(R−1[[M]]).

For each L ∈ R−1[[M]], choose M(L) from

M ∈ M ; L = R−1

[[M]]


≠ ∅. For each i = 0, . . . , l − 1, because n = 1, there
exists exactly one vi such that R(si, vi) and vi ∈ [M(Li+1)]<ω . Since si ∉ Li, vi ⊈ M(Li). Because the class of finite sets
vi \M(Li) satisfies the Hall’s condition of the marriage [31, Theorem 3.41] theorem, we have a system {yi ; i ∈ N} of distinct
representative. Obviously yi ∉ M(Li). Define

f (a) := ⟨⟨ y0, M(L1) ⟩ , . . . , ⟨ yl−1, M(Ll) ⟩ ⟩ .

We have indeed f (a) ∈ Prod(M), because for 0 ≤ i < j ≤ l, since si ∈ Lj, yi ∈ vi ⊆ M(Lj). The mapping f is indeed injective
by the construction. Clearly f preserves the greatest upper bounds.

The verification of the equality is as follows: By n = 1 and the assumption of Theorem 7, we have ∃v ∈ [Mi]<ω .
R(ξ(yj), v) ⇐⇒ {yj} = v ⊆ Mi. So ξ is injective. Moreover

ξ(yj) ∈ R−1
[[Mi]] ⇐⇒ yj ∈ Mi. (11)

Define a function g as:

b = ⟨⟨ y0, M1 ⟩, . . . , ⟨ yl−1, Ml ⟩⟩ ∈ Prod(M)

→ g(b) :=

⟨ξ(y0), R−1

[[M1]] ⟩, . . . , ⟨ ξ(yl−1), R−1
[[Ml]] ⟩


.

Then g(b) ∈ Prod(R−1 [[M]]) by (11). The injectivity of g is from that of ξ . The preservation of glb’s by g is easy.
Nextwe prove the casewhere n > 1 and dimM < ω. There are relations Ri ⊆


L×


M

<ω such that for all x ∈


L

and all v ∈


M
<ω

R =

n
i=1

Ri and #{v ; Ri(x, v)} ≤ 1.

Then for all M ∈ M, we have R−1
[[M]] =

n
i=1 R

−1
i [[M]], because the left-hand side is {s ∈


L ; ∃v ⊆ M. R(s, v)} =n

i=1 {s ∈


L ; ∃v ⊆ M. Ri(s, v)} which is the right-hand side. So we haveR−1[[M]] ⊆
R−1
1 [[M]] ∪ · · · ∪ R−1

n [[M]].

By Lemma 6, we have

dim R−1[[M]] + 1 ≤ Ram(dim R−1
1 [[M]] + 2, . . . , dim R−1

n [[M]] + 2).

Since we have already proved (10), we can use (10) to derive dimR−1
i [[M]] ≤ dimM < ω. The monotonicity of Ram

concludes the desired consequence. �
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We will use Theorem 7 again to derive the linearization (Corollary 6) ofwqos.
Let us see an example of the inequality (10) of Theorem 7.

Corollary 5. Let L and M be fesss.

1. Let R be


(s, {⟨ s, s ⟩}) ; s ∈


L ∩


M

.

(a) R−1

[L × M]


= L ∩ M.

(b) L × M is an fess.
(c) If dimL < ω and dimM < ω, then

dim(L × M) ≥ dimL + dimM − 1 ≥ dim(L ∩ M).

The inequalities are best possible.
2. dimM = dim !M.

Proof. (1a) is immediate. To prove (1b), assume L × M is not an fess. Then we have an infinite production sequence
⟨(t0, p0), L1 × M1⟩, ⟨(t1, p1), L2 × M2⟩, . . .


∈ Prod(L × M).

When k := sup{i ; Li ∌ ti} < ∞, then for all i > k, we have Mi ∌ pi, and thus an infinite production sequence
⟨pk,Mk+1⟩, ⟨pk+1,Mk+2⟩, . . .


of M, contradicting the fe of M. Otherwise, we have an infinite sequence i0, i1, . . . such that

⟨ti0 , Li1⟩, ⟨ti1 , Li2⟩, . . .

∈ Prod(L), contradicting the fe of L.

To show dim(L × M) ≥ dimL + dimM − 1 of (1c), let
⟨t0, L1⟩, ⟨t1, L2⟩, . . . , ⟨tl−1, Ll⟩


∈ Prod(L),

⟨p0,M1⟩, ⟨p1,M2⟩, . . . , ⟨pm−1,Mm⟩


∈ Prod(M).

Then the class L × M has a following production sequence consisting of (l + m − 1) members of L × M:
⟨(t0, p0), L1 × M1⟩, ⟨(t0, p1), L1 × M2⟩, . . . , ⟨(t0, pm−1), L1 × Mm⟩,

⟨(t1, pm−1), L2 × Mm⟩, ⟨(t2, pm−1), L3 × Mm⟩, . . . , ⟨(tl−1, pm−1), Ll × Mm⟩


.

Thus l + m − 1 ≤ dim(L × M). Since dimL < ω and dimM < ω, we have dimL + dimM − 1 ≤ dim(L × M). The
equality is attained by L = M = {{1}}.

To verify the inequality dimL + dimM − 1 ≥ dim(L ∩ M) of (1c), let
⟨t0, L1 ∩ M1⟩, ⟨t1, L2 ∩ M2⟩, . . . , ⟨tn−1, Ln ∩ Mn⟩


∈ Prod(L ∩ M).

Then ti ∈


L ∩


M, and for every positive integer i ≤ n, we have {t0, . . . , ti−1} ⊆ Li ∩ Mi ∌ ti. So for
each positive i ≤ n − 1, Li ∌ ti or Mi ∌ ti. Let i1, . . . , il be the strictly ascending list of positive integers i such that
Li ∌ ti, and j1, . . . , jm be the strictly ascending list of positive integers j such that Mj ∌ tj. Then il ≠ n, jm ≠ n, and

so

⟨t0, Li1⟩, ⟨ti1 , Li2⟩, . . . , ⟨til−1 , Lil⟩, ⟨til , Ln⟩


∈ Prod(L), and


⟨t0,Mj1⟩, ⟨tj1 ,Mj2⟩, . . . , ⟨tjm−1 ,Mjm⟩, ⟨tjm ,Mn⟩


∈ Prod(M).

Therefore l + 1 ≤ dimL as well as m + 1 ≤ dimM. Because n − 1 ≤ l + m, we have dim(L ∩ M) − 1 ≤

(dimL − 1)+ (dimM − 1), fromwhich the conclusion follows. The latter inequality of Corollary 5(1c) is best possible. The
equality holds for

L = {∅, {0}, {0, 1, 2}} and M = {∅, {1}, {0, 1, 2}}, (12)

because

L ∩ M = {∅, {0}, {1}, {0, 1, 2}}, dim(L ∩ M) = 3, dimL = dimM = 2. (13)

The assertion (2) holds, because of Definition 9, n = 1, and ξ(y) = {y}. �

There aremany equivalent definitions ofwqos (see [20, Theorem2.1] and [4]). In [34], Cholak–Marcone–Solomon studied
for which definition ofwqo and which subsystem of second order arithmetic [35] proves

X and Y are wqos ⇒ X ∩ Y and X × Y arewqos.

The results are certainly related to a question ‘‘for which ordinal number do we have otp(X), otp(Y) < α ⇒ otp(X∩Y) <
α?’’ We conjecture that we can take as α the proof-theoretic ordinal Γ0. According to Simpson [35, Ch. V], Γ0 is the proof-
theoretic ordinal of a formal system which can formalize and develop significant parts of order (type) theory. I wonder
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whether we can take as α the first nonrecursive ordinal. If dim(L) were almost equal to otp(qo (L)) (cf. Theorem 3), then
we would smoothly study which ordinal numbers satisfy

dim(L), dim(M) < α ⇒ dim(L⊙M) < α, (⊙ =×,∪,∩, . . .).

A Ramsey number argument used in the proof of Lemma 6 establishes an upper bound of a wqo obtained as the inter-
section ofwqos.

Theorem 8.

otp(X), otp(Y) < ω ⇒ otp (X ∩ Y) < Ram(otp(X) + 1, otp(Y) + 1, 2).

Proof. The proof is similar as that of Lemma 6. Assume X = (X, ≼), Y = (Y , ⊑) and ⟨t1, t2, . . . , tm⟩ is a bad sequence of
X ∩ Y. Then for all i, j with 1 ≤ i < j ≤ m, we have ti ⋠ tj or ti ⋢ tj. For the complete graph consisting of {1, . . . ,m}, color
all edges {i, j} (i ≠ j) by red if ti ⋠ tj, and color the other edges by black. Then there is a red complete graph consisting of size
otp(X) + 1, or a black complete graph of size otp(Y) + 1. For the former case, the bad sequence ⟨t1, t2, . . . , tm⟩ has a bad
subsequence, which consists of terms with the suffixes from the red graph’s vertices. This bad sequence of X has the length
otp(X) + 1, a contradiction. For the latter case, the black complete graph of size otp(Y) + 1 induces a bad subsequence of
Y having the length otp(Y) + 1, a contradiction. Thus, we have the desired consequence. �

One may conjecture

ss (X ∩ Y) ⊂ ss (X) ∩ ss (Y) (14)

in order to derive a following asymptotic improvement of Theorem 8

otp(X ∩ Y) < otp(X) + otp(Y) for otp(X), otp(Y) < ω, (15)

with an argument below: By (14) and Theorem 2(1), we have otp(X ∩ Y) ≤ dim

ss (X) ∩ ss (Y)


, but Corollary 5 (1c)

implies the latter is less than or equal to dim ss (X) + dim ss (Y) − 1 = otp(X) + otp(Y) − 1.
However the inclusion of (14) is actually opposite, when X, Y are following wqos ≤0 and ≤1. Let ≤i (i = 0, 1) be

a wqo over {0, 1, 2} such that the pair of ss (≤i) (i = 1, 2) is the pair of L and M presented in (12), which attains
dimL + dimM − 1 = dim(L ∩ M). Namely, ≤i is such that two elements other than i are mutually related by ≤i
and are strictly lower than i by ≤i. Then ≤0 ∩ ≤1 becomes a wqo such that the elements 0 and 1 are not comparable
but are strictly greater than the element 2. Thus ss (≤0 ∩ ≤1) = {∅, {0}, {1}, {0, 1}, {0, 1, 2}} ⊃ ss (≤1) ∩ ss (≤2) =

{∅, {0}, {1}, {0, 1, 2}}.

6. Embedding of the category of quasi-orders and finitely branching simulations

In hope that we could import idea and results on closure properties ofwqos and bqos to study those of fes, we show that
ss (•) studied in Section 3 becomes a neat embedding from the category of quasi-orders and finitely branching simulations
to the category of set systems and linear monotone, continuous functions. Here a ‘‘simulation’’ is used widely in theoretical
computer science (see [36]). ‘‘Linear ’’ is used in themodel theory of linear logic [17] andwewill point out that it corresponds
to Kanazawa’s relation R ⊆ X × Y (see Proposition 5).

By ‘‘neat embedding,’’ we mean that ss (•) not only preserves order types but also, in the jargon of category theory [37],
becomes an injective-on-objects, full and faithful contravariant functor right adjoint to a functor that qo (•) (see Section 3)
induces.

Definition 10 (Finitely Branching Simulation). Let X = (X, ≼) and Y = (Y , ⊑) be quasi-orders. We say a relation R is a
simulation of X by Y, provided R ⊆ X × Y and whenever R(x, y) and x ≼ x′, there exists y′

⊒ y such that R(x′, y′). We say a
simulation R is finitely branching if #{y ; R(x, y)} < ∞ for every x.

Example 2 (Linearization). 1. For an order-homomorphism f : X → Y, a relation Rf := {(x, y) ; f (x) = y} is a finitely
branching simulation of X by Y.

2. For every surjective order-homomorphism f fromaquasi-orderX to a linear orderY, the relationRf is a finitely branching
simulation of X by Y. In this case, we call Y a linearization of X.

Lemma 7. Let X and Y be quasi-orders. If R is a simulation of X by Y, then R−1[ss (Y)] ⊆ ss (X).

Proof. Let X = (X, ≼) and Y = (Y , ⊑). Any member of R−1[ss (Y)] is written as a set L := {x ∈ X ; ∃g ∈ M. ∃y ⊒

g. R(x, y)} for someM ∈ ss (Y). Suppose x′
≽ x ∈ L. Then because R is a simulation, there is y′ such that y′

⊒ y and R(x′, y′).
By the transitivity of ⊑, we have y′

⊒ g . Therefore x′
∈ L. Thus L is an upper-closed set, which implies L ∈ ss (X). �

By Lemma 7, we have a so-called linearization lower bound [21, Section 2]:

Corollary 6. For any linearization Y of X, otp(Y) ≤ otp(X).
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Proof. By the premise, there is a surjective order-homomorphism f : X → Y. Because a relation Rf is a simulation, Lemma7

implies dim ss (X) ≥ dim R−1
f [ss (Y)] from which Theorem 2(1) implies

otp(X) ≥ dim R−1
f [ss (Y)]. (16)

Put

Qf :=

(x, {y}) ; f (x) = y


⊆


ss (X) ×


ss (Y)

<ω

.

Then #{v ; Qf (s, v)} = #{v ; {f (s)} = v} ≤ 1 and

dim R−1
f [ss (Y)] = dim Q−1

f [[ss (Y)]], (17)

because R−1
f [ss (Y)] = {R−1

f [M] ; M ∈ ss (Y)} =

{x ∈


ss (X) ; ∃y ∈ M. f (x) = y} ; M ∈ ss (Y)


=


{x ∈

ss (X) ; ∃v ∈ [M]<ω . Qf (x, v)} ; M ∈ ss (Y)


= {Q−1
f [[M]] ; M ∈ ss (Y)} =

Q−1
f [[ss (Y)]].

Since f : X → Y is surjective and


ss (Y) is the underlying set of Y, there is a right-inverse ξ :


ss (Y) →


ss (X)
of f . In other words, each y ∈


ss (Y) has ξ(y) ∈


ss (X) such that f (ξ(y)) = y, i.e., Rf (ξ(y), y). Hence Qf (ξ(y), {y}).

By Theorem 7, dim Q−1
f [[ss (Y)]] = dim ss (Y) = otp(Y). By (17), dimR−1

f [ss (Y)] = otp(Y). By (16), we have the desired
consequence. �

We will define the category QOFinSim of quasi-orders and finitely branching simulations between them, as well as a
suitable category of set systems and monotone, continuous functions between them, and then will show that the operation
ss (•) becomes a contravariant, functor from the former category QOFinSim to the latter category, and that the functor ss (•)
is order-type-preserving, injective-on-objects, full and faithful. For notion of category theory, see [37].

Definition 11. The category QOFinSim of quasi-orders and finitely branching simulations between them is defined as follows:
The objects are quasi-orders (X, ≼). The identity morphism of object X = (X, ≼) is idX = {(x, x) ; x ∈ X}. The morphisms
from X = (X, ≼) to Y = (Y , ⊑) are finitely branching simulations R ⊆ X × Y . For morphisms R : (X, ≼) → (Y , ⊑) and
S : (Y , ⊑) → (Z, E), the composition is defined as the relational composition

S ◦ R = {(x, z) ; R(x, y) and S(y, z) for some y ∈ Y }.

LetQO be the category of quasi-ordered sets and order-homomorphisms between them. Then there is a faithful, identity-
on-objects functor from QO to QOFinSim, because of Example 2(1).

Definition 12 (Linear, Sequential). Let D and C be set systems and O : D → C be a monotone, continuous function.
O is said to be linear, if there is R ⊆ fld(C) × [fld(D)]<2 such that O = OR. O is said to be sequential, if there is
R ⊆ fld(C) × [fld(D)]<ω such that O = OR and #{v ; R(s, v)} ≤ 1 for all s ∈ fld(C).

Let SS be the category of set systems andmonotone, continuous functions between them. Let SSlin (SSseq, resp.) be the category
of set systems and linear (sequential, resp.) monotone, continuous functions between them.

Thus every object C of SS is written as iL for some set system L.
Let COHstable be the cartesian closed category of coherence spaces and stable functions between them, introduced by

Girard [17]. Here a stable function was originally introduced by Berry in an attempt to give a semantic characterization of
sequential algorithms. Defining coproducts inCOHstable is difficult according to [17]. However not in SS and SSlin. It is because
the morphisms of the two categories can represent nondeterministic computations as we saw in the proof of Section 5.

Theorem 9. 1. SS and SSlin are indeed complete categories with all finite coproducts. In SS and SSlin, for objects iLj (j ∈ J), the
coproduct is

iL :=


j∈J

iLj where L =

L × {j} ; L ∈ Lj, j ∈ J


, (18)

and the product is i


j∈JLj


.

2. A following ι is a full functor from COHstable to SSseq :

ι(A) = iA, ι(A
F

→ B) = iA
i−1
→ A

F
→ B

i
→ iB.

Proof. See Appendix A. �

In SSseq, the dimension of an object is a categorical notion.

Theorem 10. If C and D are isomorphic objects in SSseq, dim i−1C = dim i−1D .
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Proof. Because one object is the image of the other object by a sequential function, the former dimension is less than or
equal to the latter dimension by Theorem 7(10). �

Following proves a part of Proposition 4 by Moriyama–Sato [12].

Theorem 11. If L and M are fesss, dim i−1 (iL1 ⊕ iL2) = max(dimL1, dimL2) and the union L1 ∪ L2 is an fess.

Proof. Because i−1 (iL1 ⊕ iL2) = {L × {j} ; L ∈ Lj, j = 1, 2}, any production sequence of it is exactly written as
⟨(t0, j),N1 × {j}⟩, ⟨(t1, j),N2 × {j}⟩, . . . , ⟨(tn−1, j),Nn × {j}⟩


for some n, Ni ∈ Lj (1 ≤ i ≤ n) and ti ∈ Ni (0 ≤ i ≤ n − 1).

Therefore, Prod(i−1 (iL1 ⊕ iL2)) is the disjoint sum of Prod(L1) and Prod(L2), from which the conclusion follows.
The second assertion is because i(L ∪ M) is the direct image by the monotone, continuous function OR2 : iL ⊕ iM →

i (L ∪ M) of iL ⊕ iM where R2 is defined in (8). �

Definition 13. 1. Define a contravariant functor Ss from QOFinSim to SSlin as follows. LetX = (X, ≼), Y = (Y , ⊑) be objects
of QOFinSim. Put Ss(X) := i(ss (X)). For each morphism R from X to Y, let Ss(R) be the monotone, linear, continuous
function OR̂ : Ss(Y) → Ss(X) with the trace R̂ = {(x, {y}) ; R(x, y)}.

2. Define a contravariant functor Qo from SSlin to QOFinSim as follows. Let C be an object of SSlin. Put Qo (C) := qo

i−1C


.

For each morphism OR : D → C in SSlin, let Qo (OR) be a finitely branching simulation Ř := {(x, y) ; R(x, {y})} ⊆

fld(C) × fld(D) of QOFinSim.

Lemma 8. 1. Ss is indeed a functor QOop
FinSim from to SSlin .

2. Qo is indeed a functor from SSlin to QOop
FinSim.

Proof. (1) For everymorphism R : X → Y ofQOFinSim, Ss(R) [i(ss (Y))] = OR [i (ss (Y))] is i
R−1 [ss (Y)]


by (5), a subset of

i (ss (X)) by Lemma 7with R being a simulation. Thus Ss(R) is indeed a function from i (ss (Y)) to i (ss (X)). The functoriality
is because

OS◦R(g)(x) =


R(x,y)


S(y,z)

(g(z) = 1) =


R(x,y)

(OS(g)(y) = 1)

= OR (OS(g)) (x) = (OR ◦ OS) (g)(x). (19)

(2) Firstly, we establish the well-definedness of Qo. For any finitely branching relations R, S ⊆ X × Y , OR = OS implies
R = S. To see it, suppose OR = OS . If R(x, y), then OR(1{y})(x) = 1 = OS(1{y})(x) =


S(x,y′)(y

′
= y), which implies S(x, y).

Therefore R = S.
Next, Qo preserves the identity morphism, because Qo (O∆) = ∆ for every set A and for every diagonal relation on A×A.

Qo (OR ◦ OS) = Qo (OS) ◦ Qo (OR) follows from (19). �

According to [37, Theorem IV.1.1, Theorem IV.1.2], a functor G : A → X is a left adjoint functor to a functor F : X → A if
and only if there are natural transformations η : IdX

·
→ GF and ε : FG

·
→ IdA such that both the following composites are

the identity natural transformations (of G, resp. F ).

G
ηG

−→ GFG
Gε

−→ G, F
Fη

−→ FGF
εF

−→ F . (20)

η is called the unit and ε is called the counit. The opposite category of a category A is denoted by Aop.

Theorem 12. The functor Qo : SSlin → QOop
FinSim is a left adjoint functor to the functor Ss : QOop

FinSim → SSlin where the counit
of the adjunction is the identity natural transformation of the identity functor IdQOop

lin
.

Proof. By Theorem 2(1) and the definition, the composite Qo ◦ Ss is the identity functor of QOlin . Define the unit ηC : C →

Ss(Qo (C)) by the inclusion map. Then (20) follows immediately. �

Corollary 7. The functor Ss is an injective-on-objects, full and faithful functor from QOFinSim to SSop
lin . Moreover otp(X) =

dim i−1Ss(X) for every object X of QOFinSim.

Proof. The first assertion follows from Theorem 12, because every right adjoint functor is full and faithful whenever every
component of the counit is an isomorphism [37, Theorem IV.3.1]. The other assertion follows from Theorem 2(1). �
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Fig. A.1. Product of iLλ ’s is i(⊎λ∈Λ Lλ) (left), the equalizer iN is constructed in a standard manner (middle), and coproduct of iLj ’s is i{ Lj × {j} ; j ∈ J }
where j ranges over a finite set J (right).

Appendix. The categories of set systems and linear/sequential monotone, continuous functions

First we will prove Theorem 9. iL and iLj are as in the Theorem. See Fig. A.1 (right).
For each j ∈ J , the injection ιj : iLj → iL is OTj where

Tj :=


(⟨x, j⟩, {x}) ; x ∈


Lj, j ∈ J


⊆ fld(iL) ×


fld(iLj)

<2
.

For any set

OSj : iLj → D ; j ∈ J


of morphisms of SS, define

S :=

(y, vj × {j}) ; Sj(y, vj), j ∈ J


⊆ fld(D) × P (fld(iL)) ,

and a possibly non-continuous function F : iL → D by

F(h)(y) :=


S(y,v)


x∈v

h(x) = 1. (h ∈ iL, y ∈ fld(D)). (A.1)

Proof of Theorem 9. (1) The two categories are closed under composition because of (4).
The terminal object is {∅} = {0, 1}∅. Any monotone, continuous function OR : C → {0, 1}∅ has R ⊆ ∅ × [fld(C)]<ω and

thus R = ∅. Actually, for any g ∈ C and x ∈ ∅, we have OR(g)(x) =


R(x,v)


y∈v(g(y) = 1).

For arbitrary nonempty set Λ, the product of objects i(Lλ) (λ ∈ Λ) is just the C = i
⊎λ∈Λ Lλ


. For each λ ∈ Λ, the

projection Πλ : C → iLλ is Πλ(h) := h (⟨•, λ⟩) for all h ∈ C. For any ORλ
: D → iLλ (λ ∈ Λ), the mediating morphism

OR of Fig. A.1 is defined by R ⊆ fld(C) × [fld(D)]<ω where R := {(⟨s, λ⟩, v) ; Rλ(s, v)}. The OR is a morphism of SS (and
SSlin resp.) if ORλ

’s are.
The equalizer O : iN → iM of a pair of functions O1, O2 : iM ⇒ iL is defined by

iN := {g ∈ iM ; O1(g) = O2(g)}, O(g)(x) := g(x) (g ∈ iN , x ∈


M).

For Fig. A.1 (middle), the mediating morphism O : D → iN is defined by O(g)(y) = O′(g)(y) for any g ∈ D and any
y ∈


N .

The initial object is ∅. Any function from ∅ to C is the function ∅, which is monotone, continuous because for any g ∈ ∅

and any x ∈ fld(C), we have ∅(g)(x) = O∅(g)(x) =


∅(x,v)


y∈v (g(y) = 1).

The existence of a binary coproduct is because the finiteness of J implies the F is indeed a morphism of SS (SSlin resp.) if
OSj ’s are.

(2) According to [17, Section 8.5], the stable function F : A → B is exactly a function from A to B having a trace. Here
the trace of F is the set R of pairs (x, v) ∈


B ×


A

<ω such that v is a minimal (and actually the minimum) among L’s
such that x ∈ F(L). A stable function F is recovered from the trace R by F(L) = {x ∈


B ; ∃v ⊆ L. R(x, v)} for all L ∈ A.

So ι(F) = i ◦ F ◦ i−1 is written as OR. Because v is minimum, and is in particular unique, OR is sequential, i.e., OR ∈ SSseq. So
ι is indeed well-defined. We can easily see that ι is indeed a functor.

Next we verify that the functor ι is indeed full. Let OR : ι(A) → ι(B) be a morphism of the category SSseq. Recall
OR(1L)(x) = 1 ⇐⇒ ∃v ⊆ L. R(x, v). Because OR is sequential, each x has at most one v such that R(x, v). So R is the set of
pairs (x, v) such that v is minimum among L’s such that OR(1L)(x) = 1. Thus i−1

◦ F ◦ i is the stable function with the trace
being R. �

Lemma 9. None of SS, SSlin and SSseq does not have the object iL of (18) as a coproduct if J is infinite. Even SSseq does not for
2 ≤ #J ≤ ∞.

Proof. We show that F : iL → D of (A.1) is not a morphism of SS, when

Sµ := {(y, ∅) ; y ∈ fld(D)} ⊆ fld(D) × [fld(iL)]<2 , (µ ∈ J). (A.2)
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Let y ∈ fld(D). Because J is infinite but S ⊆ fld(D) × [fld(iL)]<ω , there is µ ∈ J \ {j ; ∃v ∈ [fld(iL)]<ω . S(y, v) ∧ ∃ξ ∈

v∃a. ξ = ⟨ a, j ⟩ }. Let f ∈ iLµ such that f (x) = 1 for all x ∈ fld(iLµ). Then by Fig. A.1 (right), we have

OS ◦ ιµ


(f )(y) =

OSµ(f )(y). Therefore
S(y,v)


ξ∈v

(ιµ(f )(ξ) = 1) =


Sµ(y,u)


x∈u

(f (x) = 1).

Here ξ ∈ v is written as ξ = ⟨a, j⟩ for some j ≠ µ. So ιµ(f )(⟨a, j⟩) = 0, which implies the left-hand side is 0. But, the
right-hand side is 1 by (A.2). �

It is difficult to relate dim(L × M) with dim(L ∪ M). When L and M are both coherence spaces, L × M is the ‘‘tensor
product’’ L ⊗ M.

Lemma 10. Let L and M be set systems with


L infinite and


M ≠ ∅. Then,

1. There is no monotone, continuous function O : i(L × M) → i(L ∪ M) such that O(1L×M) = 1L∪M for all L ∈ L and
M ∈ M.

2. There is no monotone, continuous function O : i(L × M) → iM such that O(1L×M) = 1M for all L ∈ L and M ∈ M.

Proof. (1) Let X :=


L and Y :=


M. Assume there is such O. Then for each s ∈ X ∪ Y , there exists a positive Boolean
formula Bs over {v(x,y) ; x ∈ X, y ∈ Y }, such that O(1L×M)(s) is the truth value of Bs under the truth assignment 1L×M for
all L ∈ L and all M ∈ M. Choose some y ∈ Y . There is a variable v(x,y) such that it does not appear By, because X is infinite.
Therefore the truth value of By under the truth assignment 1{(x,y)} is 0 because By does not contain negations of Boolean
variables. On the other hand O(1{(x,y)})(y) = 1{x}∪{y}(y) = 1. Contradiction. The assertion (2) is similarly proved. �

The bang operator of a coherence space have following counterparts in SS:

!iL := i!L

where the ‘!’ in the right-hand side is defined in Theorem 5. Then !L × !M is isomorphic to L ⊎ M, as in the case of
COHstable. The duality operator of a coherence space, however, seems to have no exact counterpart in SS, when we take
an fe seriously. Since the elementwise complement of an fess is not necessarily an fess, the complement operation seems
useless in defining the duality operator in SS. So let us examine the exchange of Teacher and Learner. To be precise, For a
set system L and x ∈ L, put L(x) := {L ∈ L ; x ∈ L}, and L⊥

:=


L(x); x ∈


L

. Then

 
L⊥


:= L \ {∅}. If L is the

class of open sets of a sober space, then

L⊥

⊥ is isomorphic to L in SS. Since L ∈ L⊥(x) iff x ∈ L,

⟨⟨ t0, L1 ⟩, ⟨ t1, L2 ⟩, . . . , ⟨ tl−2, Ll−1 ⟩, ⟨ tl−1, Ll ⟩⟩ ∈ Prod(L)

⇐⇒

⟨⟨ Ll, L(tl−1) ⟩, ⟨ Ll−1, L(tl−2) ⟩, . . . , ⟨ L2, L(t1) ⟩, ⟨ L1, L(t0) ⟩⟩ ∈ Prod(L⊥)

We have an embedding from Prod(L) to Prod(

L⊥

⊥
), by

 
L⊥

⊥
(L)


= L. Thus dimL ≤ dim


L⊥

⊥.
Further categorical structures will be studied elsewhere.
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