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Abstract

We extend the definition of algebraic entropy to endomorphisms of affine varieties. We then calculate the
algebraic entropy of the action of elements of mapping class groups on various character varieties, and show
that it is equal to a quantity we call the spectral radius, a generalization of the dilatation of a pseudo-Anosov
mapping class. Our calculations are compatible with all known calculations of the topological entropy of
this action.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let S = Sg,b be an oriented surface of genus g with b � 1 boundary components. The Map-
ping class group of S, which we denote by Mod(S), consists of isotopy classes of orientation-
preserving diffeomorphisms of S which fix the boundary components pointwise.

Choose a basepoint p0 ∈ S, and let π = π1(S,p0). Given an algebraic group G, one can
construct the variety: Hom(π,G), which is called the G-representation variety of π . The
group G acts algebraically on this variety by conjugation. The categorical quotient of the
representation variety is called the G-character variety of π , which we will often denote by
X := Hom(π,G)//G.
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The mapping class group Mod(S) acts algebraically on X. Given f ∈ Mod(S), our goal in this
paper is to calculate an algebraic invariant that gives a measure of the complexity of the action
of f on X.

In the study of dynamical systems, there are several different measures of complexity called
entropy – topological entropy and measure theoretic entropy being two common examples. In
general, one expects actions with high entropy to be more complicated than actions with low en-
tropy. For our purposes we wish to use a measure that captures the algebraic nature of the action.
In [1], Bellon and Viallet define a notion called algebraic entropy for algebraic endomorphisms
of affine space, which measures the growth rate of the degrees of iterates of the map.

The variety X is affine, but there is no preferred way to embed it into affine space. One of
the goals of this paper is to give an intrinsic natural extension of Bellon and Viallet’s concept of
algebraic entropy to algebraic self maps of affine varieties. This is the invariant we study. As a
caution to the reader, we mention that there is a different dynamical invariant, due to Gromov,
which is called algebraic entropy. We define all the terms we use, so no confusion should arise.

Let ealg(f ) be the algebraic entropy of f , which is defined in Section 3, and let ρ(f ) is the
spectral radius of f , a generalization of the log of the dilatation of a pseudo-Anosov element,
which is defined in Section 2. We prove the following theorem.

Theorem 1. Let K = R or C and G be one of the following groups:

SLN(K), GLN(K), ON(R)(N � 3), SON(R)(n � 3), UN, SU2, Sp2N(R).

Let S be a surface with free fundamental group, and let f ∈ Mod(S). The mapping class f

acts on the G character variety of S, and one has that

ealg(f ) = ρ(f ).

The topological entropy of mapping class group actions on character varieties has been cal-
culated by Fried for the case S = S1,1 and G = SU(2) [5] and by Cantat and Loray for reduced
character varieties (these are character varieties where the traces of boundary components are
fixed) in the case S = S0,4, G = SL2(C) [3]. The algebraic entropy was calculated by Brown for
the case S = S1,1 and G = SU(2) and a specific embedding of X [2]. In all of the above cases,
the entropy calculated was equal to ρ(f ).

The paper is organized as follows. In Section 2 we define the concept of spectral radius and
show how to calculate it for many elements of the mapping class group. In Section 3 we define the
concept of algebraic entropy. In Section 4 we discuss the basics of character varieties and define
the action of mapping class groups on them. Section 5 is devoted to the proof of Theorem 1,
divided into the proof of two inequalities.

2. The spectral radius of a mapping class

2.1. Mapping class groups

Let S = Sg,b be a surface of genus g with b boundary components (in this paper we will
always assume that b � 1). Let Diff+(S) be the group of orientation-preserving diffeomorphisms
of S that are the identity on the boundary components. The mapping class group of S is the group
Mod(S) = π0(Diff+(S)).
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In what follows we will make no notational distinctions between simple closed curves and
their homotopy classes. Also, we will assume that a base point is chosen on the boundary of S.
This allows us to identify any f ∈ Mod(S) with an element of Aut(π). All of the information
about mapping class groups used in this paper can be found in [4].

Definition. Let f ∈ Mod(S). Let S be a generating set for π . For w ∈ π , let |w|S,red be its
cyclically reduced word length with respect to S . Define the spectral radius of f with respect to S
to be the quantity:

ρS (f ) := sup
α∈π

lim sup
n→∞

1

n
log

(∣∣f ◦nα
∣∣

S,red

)
.

First notice that the above definition does not depend on the choice of the base point. Indeed,
after changing the base point, the action of f on π is changed by composition with an inner au-
tomorphism. This clearly does not change cyclically reduced word lengths. The next proposition
shows that the dependence on the set S can be dropped.

Proposition 2.1. Given any element f ∈ Mod(S), and any two generating sets S1 and S2 of π ,
the following equality holds:

ρS1(f ) = ρS2(f ).

Proof. Recall that a map Φ : X → Y between metric spaces is called a quasi-isometry if there
exist positive constants K , C, D such that for every x, y ∈ X:

1

K
dX(x, y) − C � dY

(
f (x), f (y)

)
� KdX(x, y) + C

and such that for every w ∈ Y , dY (w,Φ(X)) � D.
The generating sets S1 and S2 define two word metrics on π . It is well known that the two

metric spaces defined in this way are quasi-isometric. Any element w ∈ π acts on π by left
translation. It is well known that the translation length of this action in the metric given by |.|Si

(i = 1,2) is |w|Si ,red .
Suppose K , C, D are the quasi-isometry constants for the quasi-isomorphism between

(π, |.|S1) and (π, |.|S2). Using the characterization of |w|Si ,red as a translation length, it is clear
that

1

K
|w|S1,red + C � |w|S1,red � K|w|S1,red + C.

Given any constants A, B it’s true that

sup
α∈π

lim sup
n→∞

1

n
log

(
A

∣∣f ◦nα
∣∣

Si ,red + B
) = sup

α∈π
lim sup
n→∞

1

n
log

(∣∣f ◦nα
∣∣

Si ,red

)
.

And thus ρS1(f ) = ρS2(f ), as required. �
Since the definition of spectral radius does not depend on the generating set, we will suppress

the S in the notation, and use ρ(f ) for the spectral radius of f .



A. Hadari / Advances in Mathematics 226 (2011) 3282–3296 3285
2.2. Calculating the spectral radius

Our next goal is to calculate spectral radius for many elements of the mapping class group.
A multicurve in S is a finite collection of homotopy classes of mutually disjoint simple closed

curves in S, none of which is homotopic to a boundary component. The mapping class group
acts on the set of multicurves. This action can be used to classify elements of the mapping class
group as follows.

Let f ∈ Mod(S). Exactly one of the following is true.

1. The order of f is finite.
2. The order of f is infinite, and there exists a multicurve M such that f (M) = M . In this

case f is called reducible.
3. For every multicurve, M , in S, f (M) �= M . In this case f is called pseudo-Anosov.

We will consider a particularly well behaved subclass of Mod(S), called pure elements. We
say that an element f ∈ Mod(S) is pure if there exists a diffeomorphism φ of S in the homo-
topy class of f , and a (possibly empty) one dimensional submanifold c of S with the following
properties:

1. None of the components of c are null-homotopic or homotopic to boundary components
of S.

2. φ|c = id.
3. φ does not rearrange the components of S\c.
4. On each component of Sc, the surface obtained by cutting S along c, φ induces a diffeomor-

phism which is homotopic either to the identity or to a pseudo-Anosov.

Note that any pseudo-Anosov mapping class is pure. In [6], it is proved that Mod(S) contains
a finite index subgroup consisting entirely of pure elements. An example of such a group is the
kernel of the action of Mod(S) on H1(S,Z/3Z).

A theorem of Thurston describes a canonical geometric element contained in a pseudo-
Anosov mapping class f . Using this element, one can attach an algebraic integer λ = λ(f ) > 1
to f called the dilatation of f . To any pure element, one can attach a collection of dilatations,
one for each component of Sc on which f acts as a pseudo-Anosov. We call the maximum one of
these dilatations the dilatation of f , and denote it λ(f ). We now proceed to calculate the spectral
radius of any pure element of the mapping class group.

Lemma 2.2. Let f ∈ Mod(S) be a pure element, and let α be the isotopy class of a simple closed
curve on S. Let g be a Riemannian metric on S. If we denote by lg(.) the g-length of a curve of
an isotopy class of curves, then

lim sup
n→∞

1

n
log

(
lg

(
f ◦n(α)

))
� log

(
λ(f )

)
.

Furthermore, there exists a simple closed curve α for which the above inequality is an equality.

Proof. When f is a pseudo-Anosov element with dilatation λ, then ρ(f ) = log(λ), and the
inequality in the claim of the lemma is an equality for every curve. The proof of this fact can be
found for instance in [4, Theorem 13.20].
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Suppose that f is reducible. Let c and φ be the one dimensional submanifold, and the diffeo-
morphism associated with f . Suppose that α is transverse to c. The finite set α ∩ c is fixed by φ.
Thus, α\φ consists of a collection of arcs: α1, . . . , αp whose endpoints are fixed by φ. We view
each of these arcs as being a subset of one of the components of the surface obtained from S

by cutting along c. The result quoted in [4] can be restated to apply to arcs whose endpoints are
fixed by f . The same proof carries through with only notational changes. One has that

lg
(
φ◦n(α)

)
�

p∑
i=1

lg
(
φ◦n(αi)

)
.

The first part of the result is now clear. To see the second part, choose a curve contained in a
subsurface with boundary on which the action of φ has dilatation λ(f ). �
Proposition 2.3. Let f ∈ Mod(S) be a pure element. Then

ρ(f ) = log
(
λ(f )

)
.

Proof. Choose a generating set S of π . This defines a word metric on π . A choice of a hyperbolic
metric g on S, and a basepoint x0 ∈ H2, the upper half plane, defines an embedding of the Cayley
graph into the hyperbolic plane. This embedding induces a new metric on the graph. It is well
known that these two metrics are quasi-isometric. Every element α ∈ π acts as an isometry on
the Cayley graph of π . Furthermore, α acts as an isometry on H2 which preserves the embedded
Cayley graph. The actions of α on the embedded Cayley graph and the abstract Cayley graph are
conjugate.

For every n, and every curve γ , the curve f ◦n(γ ) corresponds to an isometry on H2. The
translation length of this isometry is given by lg(f

◦n(γ )). The curve f ◦n(γ ) also acts on the
Cayley graph of π by left multiplication. The translation length of that action is |f ◦n(γ )|S,red .
The first assertion of the lemma now clearly follows from quasi-isometry, and the fact that

lim
n→∞

1

n
log

(
lg

(
f n◦(γ )

))
� ρ(f ).

The second assertion follows immediately from the second part of Lemma 2.2. �
3. Algebraic entropy

Let f be an endomorphism of AN . Define the dynamical degree of f as

	(f ) = lim
n→∞ deg

(
f ◦n) 1

n .

In [1] Bellon and Viallet define the algebraic entropy of f as

ealg(f ) = log
(
	(f )

)
.

Algebraic entropy is meant to be an algebraic approximation of topological entropy. To see
this, consider the following heuristic argument: the topological entropy of f can often be esti-
mated by calculating the exponential growth rate of the number of isolated fixed points of f ◦n.
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For a polynomial automorphism f of Cm, the number of isolated fixed points of f is at most
deg(f ). Thus, calculating the exponential growth rate of the degrees of f n can be seen as esti-
mating the topological entropy of f .

In this paper we are concerned with endomorphisms of character varieties, which are affine
varieties. Given a variety V equipped with an endomorphism f , we wish to give a definition that
provides an algebraic approximation of the topological entropy of f . The naive approach is to
embed V to affine space, extend f to an endomorphism of affine space and calculate its algebraic
entropy. The problem with this approach is that neither the embeddings nor the extensions are
canonical, and one can get many different results in this way. Our goal in this section is to give
an intrinsic invariant which generalizes algebraic entropy.

Definition. Let V ⊂ AN be a subvariety of affine N -space. Let f : AN → AM be a morphism.
Let Rf,V be the set of morphisms, g : AN → AM such that g|V = f |V . Define the degree of f

relative to V as the quantity:

deg(f ;V ) := min
g∈Rf,V

deg(g).

Definition. Let V ⊂ AN be a subvariety of affine N -space. Let f : AN → AN be a morphism.
Define the algebraic entropy of f relative to V as the quantity:

ealg(f ;V ) = lim sup
n→∞

1

n
log deg

(
f ◦n;V )

.

Suppose now that V is an affine variety, and f : V → V is a morphism. V can be embedded in
many ways into affine space, and f can be extended in many ways to a morphism of affine space.
For each embedding of V and each extension of f we can calculate the algebraic entropy relative
to V . The next proposition shows that the above choices don’t affect the algebraic entropy.

Proposition 3.1. Let V be an affine variety, and let f : V → V be a morphism. Let ι1 : V → AN1

and ι2 : V → AN2 be two affine embeddings of V . Let gi : ANi → ANi (i = 1,2) be morphisms
such that: gi(ιi(V )) = ιi(V ), and ι∗i (gi) = f . Then

ealg
(
g1; ι1(V )

) = ealg
(
g2; ι2(V )

)
.

Proof. First note that if ι1 = ι2 then the claim is trivial by the definition of relative algebraic
entropy.

For i = 1,2 the maps ιi can be written in coordinates as

ιi = (xj,i)
Ni

j=1.

Since each ιi is an embedding, then each of the sets Xi = {x1,i , . . . , xNi,i} generates the ring of
functions of V . Thus, for each j = 1, . . . ,N2, we can non-canonically write xj,2 as a polynomial
in the elements of X1. Using this, we get a morphism p1 : AN1 → AN2 , such that p1 ◦ ι1 = ι2.
Say that the degree of p1 is D1. By similar reasoning, there is a morphism p2 : AN2 → AN1 of
degree D2 such that p1 ◦ ι2 = ι1. Given an endomorphism τ : AN2 → AN2 of degree t , we can
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construct the endomorphism p2 ◦ τ ◦ p1 : AN1 → AN1 . The degree of this morphism is at most
tD1D2.

For any integer n, we take τ = g◦n
2 . The resulting endomorphism is clearly an extension of

f ◦n from ι1(V ) to AN1 . By the definition of degree relative to a subvariety, we have that

deg
(
g◦n

1 ; ι1(V )
)
� D1D2

(
deg

(
g◦n

2 ; ι2(V )
))

.

Thus

ealg
(
g1; ι1(V )

)
� ealg

(
g2; ι2(V )

)
.

Reversing the roles played by the two spaces, we get the result. �
Using Proposition 3.1, we can now define an intrinsic notion of algebraic entropy.

Definition. Let V be an affine variety, and let f : V → V be a morphism. Let ι : V → AN be an
affine embedding and let g : AN → AN be a morphism such that g(ι(V )) = ι(V ) and ι∗(g) = f .
Define the algebraic entropy of f to be the quantity:

ealg(f ) = ealg
(
g; ι(V )

)
.

Notice that if V = AN , then the above definition agrees with the regular definition of algebraic
entropy.

4. The mapping class group action on character varieties

4.1. Representation varieties and character varieties

Suppose that π ∼= Fn. Let G be a linear reductive algebraic group defined over the field K .
Fix, once and for all, a faithful linear representation of G. Let

R = R(S,G) = Hom(π,G) ∼= Gn.

The set R has a natural structure as a variety. We call R the G representation variety of S.
G acts algebraically on R by componentwise conjugation. Consider the ring of invariants

under this action, F [R]G. Define:

X = X(S,G) = R//G := spec
(
F [R]G)

.

We call this variety the G character variety of S. We think of it as the set of characters of
representations of π into G.

The group Aut(π) acts on R in the following way: given a representation φ ∈ R, an element
α ∈ π and an automorphism f ∈ Aut(π), define:

f (φ)(α) := φ
(
f (α)

)
.
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Let Out(π) be the group of outer automorphisms of π . The action of Aut(π) on R descends
to an action of Out(π) on X. Since Mod(S) can be viewed as a subgroup of Out(π), we get an
action of Mod(S) on π .

4.2. Generating the ring of invariants

A theorem which gives an explicit generating set for the ring K[R]G is often called a first
fundamental theorem for G-invariants of n matrices, where n is the rank of π . A first fundamental
theorem for SL2(C), SL2(R), and SU2 is known since the work of Fricke. In [7], Procesi proves a
first fundamental theorem of GLN , SLN , ON , U(N), and Sp2N(R) for m matrices. In [8], Rogara
proves a first fundamental theorem of SON(R) invariants for n matrices.

The most common functions that are given as generators are called trace functions. Given an
element α ∈ π , we can define a function trα on R by

trα(φ) = trace
(
φ(α)

)
.

Choosing a generating set A = {X1, . . . ,Xn} for π identifies R as a subset of Mn
N×N

∼= AN2n.
Under this identification, to any word w in the elements of A one can associate the function trw ,
which is a homogeneous polynomial. Note that given an element α ∈ π , it may be possible to
write α in several different ways as a word in the elements of A, and thus trα can be extended in
more than one way to a function on Mn

N×N .
Since the functions trα are conjugation invariant, we can view trα as an element of C[X], i.e.

as a regular function on X. For GLN , the set of trace functions generate the ring of invariants.
In fact, only finitely many trace functions are required to generate the ring. For the other cases,
slightly more complicated functions are needed. For example, for the case G = ON , one needs
to take traces of words in the elements of A and their transposes. For Sp2N , one needs to add
symplectic transposes. These functions are all homogeneous functions on the coordinates of the
matrices representing elements of π . Formally, we use the following fact:

For any generating set A, there exists an integer L, finitely many functions: hi : FA →
K[X1, . . . ,XN2n] (i = 1, . . . , p) whose images are all homogeneous of degree at most L, and a
finite subset {w1, . . . ,wp} ⊂ π such that:

1. For any i, and α ∈ π , the function hi(α) is homogeneous of degree at most L in the coordi-
nates of the matrix representing α, and is invariant under conjugation.

2. The collection hi(αi) generates the ring of invariants.

On a first reading, we suggest that the reader think of all of the functions hi as being the trace
function, and the hi(wi) as being the traces of finitely many words. In this paper we use these
functions to find affine embeddings of X.

Example. Let S = S1,1 be a one holed torus, and let G = SL2(R). Choose 2 simple closed curves
on S whose intersection number is 1. Call these curves X and Y , and let Z = XY . It is well
known that the map Tr : X → R3 given by

Tr(χ) = (
trX(χ), trY (χ), trZ(χ)

)

is an isomorphism. The action of the Dehn twist about X on π is given by
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TX(X) = X, TX(Y ) = YX.

In the above trace coordinates, the action is given by

(x, y, z) → (x, z, xz − y).

Now consider the action of T ◦2
X . In coordinates, we can write it out as

(x, y, z) → (
x, xz − y, x2z − xy − z

)
.

The action of T ◦3
X is given by

(x, y, z) → (
x, x2z − yx − z, x3z − x2y + y

)
.

In general, it is simple to see that deg(T ◦n
X = n), and thus ealg(TX) = 0. This agrees with the

fact that ρ(TX) = 0.

5. Proof of Theorem 1

5.1. The upper bound

Proposition 5.1 (The upper bound). In the notation of Theorem 1:

ealg(f ) � ρ(f ).

Proof. Let A = {α1, . . . , αn} be a generating set for π . Let R be the G-representation variety
of π . Without loss of generality we assume that G is a subgroup of some GLN . The set A
determines an embedding ι : R → Mn

N×N given by

ι(ρ) = (
ρ(α1), . . . , ρ(αn)

)
.

There is an obvious isomorphism Mn
N×N

∼= AN2n.
As discussed in the previous section, there is an integer L, finitely many functions: hi : FA →

K[X1, . . . ,XN2r ] (i = 1, . . . , p) whose images are all homogeneous of degree at most L, and a
finite subset {w1, . . . ,wp} ⊂ π such that any element of F [R]G can be written as a polynomial
in h1(w1), . . . , hm(wm).

Let w be a word of length l in the elements of A. For 1 � i � p we assign to w the function
hi(w) on AN2n. If we think of w as an element of π and not just a word, we see that this function
is an extension of hi(w) from R to all of AN2n. Writing out matrix multiplication in coordinates,
we see that hi(w) is a homogeneous function of degree at most lL.

Since all of the functions hi(w) are invariant under conjugation, we can deduce that given
w ∈ π , |w|A,red = l, then hi(w) can be written as a homogeneous function of degree at most lL

on AN2n.
Now, given w ∈ π , with |w|A,red = l, we have the function hi(w) can be written as a poly-

nomial in h1(w1), . . . , hp(wp), each of which is a homogeneous function of degree at least 1.
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Since degree is additive under multiplication of homogeneous polynomials, we have that hi(w)

can be written as a polynomial of degree at most lL in h1(w1), . . . , hp(wp).
Define an affine embedding κ : X → Am by

κ(χ) = (
h1(w1)(χ), . . . , hp(wp)(χ)

)
.

Given an integer m, we can write the action of f ◦m in coordinates as

κ ◦ f ◦m = (
h1

(
f ◦m(w1)

)
, . . . , h1

(
f ◦m(wp)

))
.

From the above discussion, we see that

deg
(
f ◦m;κ(X)

)
� Lmax

(∣∣f ◦mw1
∣∣

A,red, . . . ,
∣∣f ◦mwp

∣∣
A,red

)
.

Therefore, by the definitions of algebraic entropy and spectral radius:

ealg(f ) = lim sup
n→∞

1

n
log

(
deg

(
f ◦p;κ(X)

))

� lim sup
n→∞

1

n
log

(
max

(∣∣f ◦mw1
∣∣

A,red, . . . ,
∣∣f ◦mwp

∣∣
A,red

))
� ρ(f ). �

5.2. The lower bound

Proposition 5.2 (The lower bound). In the notation of Theorem 1:

ealg(f ) � ρ(f ).

The proof of the lower bound is more involved than the proof of the upper bound. We begin
by recalling some necessary material.

5.3. Bruhat–Tits trees

Let K be a non-Archimedean complete field of characteristic 0, equipped with a valuation ν.
Let OK be the ring of integers, MK the maximal ideal of OK , k = OK

MK
its residue field. Let

q = |k| be the number of elements of k, and let p be its characteristic. For an algebraic group
G defined over K , let GK be the subgroup of K points. GK has a natural action on a simplicial
complex called the Bruhat–Tits building of GK . This building plays an analogous role to the
symmetric space in the Archimedean case. We will only need to use this theory for SL2(K),
in which case the building is a regular tree. All of the information that we use can be found
in [9]. Recall that a lattice in K2 is an OK submodule of the form OKv ⊕ OKw, with v,w ∈ K2

linearly independent. We always denote by L0 the so called standard lattice: L0 = OK

( 1
0

) ⊕
OK

( 0
1

)
. Lattices L and L′ are called homothetic if ∃x ∈ K such that L = xL′. Homothety is an

equivalence relation, and we denote the equivalence class of the lattice L by [L]. We say that two
homothety classes [L] and [L′] are incident if there are representatives L1, L2 of [L] and L′ of
[L′] such that
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L2 <p L′ <p L1

where the symbol <p is read: is a subgroup of index p in. It is a simple exercise to check that
incidence is a symmetric relation.

We are now ready to define the Bruhat–Tits building (which we denote by TK ) for SL2(K).
TK is a graph with a vertex for each homothety class of lattices and two vertices connected by
an edge if the corresponding homothety classes are incident. SL2(K) acts on TK by simplicial
automorphisms. We summarize the properties of this graph and the SL2(K) action on it that we
need.

Proposition 5.3.

1. TK is a q2−1
q−1 regular tree.

2. Given A ∈ SL2(K), its translation length is given by −2 max(ν(tr(A)),0).
3. The action of SL2(K) is transitive.
4. StabSL2(K)([L0]) = SL2(OK), StabSL2(K)(A[L0]) = ASL2(OK)A−1.
5. The set of connected components of TK/[L0] (i.e. the set of neighbors of [L0]) can be iden-

tified with P (k2), so that the action of SL2(OK) on this set of components is conjugate to its
action on P (k2) (by taking conjugates, this statement can be made for each vertex of TK ).

6. The axis of a diagonal matrix passes through [L0].

We now state and prove a technical lemma for bounding algebraic entropy from below. The
following two lemmas set up the conditions for using this technical lemma.

Lemma 5.4. Let K be a field of characteristic 0 equipped an absolute value |.|ν , let V be an
affine variety defined over K, let f be an endomorphism of V which is defined over K , and let
y ∈ K[VK ]. If there exists P0 ∈ Vk with the following properties:

1. ∃ε > 0 such that ∀n: |y(f ◦n(P0))|ν > ε,
2. lim supn→∞ 1

n
log(log(|y(f ◦n(P0))|ν)) = l,

then l � ealg(f ).

Proof. Choose an ordered subset Y = {y1, . . . , yN } ⊂ K[VK ] such that Y generates K[VK ] and
y1 = y. The set Y defines an embedding VK ↪→ KN . For the remainder of the proof we will
ignore the difference between points in VK and their image under this embedding.

Given P ∈ KN , let P (i) denote its i-th coefficient and |P |ν = maxi |P (i)|ν . Note that for
P ∈ VK , one has that P (1) = y(P ).

Extend the endomorphism f to an endomorphism of AN of degree d , which we also call f .
In coordinates we can write f as a vector of polynomials with coefficients in K .

The function |f (P )|ν
|P |dν is bounded on the set {P ∈ KN : |P |ν � ε}. Therefore, ∃C such that

∣∣f (P0)
∣∣
ν
� C|P0|dν .

Suppose first that d � 2. Iterating f we get:
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∣∣f ◦n(P0)
∣∣
ν
� C1+d+···+dn−1 |P0|dn

ν = C
dn−1
d−1 |P0|dn

ν .

Taking logarithms we get:

log
(∣∣f ◦n(P0)

∣∣
ν

)
� dn − 1

d − 1
log(C) + dn log

(|P0|ν
) = dn

[
log

(|P0|ν
) + 1 − 1

dn

d − 1
log(C)

]
.

Taking logarithms once again, and manipulating further, we get:

1

n
log

(
log

(∣∣f ◦n(P0)
∣∣
ν

))
� log(d) + 1

n
log

[
log

(|P0|ν
) + 1 − 1

dn

d − 1
log(C)

]
.

Therefore, ∃D > 0 such that

1

n
log

(
log

(∣∣f ◦n(P0)
∣∣
ν

))
� log(d) + D

n
.

Now, since

∣∣y(
f ◦n(P0)

)∣∣
ν
= ∣∣f ◦n(P0)

(1)
∣∣
ν
�

∣∣f ◦n(P0)
∣∣
ν
,

then

l = lim sup
n→∞

1

n
log

(
log

(∣∣y(
f ◦n(P0)

)∣∣
ν

))
� lim sup

n→∞
log(d) + D

n
= log(d).

Given an integer q , we have that

lim sup
n→∞

1

n
log

(
log

(∣∣y(
f ◦qn(P0)

)∣∣
ν

)) = lim sup
n→∞

q

qn
log

(
log

(∣∣y(
f ◦qn(P0)

)∣∣
ν

)) = ql.

Replacing f by f ◦q in the above discussion, we have that for any q and any extension of f ◦q
to an endomorphism of KN (which we also denote by f ◦q):

ql � log
(
deg

(
f ◦q))

.

By dividing by q and using the definition of degree relative to a subvariety we have that

l � 1

q
log

(
deg

(
f ◦;V ))

.

Taking the limits we get:

l � ealg(f ).

Now assume that d = 1. In this case, we get that

∣∣f ◦n(P0)
∣∣ � Cn|P0|ν.
ν
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Taking logarithms twice and dividing by n we get:

1

n
log

(
log

(∣∣f ◦n(P0)
∣∣
ν

))
� logn

n
+ 1

n
log

[
logC + log |P0|ν

]
.

Taking limits, we get l � 0. Since algebraic entropy is always non-negative, then we have l �
ealg(f ), as required. �
Lemma 5.5. Let Fn = 〈S〉 = 〈x1, . . . , xn〉 be a free group on n generators. Suppose that α is an
action of Fn on the 2d-regular tree T2d satisfying the following conditions:

1. α(x1), . . . , α(xn) are all hyperbolic with translation distance t .
2. There exists a unique vertex v0 such that {v0} = Li ∩ Lj for any i, j , where Li is the axis of

α(xi).

Then given w ∈ Fn, the translation length of α(w) is t |w|S,red.

Proof. Notice that since every hyperbolic automorphism with translation distance t is a power
of an automorphism with the same axis and translation length 1, it is enough to prove the lemma
for t = 1. Furthermore, by adding hyperbolic automorphisms we can assume d = n. In this case,
we have that α is conjugate to the action of Fd on the Cayley graph of Fd associated to the
generating set {x1, . . . , xd}, where v0 corresponds to the identity element. �
Lemma 5.6. There exists a valuation ν on Q (resp. Q[i]), and a representation Ψ : π → SL2(Q)

(resp. SU2(Q[i])) such that the induced action of π on Tν , the Bruhat–Tits tree associated to
SL2(Qν) (resp. SL2(Q[i]ν)) satisfies the conditions of Lemma 5.5.

Proof. Let n = 2g and let π = 〈x1 . . . x2g〉. We separate into two cases.

The SL2 case. Let p be any sufficiently large prime (just how large it needs to be will be clear
from the construction). Let ν be the p-adic valuation and let Tp be Bruhat–Tits tree for SL2(Qp).

Let [L0] be the homothety class of the standard lattice. Let D = ( 1
p

0

0 p

)
. Then D is hyperbolic, and

its axis passes through [L0]. The segment connecting [L0] to D[L0] passes through the neighbor
of [L0] corresponding to the point

( 1
0

)
in P2(Fp). The segment connecting [L0] to D−1[L0]

passes through the neighbor of [L0] corresponding to the point
( 0

1

)
. Let S be any element of

SL2(Z) for which the set

{(
0
1

)
, S

(
0
1

)
, . . . , Sn−1

(
0
1

)
,

(
1
0

)
, S

(
1
0

)
, . . . , Sn−1

(
1
0

)}

projects to a set of 2n different points in QP2. If p is chosen to be sufficiently high, this set will
project to 2n different points in P2(Fp). Note that S[L0] = [L0].

For i = 1, . . . , n define:

Ψ (xi) = S(i−1)DS−(i−1).

We have that Ψ (x1), . . . ,Ψ (xn) act hyperbolically on Tp , they all have the same translation
length, and the intersection of any two of their axes is precisely [L0]. The first two assertions
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follow from the fact that every Ψ (xi) is conjugate to D. The third assertion follows from the fact
that the axis of Ψ (xi) is Si−1 L, where L is the axis of D, and by construction these are n lines
that intersect only at [L0].

The G = SU(2) case. The construction is almost identical to the previous case. We let K =
Q[i]. Let p be a sufficiently large prime number. There exist integers a, b such that a2 + b2 = p.
There are two primes of OK that lie above p, these are (a + bi), (a − bi). Let p = (a + bi). Let
ν be the ν-adic valuation, and let Tp be the Bruhat–Tits tree for SL2(Kν). Once again, let [L0]
be the homothety class of the standard lattice.

Let D = ( (a+bi)2
p

0

0 (a−bi)2
p

)
. Then D is hyperbolic with axis passing through [L0]. If we take S

to be any element of the Q-points of SU(2) that is not of finite order, and whose elements have
denominators that are coprime to p then the construction from the previous case may be applied
verbatim to this case. �
Proof of Proposition 5.2. First the sake of simplicity, we first assume that G = SL2(R), or
SU(2).

Fix ε � 0. Choose a generating set S = {x1, . . . , x2g} of π for which:

∣∣∣∣lim sup
n→∞

1

n
log

(∣∣f ◦nx1
∣∣

S,red

) − ρ(f )

∣∣∣∣ � ε.

Choose a representation Ψ as in Lemma 5.6, and let ν and Tν be as in the construction of Ψ .
Let |.|ν be the absolute value associated to ν, i.e. |.|ν = p−ν(.). Let ψ ∈ X be the character of Ψ .
The character ψ is a Q or Q[i] point of X.

By Lemma 5.5, for any m one has that the translation length of f ◦m(x1) on Tν is equal to
|f ◦m(x1)|S,red . By Proposition 5.3 part 2 we get:

∣∣f ◦m(x1)
∣∣

S,red = −2ν
(
trf ◦m(x1)(ψ)

)
.

We now wish to apply Lemma 5.4. In order to set up the notation of the lemma, let V = X,
K = Q or K = Q[i] (depending on which part of Lemma 5.6 we used), |.|ν be the norm defined
above, P0 = ψ , y = trx1 , f = f .

Since word length is always positive, we have that ν(trf ◦m(x1)(ψ)) < 0, and thus in the nota-
tion of Lemma 5.4: |y(f ◦m(P0))|ν � 1.

Due to our choice of x1, we have that:

lim sup
n→∞

1

n
log

(
log

(∣∣y(
f ◦n(P0)

)∣∣
ν

)) = lim sup
n→∞

1

n
log

(
log

(
p

−ν(trf ◦nx1
(ψ))))

= lim sup
n→∞

1

n
log

(
1

2

∣∣f ◦n(x1)
∣∣

S,red + p

)

= lim sup
n→∞

1

n
log

(∣∣f ◦n(x1)
∣∣

S,red

)
� ρ(f ) − ε.

Thus, by Lemma 5.4 we have that ρ(f ) − ε � ealg(f ). Since ε was chosen arbitrarily, we get
that ρ(f ) � ealg(f ).
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Now, suppose G is one of the groups GLN , SLN , SUN , or Sp2N . Each of these groups contains
a copy of G = SL2(R), or SU(2) embedded in the top right corner. If we take the representation Ψ

to have image in this copy, and take y = trx1 − (N −2), then the proof proceeds exactly as above.
If G = SO(3), notice that SO(3) is double covered by SU(2), and that any SO(3) representa-

tion can be lifted to an SU(2) representation where the trace of each element is multiplied by ±1.
Thus, the proof carries over to the SO(3) case. For G = SO(N), N � 4 and G = O(N)(N � 3),
notice that these groups contain SO(3) embedded as 3 × 3 diagonal matrices, and proceed by the
same method. �
Proof of Theorem 1. Theorem 1 is a direct consequence of Propositions 5.1 and 5.2. �
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