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a b s t r a c t

Dendritic cells (DCs) play a major role in in vivo pathogenesis of HIV-1 infection. Therefore, DCs may
provide a promising strategy to control and eventually overcome the fatal infection. Especially, immature
DCs express all CD1s, the non-MHC lipid antigen -presenting molecules, and HIV-1 Nef down-regulates
CD1 expression besides MHC. Moreover, CD1d-restricted CD4þ NKT cells are infected by HIV-1, reducing
the number of these cells in HIV-1-infected individuals. To understand the exact role of DCs and CD1-
mediated immune response during HIV-1 infection, Nef down-regulation of CD1a-restricted lipid/gly-
colipid Ag presentation in iDCs was analyzed. We demonstrated the involvement of the association of Nef
with hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2), and that Hck, which is expressed
strongly in iDCs, augmented this mutual interaction. Hck might be another therapeutic target to preserve
the function of HIV-1 infected DCs, which are potential reservoirs of HIV-1 even after antiretroviral
therapy.

& 2015 Elsevier Inc. All rights reserved.
Introduction

CD1 glycoproteins are non-classical MHC class I-like molecules that
present lipid antigen (Ag) to CD1-restricted T cells. Although their role
has been mainly studied in mycobacterial infections, several reports
have suggested that CD1 molecules may also play important roles in
viral infections (Chen et al., 2006; Moll et al., 2010; Raftery et al., 2008;
Raftery et al., 2006; Shinya et al., 2004). CD1d-restricted NKT cells
respond to infections by HIV-1 (Moll et al., 2009), HSV (Yuan et al.,
2006), and influenza virus (De Santo et al., 2008). However, it is still
not clear whether the T cell receptor (TCR) recognizes the viral anti-
gens (Ag) presented by CD1 molecules, or the self-lipids induced by
cellular metabolism due to viral infection, or a combination of both. It
has been speculated that viral Ag could be presented by CD1c mole-
cules as N-terminally acylated lipopeptides, similar in sequence to
HIV-1 Nef (Van Rhijn et al., 2009). However, there is no evidence that
this happens during viral infection.

The function and size of the human T cell repertoire that
recognizes lipid Ag presented by CD1 molecules remains poorly
547 Fax. þ81 3 3827 3381.
defined. However a recent report showed that a large portion of
circulating T cells appeared to be CD1a-autoreactive, and had all
the known functional properties of Th22 cells including the
expression of skin homing molecules (CCR4, CCR10, and CLA) (de
Jong et al., 2010), suggesting the importance of CD1a-restricted T
cells in skin immunosurveillance and possibly immunopathology.
Moreover, a second, large population of circulating T cells, which
remains to be characterized, appears to be restricted to CD1c and
can recognize endogenous Ag (de Lalla et al., 2011). Importantly,
viruses have evolved a series of mechanisms that directly interfere
with the plasma-membrane expression of CD1 molecules, sug-
gesting that CD1-restricted T cells may also participate in protec-
tion during viral infections. Indeed, we and others have reported
that HIV-1 Nef protein down-regulates CD1a and CD1d surface
expression in immature DCs (iDCs) (Cho et al., 2005; Shinya et al.,
2004). This could lead to reduced Ag presentation, and represents
an evasion mechanism of the pathogen similar to that responsible
for the immune-evasion of HIV-1 infected T lymphocytes from
cytotoxic T lymphocyte recognition following the down-regulation
of peptide Ag presentation by MHC class I molecules (Collins et al.,
1998). Of the accessory genes of HIV-1, nef is well known as a key
factor of immune-evasion. In addition to down-regulating MHC
class I, HIV-1 Nef also down-regulates MHC class II surface
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Fig. 1. Down-regulation of CD1a lipid antigen presentation on iDCs infected with VSV-G-pseudotyped recombinant HIV. a) The CD1a lipid antigen presentation assay. PBMC-
derived iDCs were used as antigen presenting cells and infected with VSV-G pseudotyped single-cycle recombinant HIV-1/EGFP (with the intact nef gene designated as þNef
or with the crippled nef gene designated as -Nef). Subsequently, the DCs were incubated with sulfatide to stimulate the T cell clone K34B9.1 and TNF-α released in the
supernatants was measured by ELISA. b) and c) The infection of iDCs by VSV-G-pseudotyped HIV-1 with the intact nef gene (þNef) showed no more than 30% of infected
(EGFP positive) iDCs, which still showed a significant reduction of TNF-α production compared to the crippled nef gene (-Nef) (Po0.05 by the paired t test).
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expression (Stumptner-Cuvelette et al., 2001). Furthermore, it has
recently been reported that HIV-1 Vpu together with Nef inhibits
lipid Ag presentation in DCs by CD1d (Moll et al., 2010). However,
with regards to CD1a, only the down-regulation of surface
expression of CD1a in iDCs has been reported (Shinya et al., 2004).

Myeloid iDCs are the only peripheral Ag presenting cells (APCs)
that are known to express all human CD1 isoforms (CD1a, CD1b,
CD1c, CD1d, and CD1e) and initiate lipid Ag processing pathways in
response to activating stimuli. Moreover, CD1aþ iDCs, or Langer-
hans cells, are thought to be the first cells to encounter HIV-1 at
mucous membranes, and capture viral particles to allow them
productive replication and long-term viral dissemination that are
later transferred to CD4þ lymphocytes (Burleigh et al., 2006;
Coleman et al., 2011; Dong et al., 2007; Turville et al., 2004; Wang et
al., 2007). On the other hand, the C-type lectin DC-SIGN is expres-
sed on the surface of iDCs and enhanced HIV-1 trans-infection
(Geijtenbeek et al., 2000). DC-SIGN positive iDCs from human rectal
mucosa is known to bind and transfer HIV-1 to CD4þ T cells effi-
ciently and, in human rectal mucosa, DC-SIGN antibodies could
block 90% of HIV-1 binding although only 1–5% of total mucosal
mononuclear cells (Gurney et al., 2005). Taken together, iDCs seem
to be more relevant in establishing an immune response against
HIV than mature DCs.

In this study, we used PBMC-derived iDCs to show that HIV-1
Nef significantly down-regulated lipid Ag presentation by CD1a
together with its surface expression on iDCs. Furthermore, using a
series of mutant nef genes, we confirmed the intermolecular
interaction of HIV-1 Nef and CD1a together with hemopoietic cell
kinase (Hck) and p21-Activated Kinase 2 (PAK2). Hck was highly
expressed in iDCs and HIV-1 takes advantage of Hck in iDCs as well
as PAK2 for the down-regulation of CD1a lipid Ag presentation and
immune-evasion from this lipid Ag recognition system.
Results

CD1a lipid Ag presentation is impaired by Nef in HIV-1 infected iDCs

In this study, we analyzed the influence of HIV-1 Nef on CD1a
lipid Ag presentation. As antigen presenting cells (APCs), we used
peripheral blood mononuclear cells (PBMC)-derived iDCs to mea-
sure CD1a lipid Ag presentation, (Figs. 1 and 2). Since iDCs are
resistant to transfection by conventional techniques such as those
used with DNA plasmids, we used the VSV-G pseudo-typed single-
cycle recombinant HIV-1 vector (Shinya et al., 2003, 2004) to
introduce the nef gene into iDCs (Fig. 1a). The CD1a-restricted T
cell clone K34B9.1, which is both CD1a restricted and sulfatide-
specific, was used as a responder cell (Shamshiev et al., 2002).

Despite an efficiency of infection no greater than 30% (Shinya et
al., 2004), on infection of PBMC-derived iDCs with the single-cycle
reporter HIV-1 pseudotyped with VSV-G (Fig. 1b), there was sig-
nificant down-regulation of TNF-α secretion by the virus encoding
the nef gene (þNef) relative to the virus not expressing Nef due to
the crippled nef gene (�Nef, Fig. 1c), suggesting that HIV-1 Nef
abrogated CD1a lipid Ag presentation.

To obtain higher efficiency expression, EGFP mRNA was elec-
troporated into iDCs (Fig. 2a) and showed greater than 90% GFPþ
expression in the iDCs (Fig. 2b). Moreover, the mRNA electro-
poration with the EGFP gene did not cause the significant changes
in the surface expression of CD1a, HLA-abc, CD83 or DC-SIGN
(Fig. 2b).

Mutation in the PXXP SH3 binding motif and R106 abrogated the Nef-
mediated impairment of CD1a lipid Ag presentation

A series of mutations were introduced into the nef gene (Fig. 3),
which was fused in frame to the 50 end of the EGFP gene and the
mRNA of the nef -EGFP gene capped with the anti-reverse cap
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Fig. 2. Down-regulation of CD1a lipid Ag presentation by Nef. a) PBMC-derived iDCs were used as antigen presenting cells and were first transfected by electroporation with
mRNA of a series of mutant nef genes, together with DsRed2mRNA to monitor transfection efficiency. TNF-α levels in the supernatant were subsequently quantified by ELISA.
b) mRNA electroporation of the EGFP gene resulted in more than 90% of EGFP positive iDCs without changes in CD1a, HLA-abc, CD83, or DC-SIGN surface expression. c) The
responses of the sulfatide-specific CD1a-restricted cell clone K34B9.1. Values represent meanþSEM of the relative percentages of TNF-α concentrations to that of iDCs
expressing EGFP (right panel). Transfection efficiency showed by DsRed2 expression was constant and not significantly different between all mutants, as shown in the
left panel.
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analog (Stepinski et al., 2001) was produced. Each mRNA gener-
ated was introduced into iDCs by electroporation. Subsequently,
iDCs were pulsed with sulfatide, and analyzed for its presentation
to K34B9 T cells. The del73-82, R106A, ED175AA and F191R
mutations (5th, 6th, 8th and 9th bars, right panel, Fig. 2c) did not
show the down-regulation of CD1a lipid Ag presentation in con-
trast to Nef-Wt (2nd bar, right panel, Fig. 2c). In the del73-82
mutation (Aldrovandi et al., 1998), the two terminal proline
residues were deleted in the 50 PXXP SH3 binding motif, which
binds with high affinity to the SH3 domain of the Src-family tyr-
osine kinases such as Hck (Saksela et al., 1995). It is well known
that Nef disrupts the linker/SH3 interaction, and interacts with the
SH3 domains of Src family kinases with different affinities, of
which the highest affinity is for Hck (Lee et al., 1995). In R106A, an
R to A mutation was introduced in the nef gene at R106, which is
known to be involved in the interaction with PAK2, as is the case
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Fig. 4. Analysis with Laser Confocal Microscopy. The interaction between Nef and
CD1 is dependent on the N-terminal half of Nef. Either Nef(1–314) or Nef(312-) gene
fused to the GFP gene and CD1a fused to DsRed2 gene were transfected simulta-
neously into HeLa cells and their subcellular localization was analyzed by Laser
Confocal Microscopy. CD1a (upper left) and Nef(1–314) (upper middle) co-localized
(upper right), but CD1a (lower left) and Nef(312-) (lower middle) did not (lower
right). A representative data was shown. Additional results of the observation are
shown in Supplementary 1 and 2. Colocalization analysis was done within the
region of interest when indicated with white line.
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for F191 (Khan et al., 1998). The 50 PXXP SH3 binding motif also
contains a potential protein kinase C phosphorylation site
(threonine 80), and previous reports have shown that the binding
of SH3 to HIV-1 Nef is also required for the activation of PAK2
(Manninen et al., 1998). Moreover, F191R is known to abolish Nef
association with PAK2 without reducing other Nef functions
(Agopian et al., 2006). Taken together, these results suggest the
important role of the interaction of Nef and CD1a together with
both Hck and PAK2 in the context of CD1a lipid Ag presentation
by iDCs.

Of the other Nef mutants tested, two mutants are known to
abolish Nef binding to AP-2 (LL165GG and ED175AA, 7th and 8th
bar, right panel, Fig. 2c) (Lindwasser et al., 2008). But LL165GG
down-regulated the CD1a lipid Ag presentation as Nef-Wt did and,
in contrast, ED175AA did not. No effects on CD1a Ag presentation
were observed either with the remaining two mutants, namely the
WL57AA mutant involved in the down-regulation of CD4 (3rd bar,
right panel, Fig. 2c) (Stoddart et al., 2003) or the E4(65)A4 mutant
responsible for the down-regulation of MHC class I molecules (4th
bar) (Stoddart et al., 2003).

Interaction between HIV-1 Nef and CD1a was dependent upon N-
terminal half of Nef

To analyze the interaction between Nef and CD1a, the gene
encoding N-terminal half, Nef (1–314) or that encoding C-terminal
half of Nef, Nef(312-) (Fig. 3) was fused to DsRed2 and transfected
into HeLa cells simultaneously with CD1A and their subcellular
localization was observed by laser confocal microscopy. We
showed that Nef(1-314) but not the C-terminal half significantly
co-localized with CD1a (Fig. 4, Supplementary 1 and 2), suggesting
that the N-terminal half of Nef, which includes the PxxPxP motif
may be involved in the Nef–CD1a interaction, although Nef(312-)
showed a completely different intracellular localization from that
of Nef(1-314).

Since a previous report showed that the interaction between
Nef and CD1a was dependent on the cytoplasmic domain of CD1a
(CD1a cyt.) (Shinya et al., 2004), we further analyzed the interac-
tion between the CD1a cytoplasmic domain and Nef, Nef (1–314),
or Nef (312-) using a yeast two hybrid assay. In this assay, either
the intact nef gene (Nef), Nef(1–314), or Nef(312-) was fused to the
GAL4(1–147) DNA binding domain gene in the pGBKT7 vector
(Matchmaker Two-Hybrid system 3, Clontech, Mountain View, CA,
USA) as bait, and CD1A cytoplasmic domain gene (CD1a cyt.) was
fused to the GAL4(768–881) transcriptional activator domain gene
in the pGADT7 vector (Clontech) as prey (Fig. 5a). S. cerevisiae
AH109 His- MelI- (Clontech) was transformed with a combination
of each of these fusion genes. Nef and Nef(1-314) but not Nef(312-)
yielded Hisþ colonies with CD1a cyt (Fig. 5b) and Hisþ/X-α-
galactosidaseþ blue colonies on SD/-His/Leu/-Trp/X-α-gal plates
(Fig. 5c), suggesting that the interaction between CD1a and Nef
was dependent upon N-terminal Nef (1–312), which also supports
the results from the laser confocal microscopy analysis (Fig. 4,
Supplementary 1 and 2).

Intermolecular interaction between HIV-1 Nef, CD1a, PAK2 and Hck:
protein fragment complementation assay

To confirm the intermolecular interactions between HIV-1 Nef,
CD1a, PAK2, and Hck, a protein fragment complementation assay
was performed using the monomeric Kusabira-Green (mKG)
reporter protein gene (Fig. 6) (Ueyama et al., 2008). In this assay,
the mKG gene was divided into two fragments (mKGN and mKGC),
and fused to the nef (mKGN-nef), PAK2 (mKGC-PAK2), or Hck genes
(mKGC-Hck). Should the two expressed target proteins interact, the
divided mKG fragments would spatially approach each other and
increase the local effective concentration. As a result, mKG frag-
ments formed the same steric structure as the undivided mKG
does and emitted fluorescence from the chromophore (Fig. 6a).
The simultaneous transfection of mKGC-PAK2 and mKGN-nef
(Fig. 6b and e), mKGC-Hck and mKGN-nef (Fig. 6b and d) or
mKGC-CD1a and mKGN-nef (Fig. 6c) genes were performed in
HCT116 cells. The reconstituted green fluorescence of the mKG
protein was then analyzed by flow cytometry, and was observed in
a significant number of cells in each combination. The interaction
between HIV-Nef and Hck was stronger than that of HIV-Nef and
PAK2 (Fig. 6b), therefore confirming the intermolecular interaction
of HIV-1 Nef with both Hck and PAK2 and also suggesting that the
interaction of Nef with Hck is significantly stronger than that
with PAK2.

Next, the interaction between Nef and CD1a with/without HCK
was examined in HCT116 cells (Fig. 6c) by the simultaneous
transfection of mKGC-CD1a andmKGN-nef together with Hck-PLUM
fusion gene or PLUM gene. However, without Hck (left panel,
Fig. 6c), the interaction was fairly weak and there were no sig-
nificant differences within the series of nef mutants. Since Hck
expression has been reported in cells of macrophage/monocyte
lineage in a tissue-specific manner (Greenway et al., 2003) and the
catalytic activity of Hck was dramatically up-regulated when its
SH3 domain was bound by Nef while inhibited in other Src kina-
ses, Lck and Fyn, we analyzed the expression of Hck in several cell
lines including PBMC-derived iDCs (Fig. 7). Furthermore, it is
known that, while PAK2 does not contain a SH3 domain like that
in Hck, the association of Nef and PAK2 requires the Nef poly-
proline (PxxP) motif. Taken together, we hypothesized that Hck
that has a SH3 domain might augment the interaction between
Nef and PAK2 to interfere with the interaction of HIV-1 Nef
and CD1a.

As shown using quantitative PCR analysis (Fig. 7a), there was a
high level of tissue specific Hck expression in iDCs among the
investigated cell types, whereas Hck was weakly expressed in the
THP-1 cell line (derived from the peripheral blood of a male with
acute monocytic leukemia), and showed much weaker but never-
theless significant expression in C1R (an EBV-transformed B lym-
phoblastoid cell line), and primary T cells. No significant expression
of Hck was detected in Jurkat cells (a T cell line), K34B9.1T cells, or
HTLV-1 transformed macrophages (Takeuchi et al., 2010) (indicated
as MF in Fig.7). Notably, we did not detect any significant Hck
expression either in the HCT116 cells and HeLa cells used in this



Fig. 5. A yeast two hybrid assay shows that the interaction between Nef and CD1a depends on the N-terminal half of Nef and the CD1a cytoplasmic domain. a) Either intact
nef gene (Nef), Nef(1-314) or Nef(312-) was fused to the GAL4(1-147) DNA binding domain in pGBKT7 (Matchmaker Two-Hybrid system 3, Clontech) as "bait", and CD1a
cytoplasmic domain was fused to GAL4(768-881) transcriptional activator domain in pGADT7 (Clontech) as "prey". S. cerevisiae AH109 His- MelI- (Clontech) was transformed
with each combination of the fusion genes. Neither Hisþ colonies on SC/-His/-Leu/-Trp plates (b) nor Hisþ/X-α-galactosidaseþ blue colonies on SD/-His/Leu/-Trp/X-α-gal
plates (c) were yielded by the combination of CD1a cyt.&Nerf(312-) but by the other combination, CD1a cyt.&Nef or CD1a cyt.&Nef(1-314).
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study (Fig. 7a). Immunoblot analysis of the Hck also confirmed the
high level of Hck expression in iDCs compared to the other cell
types, supporting the results of quantitative PCR analysis (Fig. 7b
and c). Accordingly, the significant role of Hck could be expected in
iDCs, in which the expression of CD1a is also specifically high,
towards the down-regulation of CD1a lipid Ag presentation.

Therefore, the effect of Hck on the interaction between CD1a and
Nef was analyzed (right panel, Fig. 6c) by the simultaneous transfec-
tion of mKGC-CD1a and mKGN-nef together with Hck-PLUM fusion
gene. FACS analysis of the reconstituted mKG positive- PLUM positive
cells showed that Hck augmented the interaction of CD1a with all the
Nef mutants except del73-82 mutant (left vs. right 4th bars, Fig. 6c).
Furthermore, with Hck, the interaction of Nef and CD1a was sig-
nificantly down-regulated by the del73-82 mutation (1st vs. 4th bar,
right panel, Fig. 6c).

Subsequently, the interaction between Nef and Hck was analyzed,
showing that not only the polyproline (PxxP) motif (4th bar, Fig. 6d),
but also F191 (8th bar) were involved which was unexpected.

Finally, Nef–PAK2 interaction was studied with or without Hck,
which showed that Hck significantly augments Nef–PAK2 interaction
(left and right bars, Fig. 6e), and E4(65)A4, del73-82 and F191R
mutations significantly abolished the Nef–PAK2 interaction regardless
of Hck. This confirms that del73-82 and F191R showed reduced
binding capacity to PAK2 protein (Khan et al., 1998; Schindler et al.,
2007). In contrast, it is controversial whether E4(65)A4 is involved in
the Nef–PAK2 interaction (Baugh et al., 2008; Piguet et al., 2000), but
our results correspondwith the results of Baugh et al., showing that E4
(65)A4 mutation is not specific for MHC-I down-regulation but also
defective for the interaction with PAK2.

It has been reported that the majority of Nef alleles fail to
activate PAK2 and only interact with the activated PAK2 (Pulkki-
nen et al., 2004), whereas a SH3 domain binding to HIV-1 Nef is
required for PAK2 activation (Manninen et al., 1998). Consistent
with this, our results present new evidence that Hck, whose SH3
domain interacts with the N-terminal PXXP SH3-binding motif of
Nef, may be required for the Nef–PAK2 interaction, which is most
likely in iDCs in which Hck is highly expressed.
Intermolecular interaction between HIV-1 Nef, PAK2 and Hck: com-
bination of microscopic analysis and protein fragment com-
plementation Assay

The HIV-1 nef -EGFP fusion gene and PAK2-PLUM fusion gene
were transfected simultaneously into HeLa cells and their intra-
cellular distributions were investigated using confocal laser scan-
ning microscopy. In a representative cell shown in Fig. 8a, Nef and
PAK2 (Fig. 8a i) and ii), respectively) localized to the plasma
membrane (Fig. 8a iii). With the auto threshold calculation by
Coloc2 plugin with Fiji/ImageJ, Pearson's R was 0.82, Manders M1
and M2 were 0.932 and 0.999, respectively and Costes P-value was
1.00, indicating a significant co-localization of the two proteins in
transfected HeLa cells. Observing several cells (Supplementary 3),
Manders M1 and M2 were always no less than 0.8 with positive
value of Pearson's R, indicating significant co-localization of Nef
and PAK2, although their localization to the plasma membrane
was not always observed. These results are in agreement with the
previous reports that showed Nef–PAK2 association at cellular
membranes, where both proteins were selectively partitioned in
the detergent-resistant micro domains of plasma membranes
(Pulkkinen et al., 2004).

To observe the interaction between the three Nef, PAK2 and
Hck proteins, a combination of protein fragment complementation
assay and observation with laser microscopy was performed.
Briefly, HeLa cells were transfected with mKGN-Nef, mKGC-PAK2
and PLUM-Hck genes. The positive interaction between Nef and
PAK2 resulted in the reconstituted mKG (Fig. 8b, i) that co-
localized significantly with Hck (Fig. 8b, ii and iii). In the recon-
stituted mKG and Hck, Pearson's R value above threshold was 0.65,
Manders M1 and M2 were 1.000 and 0.976, respectively and
Costes P-value was 1.000, thus showing the significant co-
localization of mKG and Hck. Observation of multiple cells also
support the significant co-localization of the three proteins, Nef,
PAK2 and Hck (Supplementary 4), which supports the presence of
an interaction between Nef, PAK2 and Hck.



Fig. 6. Protein fragment complementation assay. a) Interaction between Nef, CD1a, Hck, or PAK2 was further analyzed. The Monomeric Kusabira Green (mKG) gene was
genetically divided into KGN and KGC. Two of the genes for the proteins (A and B) to be analyzed were fused to KGN or KGC and transfected simultaneously to HCT116 cells
where the expression of Hck is not detected by PCR. Subsequently, transfected HCT116 cells were analyzed by FACS for the green fluorescence of reconstituted mKG indicating
positive interaction between two proteins. b) i) Nef was shown to have positive interaction with both Hck and PAK2, although the interaction with Hck was significantly
stronger than that with PAK2. A representative result of the FACS analysis was shown in ii) and iii). c) Nef vs. CD1a: In the absence of Hck, Nef-CD1a showed positive
interaction but no significant difference was seen between Nef mutants (left panel). Addition of Hck (right panel) significantly augmented the Nef–CD1a interaction except
del73–82 mutant (4th bar, right panel). d) Nef vs. Hck: Significant down-regulation of Nef–Hck interaction was shown by del73–82 (4th bar) and by F191R (bottom bar). e)
Nef vs. PAK2: In the absence of Hck (left panel), a relatively weak but significant interaction was observed, which was down-regulated with E4(65)A4 (3rd bar), del73–82 (4th
bar) or F191R mutation (bottom bar). With Hck (right panel), the Nef–PAK2 interaction was always augmented even with del73–82 mutation (comparison of left and right
bar with each Nef mutant), with which the interaction was somehow down-regulated. With HCK, the down-regulation of the Nef–PAK2 interaction by R106A was significant
and that by F191R more prominent.
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Fig. 7. Strong Hck gene expression in immature DCs. The expression of the Hck gene was analyzed by real-time PCR and immunoblotting. a) Total RNA was extracted from
PBMC-derived iDCs, Jurkat cells, Primary T cells, K34B9.1, the CD1a-restricted CTL line, HTLV-I transformed macrophages (MF), C1R (a B cell line) and THP-1 cells. Hck
expression is shown relative to iDCs. Significant results as per Dunnett's multiple comparison test are shown (***, Po0.001 vs. iDCs). b) Immunoblot with anti-Hck antibody.
After protein transfer, the membrane was stained with Ponceau S, quickly de-stained and imaged for total protein quantification. After de-staining in TBST, immunoblot was
performed with anti-Hck antibody. Relative p61 Hck expression levels adjusted to total protein transfer (Ponceau S staining) was determined by densitometry using the
image analysis program ImageJ. The asterisk indicates a nonspecific band.

ii)PAK2-PLUM  iii) Mergei) Nef-EGFP

i) reconstituted KG
(KGN-Nef + 
  KGC-PAK2) ii) Plum-Hck iii) Merge        

Fig. 8. Analysis of the interaction of Nef with PAK2 and Hck. a) The Nef-EGFP and
PAK2-PLUM genes were transfected into HeLa cells and showed that Nef (i) and
PAK2 (ii) co-localized significantly (iii). The observation of the additional cells are
shown in Supplementary 3, which also indicates the positive interaction between
Nef and PAK2. b) To analyze the interaction between the three molecules, Nef, PAK2
and Hck, KGN-Nef, KGC-PAK2 and PLUM-Hck genes were transfected simulta-
neously. The green fluorescein of reconstituted mKG was observed with KGN-Nef
and KGC-PAK2 (i) showing the positive interaction of Nef and PAK2. Furthermore,
the reconstituted mKG by Nef and PAK2 (i) also co-localized with Hck (ii, iii)
indicating the positive interaction of the three proteins, Nef, PAK2, and Hck. In
Supplementary 4, additional data are shown. Colocalization analysis was done
within the region of interest when indicated with white line.
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Discussion

In this study, we have shown the down-regulation of CD1a lipid
Ag presentation by HIV-1 Nef in iDCs, in which Hck and PAK2
might be involved, while it was already reported that HIV-1 Nef
together with HIV-1 Vpu down-regulate lipid Ag presentation by
CD1d (Moll et al., 2010), which presents lipid Ag delivered to the
endocytic compartments.
CD1 Ag-presenting molecules consist of group 1 CD1 isoforms
(CD1a, b, c) and group 2 CD1 (CD1d). Group 1 CD1 isoforms differ
from CD1d in the extent of its ability to enter the early, inter-
mediate, or late compartments of the endosomal network (Briken
et al., 2000). Especially, CD1a molecules encounter Ag in the
secretory pathway and early endosomes and recycle them back to
the cell surface, but do not efficiently enter late endosomes and
lysosomes (Briken et al., 2000). In contrast, CD1d efficiently enters
the late endosomes/lysosomes where several mechanisms facil-
itate Ag loading and recognition by T cells such as pH-mediated
changes in CD1 conformation to facilitate Ag access to CD1 grooves
(Cheng et al., 2006), pH-activated lipid transfer proteins (Zhou et
al., 2004), and pH-activated glycosidases that process the oligo-
saccharidic components of glycolipid Ag (Prigozy et al., 2001).
These results imply that Nef down-regulates CD1a and CD1d lipid
Ag presentation by different mechanisms.

To further explore the molecular basis of the down-regulation
of CD1a lipid Ag presentation by HIV-1 Nef, we analyzed the
effects of wild-type Nef and a series of Nef mutants, to show that
R106A, del73-82, and F191R significantly interfere with CD1a lipid
Ag presentation in iDCs. Since R106A and F191R mutations are
important in the interaction of Nef and PAK2, and the del73-82
mutation is involved in the interaction of Nef with Hck, we can
potentially infer that both PAK2 and Hck are involved in the down-
regulation of CD1a lipid Ag presentation by HIV-1 Nef. Moreover,
both confocal laser scanning microscopy and the protein fragment
complementation assay revealed that Nef and PAK2 significantly
co-localized (Fig. 8a, Supplementary 3), and that their inter-
molecular interaction depended on both R106 and F191 (Fig. 6e).
Both R106 and F191 are widely recognized to be involved in the
intermolecular interaction between HIV-1 Nef and PAK2. On the
other hand, some reports showed that Nef residue F191 is speci-
fically involved in PAK2 binding (Agopian et al., 2006), whereas
being critical for the accurate Nef core structure, R106A impaired
the multiple functions of Nef (O'Neill et al., 2006). Our results are
in line with these reports and indicate that F191 has an
essential role.

In this study, F191R also down-regulated the interaction
between Nef and Hck (Fig. 6d), which has not previously been
shown. One possible speculation might be that the protein frag-
ment complementation assay was so sensitive, being more
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sensitive than the other methods, that it could detect a subtle
effect of F191R mutation on the interaction of Nef and Hck.
Another possible speculation would be that PAK2 might augment
the interaction between Nef and HCK via F191R. Anyway, further
analysis is necessary. In addition, the replacement of an acidic
cluster (EEEE motif) with AAAA in Nef (E4(65)A4) abolished the
interaction between Nef and PAK2 (Fig. 6e) without change in the
CD1a Ag presentation (Fig. 2c) or in the interaction between Nef
and CD1a (Fig. 6c). Since E4(65)A4 mutation prevents MHC-I
down-regulation, E4 acidic cluster in Nef has been known to be
required for binding to phosphofurin acidic cluster sorting
protein-1 (PACS-1) (Piguet et al., 2000) and PACS-2 (Atkins et al.,
2008). On the contrary, it is also reported that the down-
regulation of MHC-I by E4(65)A4 is not specific and that the four
glutamates merely function as a flexible loop instead of a highly
specific protein–protein interface (Baugh et al., 2008). For exam-
ple, in addition to the MHC-I down-regulation, Nef with E4(65)A4
mutation is also defective both for PAK2 activation and for
enhancement of viral infectivity whereas this mutation does not
result in CD4 down-regulation. Accordingly, the down-regulation
of Nef-PAK2 interaction might be another example of the "non-
specific" effects of E4(65)A4 mutation.

Since interference with PAK2 leads to reduce CD1a Ag pre-
sentation, PAK2 may be important for organizing the early recy-
cling pathway of CD1a and involved in CD1a Ag presentation.
Whether PAK2 also plays an important role in Ag presentation
through CD1c, a second CD1 molecule that also recycles through
early endosomal compartments, remains to be investigated with
CD1c specific T cell line (Shamshiev et al., 2002).

The interaction of the HIV-1 Nef protein and PAK2 has been
reported to play a role in T-cell activation (Lu et al., 1996), viral
replication (Olivieri et al., 2011), apoptosis (Wolf et al., 2001), T-cell
development (Van Nuffel et al., 2013) and progression to AIDS
(Pacheco and Chernoff, 2010). However, it has also been reported
that Nef has no major role in T-cell activation, viral replication, nor
apoptosis of T cells (Schindler et al., 2007). According to our
results, the interaction of the Nef protein with PAK2 appears to be
significant in iDCs because Hck would interfere with Ag pre-
sentation involving early endosomal compartments, such as that
by CD1a. These findings support the conclusion that Nef may
display unique effects on the different cell types in which it is
expressed.

Mutational analyses supports the previous reports, such as that
Nef binding to the SH3 domain was significant for PAK2 activation
(Manninen et al., 1998) and that the only observed Nef binding to
SH3 involved Hck (Karkkainen et al., 2006), since Hck augmented
the weak Nef-PAK2 association in cells not expressing Hck
(Fig. 6e). Our study demonstrated that Hck is expressed at high
levels in PBMC-derived iDCs. We also found that Hck is present in
cells of granulocyte and monocytic lineages, especially in macro-
phages and DCs, while c-Src and Lyn exhibited broader expression
patterns including all HIV target cell types. In contrast, T cells do
not have an Hck-like high-affinity SH3 ligand for Nef. Thus, the
reason for the important role of the interaction between HIV-1 Nef
and PAK2 in iDCs, but not in T cells (Schindler et al., 2007), may be
explained by the tissue specificity and high expression of Hck in
cells of granulocyte and monocytic lineages, including iDCs.

The requirement of Nef in SIV-induced AIDS in non-human
primates and the observation of frequent Nef-defective HIV-1 in
long-term non-progressors (Deacon et al., 1995; Kirchhoff et al.,
1995) support the essential role of Nef in HIV infection patho-
genesis. Moreover, expression of Nef alone is sufficient for the
development of an AIDS-like syndrome in transgenic mice (Hanna
et al., 1998), suggesting a major role for Nef in HIV-1 pathogenesis.
The important role of Nef both in DC-mediated transmission of
HIV-1 to activated CD4þ T cells and in the activation and
proliferation of resting CD4þT cells was also reported, which
seems contribute to viral pathogenesis (St Gelais et al., 2012). It is
possible for lipid Ag presentation by CD1 molecules of DCs to be
involved in the activation of CD4þ T cells, which could result in the
modification of the DC-mediated HIV-1 transmission to CD4þT
cells by HIV-1 Nef, which remains to be studied.

A series of investigations has also indicated the important role
of Hck in mediating the effects on Nef in different cellular func-
tions. For example, in brain-derived microglial cells, HIV-1 infec-
tion induced Nef-dependent Hck phosphorylation and an increase
in HIV-1 transcription, while the suppression of Nef–Hck interac-
tion inhibited HIV replication (Kim et al., 2006). In addition, Nef-
induced AIDS-like disease was delayed in Hck-null mice and
completely reversed in mice expressing a Nef mutant unable to
bind to Hck (Hanna et al., 1998, 2001). These results suggest the
importance of Hck in AIDS pathogenesis, and are in line with the
essential role of Hck in promoting the interaction of Nef with PAK2
in cells of the granulocyte and monocytic lineages including iDCs.

Recently, a single-domain antibody (sdAb) was shown to bind
HIV-1 Nef with high affinity and inhibit the association of Nef to
PAK2, and Nef-induced CD4 down-regulation, and also counter-
acted Nef-dependent enhancement in virion infectivity (Bouchet
et al., 2011). Expressed intracellularly, this antibody inhibited
several biological functions of Nef both in vitro and in vivo in CD4C/
HIV-1Nef Tg mice, suggesting the important role of the Nef–PAK2
interaction in AIDS pathogenesis. Furthermore, this anti-Nef sdAb
was fused to modified SH3 domains to disrupt the interactions of
Nef with both AP complexes and Hck, thus showing the efficient
neutralization of all key activities of Nef in both T lymphocytes and
macrophages (Bouchet et al., 2012). Should HIV-1 hidden in the
iDCs continuously destroy the internal immune system through
down-regulation of various Ag-presenting molecules such as MHC
and CD1s by Nef, breaking the intermolecular interaction among
Nef, PAK2 and Hck will offer another strategy to regulate iDCs and
re-constitute the immune system. Therefore, such agents may
provide new therapies for treating HIV-1-infected innate iDCs.
Conclusions

In summary, we showed that HIV-1 Nef down-regulated CD1a
lipid Ag presentation in iDCs, and involved both Hck and PAK2.
Hck was strongly expressed in iDCs, where it promoted Nef–PAK2
interaction. Since CD1a-restricted T cells play an important role in
skin immunology, the Nef–PAK2–Hck–CD1a interaction may
represent a novel target for potential therapeutic strategies to
restore normal T cell immunity during HIV-1 infection.
Methods

Cells, medium, glycolipid Ag, and recombinant virus

Sulfatide-specific CD1a-restricted T cell line K34B9.1 was
obtained as previously described (Shamshiev et al., 1999). Sulfatide
was obtained from Matreya (Pleasant Gap, PA, USA).

Immature DCs were obtained from PBMCs as previously
described (Takeuchi et al., 2003). In brief, PBMCs were freshly iso-
lated with Ficoll-paque (Amersham-Pharmacia, Uppsala, Sweden)
from peripheral blood of healthy volunteers, and CD14þ monocytes
were immediately separated by magnetic depletion using a
monocyte isolation kit (Miltenyi Biotec, Bergisch Gladbach, Ger-
many) containing hapten-conjugated antibodies to CD3, CD7, CD19,
CD45RA, CD56, and anti-IgE Abs and a magnetic cell separator
(MACS, Miltenyi Biotec) according to the manufacturer’s instruc-
tions, routinely resulting in 490% purity of CD14þ cells. Cells were
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cultured in 24-well culture plates for 6–7 days in complete medium
supplemented with 50 ng/ml GM-CSF (from either PeproTech,
Rocky Hill NJ or a conditioned culture medium of 293 FT cells
(Invitrogen, Carlsbad, CA, USA) transfected with the hGM-CSF gene
(Shinya et al., 2009)), and 20 ng/ml IL-4 (Biosource Intl., Camarillo,
CA, USA) to obtain iDCs. At days 2 and 4, fresh medium supple-
mented with the abovementioned cytokines was added. On day 7, a
fraction of the cultured cells (1�104) were stained with anti-CD1a,
CD80, CD83, CD86 and analyzed with FACScan or FACScanto (BD
Biosciences, Franklin Lakes, NJ, USA). Immature DCs are defined as
DC-SIGNþ , CD1aþ , CD80þ ,CD83-. HCT116 cells (ATCC CCL-247) and
HeLa cells (ATCC CCL-2) were cultured in Dulbecco’s modified
Eagle's medium (DMEM) supplemented with 10% FCS (Moregate,
Queensland, Australia), penicillin (50 units/ml), and streptomycin
(50 μg/ml) (Invitrogen). C1R cells (CRL-1993) and THP-1 cells (TIB-
202) were obtained from ATCC (VA, USA). Primary T cells were
obtained from healthy donors using Lympho-Kwik T Cell Isolation
reagent (LK-50-T, One Lambda, Canoga Park, CA, USA).

VSV-G pseudotyped single-cycle recombinant HIV-1 was
obtained and infection of iDCs was performed as previously
described. (Shinya et al., 2003, 2004).
DNA constructions and in vitro synthesis of mRNA

Mutated nef genes were fused to the 50 end of the EGFP gene
and subcloned into pcDNA3.1þ (Invitrogen). After plasmid line-
arization, mRNA of each mutated nef-EGFP fusion gene, capped
with the anti-reverse cap analog (Stepinski et al., 2001) with a poly
(A) tail, was obtained using the mMESSAGE mMACHINEs T7 Kit
(Ambion, Austin, TX, USA).
mRNA electroporation of iDCs

Immature DCs (1�106/250 ml) were resuspended in Ingenio
solution (Mirus Bio LLC, Madison, WI, USA) in a cuvette with a 4-
mm gap at 0 °C. 10 mg of mRNA was added and transfection was
performed using Gene Pulsar II (Bio-Rad, Hercules, CA, USA)
(250 V, 950 mF) following the manufacturer’s protocol.
CD1a lipid Ag presentation assay

Twenty four hours after mRNA electroporation, the lipid Ag
presentation assay was performed using previously described
procedures (Shamshiev et al., 2002). In short, iDC (6�105/50 ml/
well in a 96-well plate) cultured in RPMI-1640 medium without
FCS were pre-incubated at 37 °C with 2 mg of sonicated sulfatide
for 2 h followed by the addition of sulfatide-specific CD1a-
restricted T cells K34B9.1 (105/100 ml of medium with 20% FCS/
well). After 48 h of incubation, the supernatants were harvested
and the released TNF-α was detected using ELISA kits (R&D sys-
tems, Minneapolis, MN, USA)
Antibodies for cell staining

The mouse monoclonal antibodies (mAbs) HI149 (anti-human
CD1a), FITC conjugated mouse anti- human mAbs, G46-2.6 (anti-
HLA-ABC), G46-6 (anti-HLA-DR), and phycoerythrin (PE)-con-
jugated mouse mAb HB15e (anti-CD83) were all obtained from BD
Pharmingen (San Diego, CA, USA). PE-conjugated anti human DC-
SIGN antibody (FAB161P) was from R&D systems (Minneapolis,
MN, USA) and PE-conjugated goat F(ab)2 antibody to mouse IgG
(IM0855) was from Beckman Coulter (Fullerton, CA, USA).
Confocal laser scanning microscopy and protein fragment com-
plementation assay

Total RNA of HCT116 cells or iDCs was obtained using the
RNAeasy mini kit (QIAGEN GmbH, Hilden, Germany) and was
reverse transcribed into cDNA. The PAK2 gene was amplified with
the primers (underline indicates the XhoI site):
ccgccgCTCGAGatcatgtctgataacggagaactggaagataagcctccagc

and (underline indicates the BamHI site)
cgcGGATCCttaacggttactcttcattgcttctttagctgccatgatcag.
The Hck gene was amplified with the primers (underline indi-

cates XhoI site):
ctgcagaaCTCGAGatcatggggtgcatgaagtccaagttcctccag

and (underline indicates the BamHI site)
aaggaaaaaaGCGGCCGCttatggctgctgttgg-

tactggctctctgtggccg.

Each gene was subcloned into the 50 side of the mPlum gene in
the pmPlum plasmid (Clontech) and termed as PAK2-PLUM. Hck-
PLUM or PAK2-PLUM, and nef-EGFP expression plasmids were
simultaneously transfected into HeLa cells using the HeLa Monster
transfection kit (Mirus) and their expression was observed using a
LSM710 confocal laser scanning microscope (Carl Zeiss, Iena,
Germany) equipped with ZEN 2009 software. A Plan-Apochromat
63x/1.30 oil DIC M27 Zeiss lens was used for imaging. The
obtained images were deconvolved with Huygens Essential soft-
ware (Scientific Volume Imaging, Hilversum, The Netherlands) and
the co-localizations were further analyzed by Fiji/ImageJ software
(Abramoff et al., 2004) with the Coloc 2 plugin (http://pacific.mpi-
cbg.de/wiki/index.php/Colocalization_Analysis).

For the protein fragment complementation assay, PAK2 and Hck
genes were subcloned into pKGC-MC (CoralHues Fluo-chase Kit,
MBL, Tokyo, Japan) to be termed mKGC-PAK2 and mKGC-Hck
respectively. A series of mutated nef genes were subcloned into
mKGN-MC to be mKGN-Nef. HCT116 cells were transfected simul-
taneously with mKGC-PAK2 and mKGN-Nef with/without Hck-
PLUM, as described previously (Shinya et al., 2003), and the
interaction between PAK2 and HIV-1 Nef and the effect of Hck on
their interaction was detected by reconstituted mKG (monomeric
Kusabira Green) fluorescence (Ueyama et al., 2008), which was
analyzed by flow cytometry.

Yeast two-hybrid assay

The Matchmaker two-hybrid system 3 (Clontech) was used to
analyze the interaction between proteins according to the manu-
facturer's instruction.

Real time PCR analysis

Total RNA was obtained using the RNAeasy mini kit (QIAGEN)
and reverse transcribed with a random hexamer. The Hck gene
was quantified using the THUNDERBIRD SYBR qPCR mix (Toyobo,
Osaka, Japan) and 7500 Real-Time PCR system (Applied Biosys-
tems, Foster City, CA, USA) with a pair of primers:

aaagtgatgagggcagcaag and ttacacaccagggatgcaga.

Immunoblot

The cells were lysed in triple-detergent lysis buffer [50 mM Tris
(pH 8.0), 150 mM NaCl, 0.1% SDS, with cOmplete Mini protease
inhibitor cocktail (Roche). Bradford assays were used to determine
lysate concentration (Bio-Rad, Hercules, CA, USA). Subsequently,
protein expression was assessed by Western blot. 20 μg protein
lysates were loaded into a NuPAGE Novex 12% Bis-Tris Gel (Invi-
trogen). The gel was run under reducing conditions and the pro-
teins were transferred onto Invitrolon polyvinylidene fluoride

http://pacific.mpi-cbg.de/wiki/index.php/Colocalization_Analysis
http://pacific.mpi-cbg.de/wiki/index.php/Colocalization_Analysis
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0.45-μm membrane (Invitrogen). The membrane was stained with
Ponceau S (Beacle, Kyoto, Japan) for 2 min and quickly destained.
The membrane was then imaged and total protein was quantified
using Fiji/ImageJ 2.00-rc-38/1.60b. After destaining in 0.1 M NaOH,
the membrane was washed in dH2O. Subsequently, immunoblot
was performed with primary antibody (1:1000, anti-HCK anti-
body, N-30, Santa Cruz Biotechnology, Texas, USA) and secondary
antibody (1:15000, Goat Anti-Rabbit IgG H&L (HRP) (ab97051),
Abcam, Cambridge, UK). 3,3 V,5,5 V-affect tetramethylbenzidine
(TMB) substrate kit for peroxidase (VECTOR lab., Burlingame, CA,
USA) was used to image the membrane. Relative protein expres-
sion levels adjusted to total protein transfer (Ponceau S staining)
were determined by densitometry using the image analysis pro-
gram Fiji/ImageJ 2.00-rc-38/1.60b).

Statistical analysis

Statistical analysis was performed using Prism software
(GraphPad Software, La Jolla, Ca, USA). All DNA constructions were
confirmed by sequencing.
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