
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 337 (2008) 1302–1314

www.elsevier.com/locate/jmaa

Laguerre polynomials and the inverse Laplace transform
using discrete data

Tran Ngoc Lien a, Dang Duc Trong b, Alain Pham Ngoc Dinh c,∗

a Faculty of Sciences, Cantho University, Cantho, Viet Nam
b Department of Mathematics and Computer Sciences, Hochiminh City National University, 227 Nguyen Van Cu, Hochiminh City, Viet Nam

c Mapmo UMR 6628, Université d’Orleans, BP 6759, 45067 Orleans Cedex, France

Received 23 September 2006

Available online 3 May 2007

Submitted by W.L. Wendland

Abstract

We consider the problem of finding a function defined on (0,∞) from a countable set of values of its Laplace transform.
The problem is severely ill-posed. We shall use the expansion of the function in a series of Laguerre polynomials to convert the
problem in an analytic interpolation problem. Then, using the coefficients of Lagrange polynomials we shall construct a stable
approximation solution. Error estimate is given. Numerical results are produced.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let L2
ρ(0,∞) be the space of real Lebesgue measurable functions defined on (0,∞) such that

‖f ‖2
L2

ρ
≡

∞∫
0

∣∣f (x)
∣∣2

e−x dx < ∞.

This is a Hilbert space corresponding to the inner product

〈f,g〉 =
∞∫

0

f (x)g(x)e−x dx.
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We consider the problem of recovering a function f ∈ L2
ρ(0,∞) satisfying the equations

Lf (pj ) ≡
∞∫

0

e−pj xf (x) dx = μj (DIL)

where pj ∈ (0,∞), j = 1,2,3, . . . .
Generally, we have the classical problem of finding a function f (x) from its given image g(p) satisfying

Lf (p) ≡
∞∫

0

e−pxf (x) dx = g(p), (1)

where p is in a subset ω of the complex plane. We note that Lf (p) is usually an analytic function on a half plane
{Rep > α} for an appropriate real number α. Frequently, the image of a Laplace transform is known only on a
subset ω of the right half plane {Rep > α}. Depending on the set ω, we shall have appropriate methods to construct
the function f from the values in the set{

Lf (p): p ∈ ω
}
.

Hence, there are no universal methods of inversion of the Laplace transform.
If the data g(p) is given as a function on a line (−i∞ + a,+i∞ + a) (i.e., ω = {p: p = a + iy, y ∈ R}) on the

complex plane then we can use the Bromwich inversion formula [26, p. 67] to find the function f (x).
If ω ⊂ {p ∈ R: p > 0} then we have the problem of real inverse Laplace transform. The right-hand side is known

only on (0,∞) or a subset of (0,∞). In this case, the use of the Bromwich formula is therefore not feasible. The
literature on the subject is impressed in both theoretical and computational aspects (see, e.g., [2,3,10,16,18,22]). In
fact, if the data g(p) is given exactly then, by the analyticity of g, we have many inversion formulas (see, e.g., [3,7,8,
20,21,23]). In [3], the author approximate the function f by

f (t) ∼=
N∑

k=0

bk(a)dk
(
exg

(
ex

))
/dxk

where bk(a) are calculated and tabulated regularization coefficients and g is the given Laplace transform of f . Another
method is developed by Saitoh and his group [4,5,20,21], where the function f is approximated by integrals having
the form

uN(t) =
∞∫

0

g(s)e−stPN(st) ds, N = 1,2, . . . ,

where PN is known (see [5]). Using the Saitoh formula, we can get directly error estimates.
However, in the case of inexact data, we have a severely trouble by the ill-posedness of the problem. In fact, a

solution corresponding to the inexact data do not exist if the data is non-smooth, and in the case of existence, these
do not depend continuously on the given data (that are represented by the right-hand side of the equalities). Hence, a
regularization method is in order. In [7], the authors used the Tikhonov method to regularize the problem. In fact, in
this method, we can approximate u0 by functions uβ satisfying

βuβ +L∗Luβ = L∗g, β > 0.

Since L is self-adjoint (cf. [7]), the latter equation can be written as

βuβ +
∞∫

0

uβ(s)

s + t
ds =

∞∫
0

e−st g(s) ds.

The latter problem is well-posed.
Although the inverse Laplace transform has a rich literature, the papers devoted to the problem with discrete data

are scarce. In fact, from the analyticity of Lf (p), if Lf (p) is known on a countable subset of ω ⊂ {Rep > α}
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accumulating at a point then Lf (p) is known on the whole {Rep > α}. Hence, generally, a set of discrete data is
enough for constructing an approximation function of f . It is a moment problem. In [15], the authors presented some
theorems on the stabilization of the inverse Laplace transform. The Laplace image is measured at N points to within
some error ε. This is achieved by proving parallel stabilization results for a related Hausdorff moment problem. For
a construction of an approximate solution of (DIL), we note that the sequence of functions (e−pj x) is (algebraically)
linear independent and moreover the vector space generated by the latter sequence is dense in L2(0,∞). The method
of truncated expansion as presented in [6, Section 2.1] is applicable and we refer the reader to this reference for full
details. In [11,13], the authors convert (DIL) into a moment problem of finding a function in L2(0,1) and, then, they
use Muntz polynomials to construct an approximation for f .

Now, in the present paper, we shall convert (DIL) to an analytic interpolation problem on the Hardy space of the
unit disk. After that, we shall use Laguerre polynomials and coefficients of Lagrange polynomials to construct the
function f . An approximation corresponding to the non-exact data and error estimate will be given.

The remainder of the paper divided into two sections. In Section 2, we convert our problem into an interpolation
one and give a uniqueness result. In Section 3, we shall give two regularization results in the cases of exact data and
non-exact data. Numerical comparisons with exact solution are given in the last section.

2. A uniqueness result

In this paper we shall use Laguerre polynomials

Ln(x) = ex

n!
dn

dxn

(
e−xxn

)
.

We note that {Ln} is a sequence of orthonormal polynomials on L2
ρ(0,∞). We note that (see, e.g., [1], [9, p. 67])

exp

(
xz

z − 1

)
(1 − z)−1 =

∞∑
n=0

Ln(x)zn.

Hence, if we have the expansion

f (x) =
∞∑

n−0

anLn(x)

then
∞∫

0

f (x) exp

(
xz

z − 1

)
(1 − z)−1e−x dx =

∞∑
n=0

anz
n.

It follows that

∞∑
n=0

anz
n =

∞∫
0

f (x) exp

(
x

z − 1

)
(1 − z)−1 dx.

Put Φf (z) = ∑∞
n=0 anz

n, αj = 1 − 1/pj , one has

Φf (αj ) = pjμj ,

i.e., we have an interpolation problem of finding an analytic function Φf in the Hardy space H 2(U). Here, we denote
by U the unit disk of the complex plane and by H 2(U) the Hardy space. In fact, we recall that H 2(U) is the space of
all functions φ analytic in U and if, φ ∈ H 2(U) has the expansion φ(z) = ∑∞

k=0 akz
k then

‖φ‖2
H 2(U)

=
∞∑

k=0

|ak|2 = 1

2π

2π∫
0

∣∣φ(
eiθ

)∣∣2
dθ.

We can verify directly that the linear operator Φ is an isometry from L2
ρ onto H 2(U). In fact, we have
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Lemma 1. Let f ∈ L2
ρ(0,∞). Then Lf (z) is analytic on {z ∈ C | Re z > 1/2}. If we have an expansion

f =
∞∑

n=0

anLn

then one has Φf ∈ H 2(U) and

‖Φf ‖2
H 2(U)

=
∞∑

n=0

|an|2 = ‖f ‖2
L2

ρ(0,∞)
.

Moreover, if we have in addition that
√

xf ′ ∈ L2
ρ then

∞∑
n=0

n|an|2 � ‖√xf ′‖2
L2

ρ
.

Proof. Putting Fz(t) = e−ztf (t), we have Fz ∈ L2(0,∞) for every Re z > 1/2. Hence Lf (z) = ∫ ∞
0 Fz(t) dt is ana-

lytic for Re z > 1/2. From the definitions of L2
ρ(0,∞) and H 2(U), we have the isometry equality. Now we prove the

second inequalities. We first consider the case f ′, f ′′ in the space

B = {
g Lebesgue measurable on (0,∞)

∣∣ √
xg ∈ L2

ρ(0,∞)
}
.

We have the expansion

f =
∞∑

n=0

anLn

where an = 〈f,Ln〉.
The function y = Ln satisfies the following equation (see [17])

xy′′ + (1 − x)y′ + ny = 0

which gives(
xe−xy′)′ + nye−x = 0.

It follows that

nan =
∞∫

0

f (x)nLn(x)e−x dx = −
∞∫

0

f (x)
(
xe−xL′

n(x)
)′

dx =
∞∫

0

f ′(x)xe−xL′
n(x) dx

= −
∞∫

0

(
f ′(x)xe−x

)′
Ln(x)dx = −

∞∫
0

(
xf ′′(x) + f ′(x) − xf ′(x)

)
Ln(x)e−x dx = −〈xf ′′ + f ′ − xf ′,Ln〉.

Since Ln is an orthonormal basis, we have the Fourier expansion

xf ′′ + f ′ − xf ′ =
∞∑

n=0

(−nan)Ln.

Using the Parseval equality we have

〈xf ′′ + f ′ − xf ′, f 〉 =
∞∑

n=0

(−nan)an.

It can be rewritten as
∞∫ (

xe−xf ′(x)
)′
f (x)dx = −

∞∑
n=0

na2
n.
0
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Integrating by parts, we get

∞∫
0

xe−x
∣∣f ′(x)

∣∣2
dx =

∞∑
n=0

na2
n.

Now, for f ′ ∈ B we choose (fk) such that f ′
k, f

′′
k ∈ B for every k = 1,2, . . . and

√
xf ′

k (respectively fk) → √
xf ′

(respectively f ) in L2
ρ as k → ∞. Assume that

fk =
∞∑

n=0

aknLn.

Then we have
∞∫

0

xe−x
∣∣f ′

k(x)
∣∣2

dx =
∞∑

n=0

na2
kn.

The latter equality involves for every N

N∑
n=0

na2
kn �

∥∥√
xf ′

k

∥∥2
L2

ρ(0,∞)
. (2)

Since fk → f in L2
ρ as k → ∞ we have that akn → an as k → ∞, for each n. On the other hand, we have√

xf ′
k → √

xf ′ in L2
ρ as k → ∞. Therefore, letting k → ∞ in (2) we get

N∑
n=0

na2
n � ‖√xf ′‖2

L2
ρ(0,∞)

.

Letting N → ∞ in the latter inequality, we get the desired inequality. �
Using Lemma 1, one has a uniqueness result

Theorem 1. Let pj > 1/2 for every j = 1,2, . . . . If

∑
pj >1

1

pj

+
∑

1/2<pj <1

2pj − 1

pj

= ∞

then Problem (DIL) has at most one solution in L2
ρ(0,∞).

Proof. Let f1, f2 ∈ L2
ρ(0,∞) be two solutions of (DIL). Putting g = f1 − f2 then g ∈ L2

ρ(0,∞) and Lg(pj ) = 0. It
follows that Φg(1 − 1/pj ) = 0, j = 1,2, . . . . It follows that αj = 1 − 1/pj are zeros of Φg. We have Φg ∈ H 2(U)

and
∞∑

j=1

(
1 − |αj |

) =
∑
pj >1

1

pj

+
∑

1/2<pj <1

2pj − 1

pj

= ∞.

Hence we get Φg ≡ 0 (see, e.g., [19, p. 308]). It follows that g ≡ 0. This completes the proof of Theorem 1. �
3. Regularization and error estimates

In the section, we assume that (pj ) is a bounded sequence, pj �= pk for every j �= k. Without loss of generality, we
shall assume that ρ = 1 is an accumulation point of pj . In fact, if pj has an accumulation point ρ0 > 1 then, by putting
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f̃ (x) = e−(ρ0−1)xf (x) and p′
j = pj − ρ0 + 1, we can transform the problem to the one of finding f̃ ∈ L2

ρ(0,∞) such
that

∞∫
0

e
−p′

j x
f̃ (x) dx = μj , j = 1,2, . . . ,

in which p′
j has the accumulation point ρ = 1. In fact, in Theorem 2 below, we shall assume that |1 − 1

pj
| � σ for

every j = 1,2, . . . , where σ is a given number.
We denote by �

(m)
k (ν) the coefficient of zk in the expansion of the Lagrange polynomial Lm(ν) (ν = (ν1, . . . , νm))

of degree (at most) m − 1 satisfying

Lm(ν)(zk) = νk, 1 � k � m,

where zk = αk. If φ is an analytic function on U , we also denote

Lm(φ) = Lm

(
φ(z1), . . . , φ(zm)

)
.

We define

Lθ
m(ν)(z) =

∑
0�k�θ(m−1)

�
(m)
k (ν)zk.

The polynomial Lθ
m(ν) is called a truncated Lagrange polynomial (see also [25]). For every g ∈ L2

ρ(0,∞), we put

Tng = (
p1Lg(p1), . . . , pnLg(pn)

)
,

T g = (
p1Lg(p1), . . . , pnLg(pn), . . .

) ∈ �∞.

Here, we recall that αn = 1 − 1/pn. We shall approximate the function f by

Fm = Φ−1Lθ
m(Tmf ) =

∑
0�k�θ(m−1)

�
(m)
k (Tmf )Lk.

We shall prove that Fm is an approximation of f . Before stating and proving the main results, some remarks are in
order.

We first recall the concept of regularization. Let f be an exact solution of (DIL), we recall that a sequence of linear
operator An :�∞ → L2

ρ(0,∞) is a regularization sequence (or a regularizer) of Problem (DIL) if (An) satisfies two
following conditions (see, e.g., [14, p. 25])

(R1) For each n, An is bounded,
(R2) limn→∞ ‖An(Tf ) − f ‖ = 0.

The number “n” is called the regularization parameter. As a consequence of (R1), (R2), we can get

(R3) For ε > 0, there exists the functions n(ε) and δ(ε) such that limε→0 n(ε) = ∞, limε→0 δ(ε) = 0 and that∥∥An(ε)(μ) − f
∥∥ � δ(ε)

for every μ ∈ �∞ such that ‖μ − Tf ‖∞ < ε.

In the present paper, the operator An is Φ−1Lθ
m. The number ε is the error between the exact data Tf and the

measured data μ. For a given error ε, there are infinitely many ways of choosing the regularization parameter n(ε). In
the present paper, we give an explicit form of n(ε).

Next, in our paper, we have the interpolation problem of reconstruction the analytic function φ = Φf ∈ H 2(U)

from a sequence of its values (φ(αn)). As known, the convergence of Lm(φ) to φ depends heavily on the properties
of the points (αn). The Kalmár–Walsh theorem (see, e.g., [12, p. 65]) shows that Lm(φ) → φ for every φ in C(U) for
all φ analytic in a neighborhood of U if and only if (αn) is uniformly distributed in U , i.e.,

lim
m→∞ m

√
max
|z|�1

∣∣(z − α1) · · · (z − αm)
∣∣ = 1.
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The Fejer points and the Fekete points are the sequences of points satisfying the latter condition (see [12, p. 67]). The
Kalmár–Walsh fails if C(U) is replaced by H 2(U) (see [25] for a counterexample). Hence, the Lagrange polynomial
cannot use to reconstruct φ. In [12], we proved a theorem similar to the Kalmár–Walsh theorem for the case of H 2(U).
In fact, the Lagrange polynomials will convergence if we “cut off” some terms of the Lagrange polynomial. Especially,
in [12] and the present paper, the points (αn) are, in general, not uniformly distributed.

In Theorem 2, we shall verify the condition (R2). More precisely, we have

Theorem 2. Let σ ∈ (0,1/3), let f ∈ L2
ρ(0,∞) and let pj > 1/2 for j = 1,2, . . . satisfy∣∣∣∣1 − 1

pj

∣∣∣∣ � σ.

Put θ0 be the unique solution of the equation (unknown x)

2σ 1−x

1 − σ
= 1.

Then for θ ∈ (0, θ0), one has

‖f − Fm‖2
L2

ρ
→ 0 as m → ∞.

If, we assume in addition that
√

xf ′ ∈ L2
ρ(0,∞) then

‖f − Fm‖2
L2

ρ
� (1 + mθ)2‖f ‖2

L2
ρ

(
2σ 1−θ

1 − σ

)2m

+ 1

mθ
‖√xf ′‖2

L2
ρ(0,∞)

.

Proof. We have in view of Lemma 1

‖f − Fm‖2
L2

ρ
=

∑
0�k�θ(m−1)

∣∣δ(m)
k

∣∣2 +
∑

k>θ(m−1)

|ak|2 (3)

where δ
(m)
k = ak − �

(m)
k (Tmf ). We shall give an estimate for δ

(m)
k . In fact, we have

∥∥Φf − Lm(Tmf )
∥∥2

H 2(U)
=

m−1∑
k=0

∣∣δ(m)
k

∣∣2 +
∞∑

k=m

|ak|2.

On the other hand, the Hermite representation (see, e.g., [12, p. 59], [24]) gives

Φf (z) − Lm(Tmf )(z) = 1

2πi

∫
∂U

ωm(z)(Φf )(ζ ) dζ

ωm(ζ )(ζ − z)

where ωm(z) = (z − α1) . . . (z − αm). Now, if we denote by σ
(m)
−1 = σ

(m)
−2 = · · · = 0 and

σ
(m)
0 = 1,

σ (m)
r =

∑
1�j1<···<jr�m

αj1 . . . αjr (1 � r � m),

β(m)
s = 1

2πi

∫
∂U

Φf (ζ ) dζ

ζ s+1ωm(ζ )

then we can write in view of the Hermite representation

Φf (z) − Lm(Tmf )(z) =
∞∑

k=0

(
k∑

r=0

(−1)rσ
(m)
m−rβ

(m)
k−r

)
zk.

From the latter representation, one gets

δ
(m)
k =

k∑
(−1)rσ

(m)
m−rβ

(m)
k−r , 0 � k � m − 1.
r=0
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Now, by direct computation, one has

∣∣β(m)
s

∣∣ � 1

2π

2π∫
0

|Φf (eiθ )|
|ωm(eiθ )| dθ.

But one has∣∣ωm

(
eiθ

)∣∣ �
(∣∣eiθ

∣∣ − |α1|
)
. . .

(∣∣eiθ
∣∣ − |αm|) � (1 − σ)m.

Hence

∣∣β(m)
s

∣∣ � 1

2π(1 − σ)m

2π∫
0

∣∣Φf
(
eiθ

)∣∣dθ � ‖Φf ‖H 2(U)(1 − σ)−m.

We also have∣∣σ (m)
m−r

∣∣ � σm−rCr
m � σm−k2m,

where Ck
m = m!

k!(m−k)! . Hence, we have

∣∣δ(m)
k

∣∣ � (1 + mθ)‖f ‖L2
ρ

(
2σ 1−θ

1 − σ

)m

.

From the latter inequality, one has in view of (3)

‖f − Fm‖2
L2

ρ
� (1 + mθ)2‖f ‖2

L2
ρ

(
2σ 1−θ

1 − σ

)2m

+
∞∑

k�mθ

|ak|2.

For θ ∈ (0, θ0), one has

0 <
2σ 1−θ

1 − σ
<

2σ 1−θ0

1 − σ
= 1.

Hence, we have

lim
m→∞‖f − Fm‖2

L2
ρ

= 0

as desired, since, on the one hand, we have the comparison between an exponential with base b < 1 and a power
function and, in the other hand, the remain of a convergent series

∑∞
k=0 |ak|2.

Now if
√

xf ′ ∈ L2
ρ(0,∞) then one has since k

mθ
> 1 and from Lemma 1

∞∑
k>mθ

|ak|2 � 1

mθ

∞∑
k=0

k|ak|2 � 1

mθ
‖√xf ′‖2

L2
ρ
.

This completes the proof of Theorem 2. �
Now, we consider the case of non-exact data. In Theorem 3, we shall consider the condition (R3) of the definition

of the regularization. Put

Dm = max
1�n�m

(
max
|z|�R

∣∣∣∣ ωm(z)

(z − αn)ω′
m(αn)

∣∣∣∣
)

.

Let ψ : [0,∞) → R be an increasing function satisfying

ψ(m) � mDm, m = 1,2, . . . ,

and

m(ε) = [
ψ−1(ε−3/4)] − 1

where [x] is the greatest integer � x.
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Theorem 3. Let σ ∈ (0,1/3), let f,
√

xf ′ ∈ L2
ρ(0,∞) and let pj > 1/2 for j = 1,2, . . . satisfy∣∣∣∣1 − 1

pj

∣∣∣∣ � σ.

Put θ0 be the unique solution of the equation (unknown x)

2σ 1−x

1 − σ
= 1.

Let ε > 0 and let (με
j ) be a measured data of (Lf (pj )) satisfying

sup
j

∣∣pj

(
Lf (pj ) − με

j

)∣∣ < ε.

Then for θ ∈ (0, θ0), one has

∥∥f − Φ−1Lθ
m(ε)

(
νε

)∥∥2
L2

ρ
� 2

(
1 + m(ε)θ

)2‖f ‖2
L2

ρ

(
2σ 1−θ

1 − σ

)2m(ε)

+ 2

m(ε)θ
‖√xf ′‖2

L2
ρ
+ 2ε1/2,

where νε
j = pjμ

ε
j for j = 1,2, . . . .

Proof. We note that

Lm(Tmf )(z) − Lm

(
νε

)
(z) =

m∑
j=1

(
pjμj − νε

j

) ωm(z)

(z − αj )ω′
m(αj )

.

It follows that∥∥Lm(Tmf ) − Lm

(
νε

)∥∥∞ � εmDm.

Hence∥∥Lθ
m(Tmf ) − Lθ

m

(
νε

)∥∥
H 2(U)

�
∥∥Lm(Tmf ) − Lm

(
νε

)∥∥∞ � εmDm.

It follows by the isometry property of Φ∥∥f − Φ−1Lθ
m

(
νε

)∥∥2
L2

ρ
� 2‖f − Fm‖2

L2
ρ
+ 2

∥∥Φ−1Lθ
m(Tmf ) − Φ−1Lθ

m

(
νε

)∥∥2
L2

ρ

� 2(1 + mθ)2‖f ‖2
L2

ρ

(
2σ 1−θ

1 − σ

)2m

+ 2

mθ
‖√xf ′‖2

L2
ρ
+ 2ε2m2D2

m.

By choosing m = m(ε) we get the desired result. �
4. Numerical results

We present some results of numerical comparison between the function f (x) given in L2
p(0,∞) and its approxi-

mated form Fm as it is stated in Theorem 2.
First consider the function f (x) = e−x and its expansion in Laguerre series

e−x =
∑
n�0

1

2n+1
Ln(x). (4)

So in the Hardy space H 2(U), we have to interpolate the analytic function

Φf (x) =
∑
n�0

1

2n+1
xn = 1

2 − x
(5)

by the Lagrange polynomial Lm(Tmf ), interpolation defined by

Lm(Tmf )

(
1 − 1

pi

)
= pi

∞∫
0

e−pixe−x dx = pi

pi + 1
(6)

where pi → 1 as i → ∞.
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Fig. 1.

Fig. 2.
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Fig. 3.

Fig. 4.
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On the interval (−1.8,+1.8) we have drawn in Fig. 1 the curves e−x and its approximation Lm(Tmf )(x) for
m = 10. If m = 12 there is divergence for our interpolation (Fig. 2) outside the interval (−1,+1).

In our 2nd example we have chosen the function

f (x) = ex/4 = 4

3

∑
n�0

(−1

3

)n

Ln(x). (7)

In the Hardy space the function

Φf (x) = 4

3

∑
n�0

(−x

3

)n

= 4

3 + x

is approximated by the Lagrange polynomial Lm(Tmf ) at the points (1 − 1
pi

,
−4pi

1−4pi
), pi → 1 as i → ∞.

Figure 3 (respectively Fig. 4) shows the quite good convergence (respectively divergence) on the interval
(−2.8,2.8) with m = 4 (respectively m = 11).

In both cases we have chosen θ0 = 0.29 with σ = 0.25 (θ0 given by 2σ 1−θo

1−σ
= 1, 0 < σ < 1

3 ). So in the 2nd case the
truncated Lagrange polynomial is almost verified since 11 × 0.29 ∼ 3.2.
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