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Abstract

The aim of this paper is to prove isoperimetric inequalities on submanifolds of the Euclidean space
using mass transportation methods. We obtain a sharp “weighted isoperimetric inequality” and a nonsharp
classical inequality similar to the one obtained in Michael and Simon (1973) [19]. The proof relies on the
description of a solution of the problem of Monge when the initial measure is supported in a submanifold
and the final one supported in a linear subspace of the same dimension.
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Résumé

Le but de cet article est de démonter des inégalités isopérimétriques sur les sous-variétés de l’espace
euclidien en utilisant des méthodes de transport optimal de mesures. On obtient ainsi une “inégalité isopéri-
métrique à poids” avec constante optimale et une inégalité classique similaire à celle obtenue dans Michael
et Simon (1973) [19]. La preuve repose sur la description d’une solution du problème de Monge entre une
mesure initiale supportée par une sous-variété et une mesure finale supportée par un sous-espace de même
dimension.
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0. Introduction

The classical isoperimetric inequality of the Euclidean space states that, for any regular do-
main Ω ⊂ R

n,

nω
1
n
n Vol(Ω)

n−1
n � vol(∂Ω)

with equality if and only if Ω is a ball (ωn being the volume of the unit ball). This inequality
admits a lot of generalization to other geometries (cf. [20] for a classical survey, and [22] for a
more recent one), and on the other hand, a natural question is to find geometries that share the
Euclidean isoperimetric inequality. One of the class of Riemannian manifolds expected to satisfy
this inequality is the class of minimal submanifolds in Euclidean spaces, and more generally in
Cartan–Hadamard manifolds.

In this setting, the existence of a positive isoperimetric constant was proved by W.K. Allard
(cf. [1]) and by J.H. Michael and L.M. Simon (cf. [19]). In the more general setting of arbitrary
submanifolds we have the following inequality (cf. [19], Theorem 2.1): there exists a positive
constant Cn, depending only on n, such that for any domain Ω in an n-dimensional submanifold
of R

n+k

Cn Vol(Ω)
n−1
n � vol(∂Ω) + n

∫
Ω

|H |dvM

where H is the mean curvature vector of M .
This result was then extended to submanifolds in Cartan–Hadamard manifolds (cf. [16]

and [6]), but the question of the optimal constant for this inequality is still an open problem,
even for minimal surfaces in R

3 (cf. [8,10,11] for partial results, and [9] for a survey on this
question).

A way to prove the Euclidean isoperimetric inequality is to construct a map, with fine geo-
metric properties, which push forward the uniform measure on Ω to the uniform measure on the
unit ball: this has to be seen as a way to compare the domain Ω to the model domain satisfy-
ing the equality case. This approach was first used by M. Gromov using a map constructed by
Knothe (cf. for example [7] for the proof), and in the sequel we shall refer to such a mapping as
a “Knothe map”.

More recently, D. Cordero-Erausquin, B. Nazaret and C. Villani observed that the solution of
an optimal transportation problem between the two measures could be used as a “Knothe map”
(cf. [12]): a theorem by Y. Brenier [2] states that, if μ is a probability measure on R

n that do not
give mass to small sets (i.e. sets with Hausdorff dimension less than or equal to n − 1) then, for
any probability measure ν, there exists a convex function whose gradient push forward μ on ν.
This approach was also used in [14] to get isoperimetric type inequalities in space form.

In the case of an n-dimensional submanifold of R
n+k we would like to compare the uniform

measure on Ω with the model measure which is the uniform one on the unit ball of n-dimensional
subspace of R

n+k ; however, we are precisely in the case where Brenier’s theorem does not hold
as the first measure is supported in a small set. The goal of this paper is to deal with the two
following questions: considering two measures in R

n+k supported in submanifold and in a linear
subspace of the same dimension, what are the solutions of the optimal transportation problem?
Do these solutions have fine geometric properties to give isoperimetric inequalities on the sub-
manifold?
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In the first section we recall the main results which will be used in the remainder of the paper:
the equivalence between isoperimetric and Sobolev inequalities, existence and properties of the
solution of the optimal transportation problem in Euclidean space, and differentiability properties
of convex functions.

In the second section we describe solutions of the mass transportation problem between a
measure supported in a submanifold and a measure supported in a linear subspace. It is shown in
particular that orthogonal projections play a natural role in this problem.

The third section is devoted to the proof of the main theorem: using the optimal map we can
compare the uniform measure on a domain in a submanifold with the model measure. We get the
following sharp “weighted isoperimetric inequality” (cf. Theorem 3.1):

Theorem. Let i :Mn → R
n+k be an isometric immersion, and let E be an n-dimensional linear

subspace of R
n+k . For any regular domain Ω ⊂ M we have

nω
1
n
n

(∫
Ω

J
1

n−1
E dvM

) n−1
n

� vol(∂Ω) + n

∫
Ω

|H |dvM,

where H is the mean curvature vector of the immersion, and JE is the absolute value of the
Jacobian determinant of the orthogonal projection from M to E. This inequality is sharp, as we
have equality when Ω is a geodesic ball in E.

The Sobolev counterpart of this inequality is

nω
1
n
n

(∫
M

J
1

n−1
E |u| n

n−1 dvM

) n−1
n

�
∫
M

|∇u|dvM + n

∫
M

|H ||u|dvM

for any function u ∈ C∞
c (M).

We also obtain in this section a classical isoperimetric inequality (i.e. of the form

C Vol(Ω)
n−1
n � vol(∂Ω) + n

∫
Ω

|H |dvM ) with a constant which is not sharp but improve by
far the constants given in [19] and [16] (cf. Theorem 3.2 and the remark thereafter).

The fourth section is devoted to the study of certain warped products on which our method
still applies and gives weighted Sobolev inequalities.

1. Preliminaries

1.1. Isoperimetric and Sobolev inequalities

It is a well-known fact (due to Federer and Fleming, cf. for example [7] for a proof) that, on
Riemannian manifolds, the isoperimetric inequality is equivalent to the L1 Sobolev inequality:

C Vol(Ω)
n−1
n � vol(∂Ω) for any domain Ω ⊂ M if and only if C(

∫
M

|u| n
n−1 )

n−1
n �

∫
M

|∇u| for
any u ∈ C∞

c (M) (with the same constant in both inequalities). This equivalence still holds true
for the (weighted) isoperimetric inequalities with the extra curvature term we are considering in
this paper.

In the sequel, we shall prove the Sobolev statement of the inequalities. By density of the
smooth functions, the Sobolev inequality still holds for functions in Sobolev spaces, and since
|∇u| = |∇|u|| almost everywhere, it is sufficient to consider nonnegative smooth functions.
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As was observed in [12], the Lp Sobolev inequalities on R
n can also be obtained using the

mass transportation method. In fact, they obtain a nice duality principle, and if

Sn,p = inf

{ ‖∇u‖p

‖u‖ np
n−p

∣∣ u ∈ C∞
c

(
R

n
)}

is the Lp Sobolev constant of R
n, then Sn,p can also be obtained as the following supremum

over smooth functions (cf. [12, Theorem 2]):

Sn,p = n(n − p)

p(n − 1)
sup

{ ∫ |v| p(n−1)
n−p

(
∫ |y| p

p−1 |v(y)| np
n−p dy)

p−1
p

∣∣ v ∈ C∞
c

(
R

n
)
, ‖v‖ np

n−p
= 1

}
.

As our method to get the Sobolev inequalities is derived from the one used in [12], this charac-
terization of Sn,p will appear naturally.

1.2. Mass transportation problems

Consider two Polish spaces X1 and X2, and a “cost function” c :X1 × X2 → R. Given two
probability measures μ and ν on X1 and X2 respectively, the cost of a map T :X1 → X2 which
push forward μ on ν is J (T ) = ∫

X1
c(x,T x)dμ. The problem of Monge consists in finding a

map whose cost is the infimum of the costs of all maps pushing forward μ on ν.
The problem of Monge may have no solution, and it is useful to consider a relaxed form:

the Monge–Kantorovich problem. We now consider transference plans between μ and ν, that is
probability measures ρ on X1 ×X2 whose marginals are π1

# ρ = μ and π2
# ρ = ν (where πi is the

projection on Xi ). The cost of a transference plan ρ is J (ρ) = ∫
X1×X2

c(x1, x2) dρ(x1, x2), and
an optimal transference plan (i.e. a solution of Monge–Kantorovich problem) is a transference
plan whose cost is the infimum of the costs of all transference plan between μ and ν.

In particular, if a map T :X1 → X2 push forward μ on ν, then it gives rise to a transference
plan ρ = (Id ×T )#μ whose support in X1 ×X2 is Spt(ρ) = {(x, T x) | x ∈ Spt(μ)}; if an optimal
transference plan is of this form, then the map T is a solution of the problem of Monge.

The properties of optimal maps and transference plans depend on the properties of the Polish
spaces X1 and X2 and on the cost functions; the main reference on this subject is [24]. In the
sequel we shall work with the “quadratic cost”: X = Y and c(x, y) = d(x, y)2 where d is the
distance on X. The main result we shall use on optimal transportation is the following theorem
due to Y. Brenier (cf. [24] for a proof):

Theorem 1.1. If μ and ν are probability measures on R
n which do not charge small sets (i.e.

sets with Hausdorff dimension less than or equal to n − 1), then there exists a unique optimal
transference plan ρ between μ and ν.

Moreover, ρ = (Id × T )#μ, where T : Spt(μ) → Spt(ν) is the gradient of a convex function.

The optimality of a transference plan is related to the c-cyclical monotonicity of its support
(cf. [24]). It is not true in general that a transference plan is optimal if and only if its support
is c-cyclically monotone, but in our setting, as the cost function is continuous, we have the
following criterion (cf. [21, Theorem B]):
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Theorem 1.2. A transference plan ρ ∈ P(X × Y) is optimal if and only if for every finite family
(x1, y1), . . . , (xn, yn) of points of Spt(ρ) and for any permutation s ∈ Sn we have

n∑
i=1

d2(xi, yi) �
n∑

i=1

d2(xi, ys(i)).

For more results on the relations between optimality of transference plans and c-cyclical
monotonicity of their supports, cf. [21].

1.3. Restriction of convex functions to submanifolds

Considering an isometric immersion i :Mn → Nn+k , we shall note Ax its second fundamental
form at x, dans Hx = 1

n

∑
Ax(ei, ei) its mean curvature vector, where the sum is taken over an

orthonormal basis of TxM .
In the sequel we shall note ∇ and D2 (resp. ∇̄ and D̄2) the gradient and the Hessian on M

(resp. on N ).
In particular, the second fundamental form appears when writing the Hessian of the restriction

of a function to the submanifold in term of the Hessian of the function on the ambient manifold.
Let F :N → R be a smooth function and let f = F|M be its restriction to M . For all x ∈ M and
all ξ, η ∈ TxM we have

D2f (x)(ξ, η) = D̄2F(x)(ξ, η) + 〈
(∇̄F)x, Ax(ξ, η)

〉
.

As a consequence, we get the Laplacian of f :


f (x) = tr
(
D̄2F(x)|TxM

) + n
〈
(∇̄F)x,Hx

〉
. (1.1)

The solution of the problem of Monge is given by the gradient of a convex function, however,
there is no reason for this function to be smooth; so we have to get a formula similar to Eq. (1.1)
for the Laplacian in the sense of distribution.

Let V̄ : Rn+k → R be a convex function. It is well known that V̄ is locally Lipschitz, and
therefore differentiable almost everywhere. Moreover, its Hessian in the sense of distribution
is a Radon measure, and, almost everywhere, V̄ has second derivative given by the absolutely
continuous part of this measure with respect to Lebesgue measure (cf. for example [13]). This
second derivative is known as the Hessian in the sense of Aleksandrov, and will be noted D̄2

AV̄

in the sequel.
Considering an isometric immersion i :Mn → R

n+k and a convex function V̄ : Rn+k → R,
we shall prove that Eq. (1.1) holds “in Aleksandrov sense”. In fact, we only need to consider the
following particular case: let E ⊂ R

n+k be an n-dimensional linear subspace, let p be the orthog-
onal projection on E, let V :E → R be a convex function, and let V̄ = V ◦ p; the function V̄ is
convex and invariant in the directions of E⊥. In this context, we have the following proposition:

Proposition 1.3. Let V and V̄ be as above, and suppose that |∇V | � C on E. For any bounded
domain Ω ⊂ M , the restriction VΩ :Ω → R of V̄ to Ω has the following properties:
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i. VΩ is Lipschitz and |∇VΩ | � C;
ii. there exist h ∈ L2(Ω) and a nonnegative Radon measure ν such that, in the sense of distri-

bution, 
D′VΩ = ν + h where h and ν have the following properties:
• for all ϕ ∈ C∞

c (Ω), | ∫
Ω

ϕh| � nC
∫
Ω

|ϕ||H |;
• if D ⊂ Ω is a domain such that the orthogonal projection p :D → E is a local diffeo-

morphism, then h = n〈H, ∇̄V̄ 〉 a.e. in D and the Lebesgue decomposition of ν reads
ν = g dvM + νs with g(x) = tr(D̄2

AV̄ (x)|TxM
) for a.a. x ∈ D, and νs singular with respect

to dvM .

Proof. As |∇V | � C, the function V̄ is C-Lipschitz and for any x, y in Ω we have |VΩ(x) −
VΩ(y)| � C|x − y| � CdM(x, y), where dM is the distance in M . Therefore, VΩ is C-Lipschitz
on Ω and, by Rademacher’s theorem, differentiable almost everywhere with |∇VΩ | � C.

To prove ii we follow [13]. Let Vε = ρε ∗ V , where ρε is a mollifier on E; V̄ε = Vε ◦ p is
a smooth convex function on R

n+k , and we note VΩ,ε its restriction to Ω . Moreover, we have
∇Vε = ρε ∗ ∇V on E, and |∇̄V̄ε| � C.

By formula (1.1) and integration by part on Ω we have

∫
Ω

VΩ,ε
ϕ − n

∫
Ω

ϕ〈H, ∇̄V̄ε〉 =
∫
Ω

ϕ tr
(
D̄2V̄ε |T M

)
(1.2)

for all ϕ ∈ C∞
c (Ω). As |∇̄V̄ε| � C, the functions 〈H, ∇̄V̄ε〉 are uniformly bounded in

L2(Ω) and, by weak compacity, there exists h ∈ L2(Ω) and a sequence εj → 0 such
that n

∫
M

ϕ〈H, ∇̄V̄εj
〉 → ∫

M
ϕh for all ϕ ∈ C∞

c (Ω). Moreover, as n| ∫
M

ϕ〈H, ∇̄V̄εj
〉| �

nC
∫
Ω

|ϕ||H | for all j , we also have | ∫
Ω

ϕh| � nC
∫
Ω

|ϕ||H |.
Since V̄ε is convex, passing to the limit in Eq. (1.2) gives

∫
Ω

VΩ
ϕ −
∫
Ω

ϕh � 0,

and by Riesz representation theorem, there exists a nonnegative Radon measure ν on Ω such
that, for all ϕ ∈ C∞

c (Ω),

∫
Ω

VΩ
ϕ −
∫
Ω

ϕh =
∫
Ω

ϕ dν,

which implies that, in the sense of distribution, 
D′VΩ = ν + h.
Let D ⊂ Ω be a domain such that p :D → E is a local diffeomorphism; in particular a.a.

points of D are Lebesgues points of ∇̄V̄ and V̄ is twice differentiable a.e. in D. We have
that ∇̄V̄εj

→ ∇̄V̄ a.e. in D, and, by the dominated convergence theorem,
∫
D

ϕ〈H, ∇̄V̄εj
〉 →∫

D
ϕ〈H, ∇̄V̄ 〉 for all ϕ ∈ C∞

c (D); this implies that h = n〈H, ∇̄V̄ 〉 a.e. in D.
As the last point we want to prove is of local nature, we can assume that p :D → E is a diffeo-

morphism. For any z ∈ E⊥, let Dz = {y + z | y ∈ D}, and note VD and VDz the restrictions of V̄

to D and Dz respectively. The set D̄ = {y + z | y ∈ D, z ∈ E⊥} is open in R
n+k . Considering

the diffeomorphism Φ :D × E⊥ → D̄ defined by Φ(y, z) = y + z, we can write the Lebesgue
measure λn+k on D̄ in term of the Riemannian measure dvM on D and the Lebesgue measure λk
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on E⊥: λn+k = J (y)dvM λk , where J is the absolute value of the Jacobian determinant of p (in
particular, J is smooth and positive). For any function F on D̄ we have

∫

D̄

F (x) dx =
∫
D

∫

E⊥

F(y + z)J (y) dvM(y)dz. (1.3)

Considering now the smooth functions V̄ε , we note VD,ε its restriction to D. Using that V̄ε is
invariant in the directions of E⊥ we have, for any function ϕ̄ ∈ C∞

c (D̄),

∫

D̄

tr
(
D̄2V̄ε |TxDz

) ϕ̄(x)

J (y)
dx =

∫
D

∫

E⊥

tr
(
D̄2V̄ε |Ty+zDz

)
ϕ̄(y + z) dz dvM(y)

=
∫
D

tr
(
D̄2V̄ε |TyD

) ∫

E⊥

ϕ̄(y + z) dz dvM(y)

=
∫
D

(

VD,ε − n〈H, ∇̄V̄ε〉

)( ∫

E⊥

ϕ̄(y + z) dz

)
dvM(y),

where, for x ∈ D̄, y and z are the points in D and E⊥ defined by x = y + z.
Let ϕ ∈ C∞

c (D), let ρ ∈ C∞
c (E⊥) be such that

∫
E⊥ ρ = 1, and let ϕ̄ be defined by ϕ̄(y + z) =

ϕ(y)ρ(z). We get

∫

D̄

tr
(
D̄2V̄ε |TxDz

) ϕ̄(x)

J (y)
dx =

∫
D

(

VD,ε − n〈H, ∇̄V̄ε〉

)
ϕ dvM

=
∫
D

(
VD,ε
ϕ − nϕ〈H, ∇̄V̄ε〉

)
dvM,

and letting ε tend to 0 gives

∫

D̄

tr
(
D̄2

D′ V̄|TxDz

) ϕ̄(x)

J (y)
dx =

∫
D

(
VD
ϕ − nϕ〈H, ∇̄V̄ 〉)dvM. (1.4)

As V̄ is a convex function on R
n+k , tr(D̄2

D′ V̄|TxDz
) is a Radon measure of the form

tr
(
D̄2

D′ V̄|TxDz

) = tr
(
D̄2

AV̄|TxDz

)
λn+k + μ̄s

with μ̄s a singular measure. Moreover, the invariance of V̄ in the directions of E⊥ implies that
tr(D̄2

AV̄|TxDz
) is also invariant, and μ̄s = μs ⊗ λk with μs a singular measure on E. Finally,

using (1.3), equality (1.4) becomes
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∫
D

(
VD
ϕ − nϕ〈H, ∇̄V̄ 〉)dvM =

∫
D

tr
((

D̄2
AV̄

)
|TyD

)
ϕ(y)dvM(y) +

∫
p(D)

ϕ(p−1(u))

J (p−1(u))
dμs(u)

=
∫
D

tr
((

D̄2
AV̄

)
|TyD

)
ϕ(y)dvM(y) +

∫
D

ϕ

J
d
(
p−1)

#μs,

and we get


D′VD = (
tr
(
D̄2

AV̄|T D

) + nϕ〈H, ∇̄V̄ 〉)dvM + 1

J

(
p−1)

#μs. �
Remark 1.4. Denote by VM the restriction of V̄ to M . As a consequence of the above proposition,
we have that the Laplacian of VM in the sense of distributions is a Radon measure; in the sequel
we shall note 
AVM the density of its regular part in the Lebesgue decomposition with respect
to dvM .

In particular, if D ⊂ M is a bounded domain such that p :D → E is a local diffeomorphism,
then ∇̄V̄ is well defined a.e. on D and we have


AVM = tr
(
D̄2

AV̄|T M

) + n〈H, ∇̄V̄ 〉.
This has to be seen has the generalization of formula (1.1) to nonsmooth convex functions which
are invariant in the directions of E⊥.

2. Optimal transportation and orthogonal projection on a subspace

2.1. The general case

As a direct consequence of Theorem 1.2, we have that projections (if well defined) are optimal
transportations. Consider a Polish space X and a closed subset C ⊂ X on which the projection
p :X → C is well defined: for all x ∈ X the function d(x, ·) :C → R admits a unique minimum,
p(x) being, by definition, the point where this minimum is achieved. For any measure μ ∈ P(X),
ρ = (Id × p)#μ is a transference plan between the measures μ and ν = p#μ. Applying Theo-
rem 1.2, it is easy to see that this transference plan is optimal: consider (x1, y1), . . . , (xn, yn) in
the support of ρ, for all 1 � i � n we have yi = p(xi) so that for any permutation s ∈ Sn and any
1 � i � n we get d2(xi, yi) � d2(xi, ys(i)), which implies that ρ is optimal. A particular case is
when C is a linear subspace of R

n, p being the orthogonal projection on C.
In the sequel we consider the product of three Polish spaces Xi , i = 1,2,3, and we note

πij :X1 × X2 × X3 → Xi × Xj the projection (i.e. πij (x1, x2, x3) = (xi, xj )).

Definition 2.1 (Gluing of transference plans). Consider three measures μi ∈ P(Xi), i = 1,2,3,
and two transference plans ρ12 ∈ P(X1 × X2) between μ1 and μ2, and ρ23 ∈ P(X2 × X3) be-
tween μ2 and μ3.

A gluing of ρ12 and ρ23 is a probability measure Γ ∈ P(X1 × X2 × X3) whose marginals on
X1 × X2 and X2 × X3 are ρ12 and ρ23 respectively.

As soon as the second marginal of the first transference plan equals the first marginal of the
second one, gluing of transference plans always exist (cf. the “gluing lemma” in [25]), and they
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can be seen as a way of composing transference plans: with the notation of Definition 2.1, we
have that π13

# Γ is a transference plan between μ1 and μ3.
This is well illustrated by the particular case where μ2 = F 1

# μ1 and μ3 = F 2
# μ2. Consider the

transference plans ρ12 = (Id × F 1)#μ1 and ρ23 = (Id × F 2)#μ2. Suppose Γ is a gluing of ρ12
and ρ23. For any (x1, x2, x3) ∈ Spt(Γ ), we have (x1, x2) ∈ Spt(ρ12) and (x2, x3) ∈ Spt(ρ23), so
we get x2 = F 1(x1) and x3 = F 2(x2). From this we can conclude that Γ = (Id × F 1 × F 2 ◦
F 1)#μ1, and that π13

# Γ = (Id × F 2 ◦ F 1)#μ1 which is the transference plan associated to the
map F 2 ◦ F 1: the gluing of transference plans extends the composition of maps.

In general, there is no reason for π13
# Γ to be optimal, even if ρ12 and ρ23 are optimal, however,

in the setting of projections on a linear subspace, we have the following result:

Theorem 2.2. Let E be a linear subspace of R
n, and let pE denote the orthogonal projection

on E. Consider two probability measures μ ∈ P(Rn) and ν ∈ P(E), the optimal transference
plans ρ = (Id × pE)#μ between μ and (pE)#μ, and an optimal transference plan σ between
(pE)#μ and ν.

If Spt((pE)#μ) is compact, then, for any gluing Γ of ρ and σ , π13
# Γ is an optimal transference

plan between μ and ν.

For the proof we shall use the following lemma:

Lemma 2.3. Let X and Y be Polish spaces and let ρ ∈ P(X ×Y) be a transference plan between
two measures μ ∈ P(X) and ν ∈ P(Y ).

If Spt(ν) is compact, then for all x ∈ Spt(μ) there exists y ∈ Spt(ν) such that (x, y) ∈ Spt(ρ).

Proof. First, it is easy to see that Spt(ρ) ⊂ Spt(μ) × Spt(ν). Now, suppose x ∈ Spt(μ); for any
ε > 0, we have 0 < μ(Bx(ε)) = ρ(Bx(ε) × Y), and there exists (xε, yε) ∈ Spt(ρ) ∩ (Bx(ε) × Y).

In particular, we have xε ∈ Bx(ε) and yε ∈ Spt(ν) which are compact. Therefore, there exists
y ∈ Spt(ν) and a sequence (xk, yk)k∈N of points in Spt(ρ) tending to (x, y). As Spt(ρ) is closed,
we have (x, y) ∈ Spt(ρ) which concludes the proof. �
Remark 2.4. The previous lemma is false without the compactness of Spt(ν).

Proof of Theorem 2.2. Consider n points (x1, z1), . . . , (xn, zn) in Spt(π13
# Γ ). By Lemma 2.3,

there exist points y1, . . . , yn in Spt((pE)#μ) such that (xi, yi, zi) ∈ Spt(Γ ) for all i. Moreover, as
(xi, yi) ∈ Spt(ρ), we have that yi = pE(xi), (xi,pE(xi), zi) ∈ Spt(Γ ), and (pE(xi), zi) ∈ Spt(σ )

for all i.
Let s ∈ Sn. Using Pythagoras’s formula we have

n∑
1

d2(xi, zi) =
n∑
1

d2(xi,pE(xi)
) +

n∑
1

d2(pE(xi), zi

)
.

As σ is an optimal transference plan, using Theorem 1.2 we get

n∑
d2(xi, zi) �

n∑
d2(xi,pE(xi)

) +
n∑

d2(pE(xi), zs(i)

)
.

1 1 1
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Using Pythagoras’s formula once again we have

n∑
1

d2(xi, zi) �
n∑
1

d2(xi, zs(i)).

This implies the optimality of π
1,3
# Γ by Theorem 1.2. �

As soon as we are working with the square of the distance in the Euclidean space, it is not
surprising that Pythagoras’s formula naturally appears, and it has an other consequence on the
geometry of Wasserstein space: if E1 and E2 are two orthogonal subspaces of R

n, then for any
measures μ1 and μ2 supported in E1 and E2 respectively, all the transference plan between μ1
and μ2 are optimal. If ρ is a transference plan between μ1 and μ2, then Spt(ρ) ⊂ E1 × E2 and
its cost satisfies

J (ρ) =
∫

E1×E2

|x1 − x2|2 dρ(x1, x2)

=
∫

E1×E2

(|x1|2 + |x2|2
)
dρ(x1, x2)

=
∫
E1

|x1|2 dμ1(x1) +
∫
E2

|x2|2 dμ2(x2).

Therefore, all the transference plan have the same cost, and they all are optimal.
For example, let D ⊂ R

2 be the unit disc and let μ be the normalized Lebesgue measure
on D. Consider the two inclusions ik : R2 → R

4 � R
2 × R

2, k = 1,2, defined by i1(x) = (x,0)

and i2(x) = (0, x), and the two measures μ1 = (i1)#μ and μ2 = (i2)#μ. For any t ∈ R the map
Ft : Spt(μ1) → Spt(μ2) defined by Ft(x,0) = (0, eit x) push forward μ1 on μ2 and, because of
the preceding remark, gives rise to an optimal transference plan.

Now, using displacement interpolation (cf. for example [18, §2]), each of these optimal trans-
ference plans gives rise to a geodesic in the Wasserstein space P2(R

4), and we constructed a
continuous family of geodesics in P2(R

4) with common end points and having the same length.
It is easy to find such a phenomenon in the Wasserstein space of a Riemannian manifold

with positive curvature: considering for example the Dirac masses on the north and south pole
of the sphere, each geodesic between the poles gives rise to a geodesic in the Wasserstein space
(the map x �→ δx is an isometric embedding between the manifold and its Wasserstein space).
However, our example is of different nature as there is a unique geodesic between any two points
in R

n.
This situation is of “positive curvature” nature: on a Riemannian manifold, such a situation

implies that the end points are conjugate points along the geodesics, and therefore implies the
presence of positive sectional curvature. Therefore, although the Euclidean space has vanishing
curvature, its Wasserstein has positive curvature in some sense; this remark has to be compared
with J. Lott’s curvature calculations on the spaces of measures with C∞ densities with respect to
the Lebesgue measure (cf. [17, Corollary 1]).
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2.2. The case of measures supported in a submanifold

In the sequel we want to use solutions to the problem of Monge to compare measures sup-
ported in a submanifold with measures supported in a linear subspace. By the previous theorem,
it is natural to consider the push forward of the first measure by the orthogonal projection on the
linear subspace, and to use a solution of the problem of Monge in the linear subspace. A suf-
ficient condition for such a solution to exist, is that the pushed measure does not give mass to
small sets of the linear subspace.

Consider an isometric immersion i :Mn → R
n+k , and let E be a linear subspace of R

n+k .
We shall note P : Rn+k → E the orthogonal projection on E, p = P|M its restriction to M , and
C = {x ∈ M | Txp :TxM → E is not onto} the critical set of p. In particular, C is a closed subset
of M .

Proposition 2.5. Let i :Mn → R
n+k be an isometric immersion, let E be a linear subspace

of R
n+k with dim(E) � n, and let p :M → E be the orthogonal projection on E.

For any nonnegative function f on M vanishing on C , the measure μ = f dvM is such that
p#μ is absolutely continuous with respect to the Lebesgue measure of E.

Proof. Let A ⊂ E be a Borelian subset such that p#μ(A) > 0. As μ(p−1(A)) > 0, there exists
x ∈ p−1(A) such that f (x) > 0, and a neighborhood U of x such that p|U is a submersion and
μ(U ∩ p−1(A)) > 0. Since p|U is a submersion we have λ(p(U ∩ p−1(A))) > 0 which implies
that λ(A) > 0. �

As a consequence, we have the following result on the existence of a solution for the problem
of Monge between μ and any measure on E:

Corollary 2.6. For any nonnegative function f with compact support on M and vanishing on C ,
and for any measure ν on E, the problem of Monge between the measures μ = f dvM and
ν admits a solution T :M → E.

Moreover, there exists a convex function V on R
n+k such that T is the restriction to M of the

gradient of V .

Proof. Using the proposition above and Brenier’s theorem, the problem of Monge between p#μ

and ν has a solution S = ∇W in E, where W is a convex function on E.
By Theorem 2.2, T = S ◦ p = ∇W ◦ p = ∇(W ◦ p) is a solution to the problem of Monge

between μ and ν, and V = W ◦ p is the desired convex function on R
n+k . �

Remark 2.7. Although the result above looks like Brenier’s theorem, there are some differences.
In particular, even if ν does not give mass to small sets in E, the problem of Monge between ν

and μ could have no solution as the projection p :M → E may not be one to one.

Let us now consider the case where dim(E) = dim(M) = n, and assume that the measure
μ = f dvM has compact support (with f still vanishing on C ). In the sequel we shall note JE(x)

the absolute value of the Jacobian determinant of p at x (i.e. JE(x) = |det(Txp)|, where the
determinant is taken in orthonormal basis of TxM and E).
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If y ∈ E is such that p−1(y)∩Spt(μ) is not finite, then, by the compactness of Spt(μ), y must
be a critical value of p. As a consequence of Morse–Sard’s theorem (cf. for example [15]), we
have that p−1(y) ∩ Spt(μ) is finite for almost all y ∈ E with respect to Lebesgue measure λ.

Using this fact, we have p#μ = Fλ where

F(y) =
∑

x∈p−1(y)∩Spt(μ)

f (x)

JE(x)
(2.1)

is well defined for almost all y ∈ E.
In the sequel we shall need a regularity result for the solution of the problem of Monge; it is

given by the following proposition:

Proposition 2.8. If f ∈ C∞
c (M \ C) and g ∈ C∞(D̄) where D is a smooth convex domain in E,

then there exists a smooth convex function W on E such that ∇(W ◦ p) is a solution to the
problem of Monge between μ = f dvM and ν = gλ.

Proof. The smoothness of W will be a consequence of Caffarelli’s regularity theory for solutions
of the problem of Monge (cf. [3–5]). In order to use this theory, we just have to prove that the
density F of p#μ with respect to Lebesgue measure belongs to C∞

c (E).
As Spt(μ) is compact, so is Spt(p#μ). Let y ∈ Spt(p#μ), p−1(y) ∩ Spt(μ) is finite, and for

each x ∈ p−1(y) ∩ Spt(μ) there exists a neighborhood Ux of x such that p :Ux → p(Ux) is a
diffeomorphism. Moreover we can assume that for all x, p(Ux) = Bε(y).

Since Spt(μ) \ ⋃
x Ux is compact in R

n+k , there exist 0 < α � ε such that the cylinder
Bα(y) + E⊥ does not intersect Spt(μ) \ ⋃

x Ux . Therefore, on Bα(y), F is a sum of smooth
functions, and F is smooth on E. �
3. Isoperimetric inequalities for submanifolds of the Euclidean space

In this section we consider an isometric immersion i :Mn → R
n+k , and a linear subspace

E ⊂ R
n+k of dimension n.

For any n-plane F ⊂ R
n+k , let KE(F) = |det(q)| where q :F → E is the orthogonal projec-

tion from F to E and det(q) is taken in orthonormal basis of F and E.
In particular, if p :M → E denotes the orthogonal projection on E, and JE(x) = |det(Txp)|,

we have JE(x) = KE(TxM).

3.1. A weighted isoperimetric inequality

Theorem 3.1. Let i :Mn → R
n+k be an isometric immersion, and let E be an n-dimensional

linear subspace of R
n+k . For any regular domain Ω ⊂ M we have

nω
1
n
n

(∫
J

1
n−1

E dvM

) n−1
n

� vol(∂Ω) + n

∫
|H |dvM.
Ω Ω
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The Sobolev counterpart of this inequality is

nω
1
n
n

(∫
M

J
1

n−1
E |u| n

n−1 dvM

) n−1
n

�
∫
M

|∇u|dvM + n

∫
M

|H ||u|dvM

for any function u ∈ C∞
c (M).

These inequalities are sharp.

Proof. Let u ∈ C∞
c (M) be a nonnegative function and let f = J

1
n−1

E u
n

n−1

cE(u)
, where cE(u) =∫

M
J

1
n−1

E u
n

n−1 dvM . The function f vanishes on C , therefore, the measure μ = f dvM is such
that p#μ is absolutely continuous with respect to Lebesgue measure on E with a density F given
by the formula (2.1).

Using Brenier’s theorem, there exists a convex function V such that ∇V is the solution of the
problem of Monge in E between p#μ and

χBE

ωn
dz, where BE is the unit ball in E. Moreover, by

Brenier’s theorem, we have that ∇V (Spt(p#μ)) ⊂ BE , so that |∇V | � 1 on Spt(p#μ), and we
can assume that V is finite on E. In fact, if this is not the case, just replace V by

W(x) = sup
{
a(x)

∣∣ a affine function, |∇a| � 1, a � V on Spt(p#μ)
}
.

This function is convex on E with |∇W | � 1, and W = V on Spt(p#μ) so that ∇W push forward
p#μ on

χBE

ωn
dz. In the sequel we shall assume that V is finite on the whole of E.

Let V̄ denotes the extension of V to R
n+k (that is V̄ = V ◦ p), and VM denotes the restriction

of V̄ to M . The singular set of V̄ (i.e. the set where V̄ is not twice differentiable) is the preimage
by p of the singular set of V , and since p is a local diffeomorphism on Spt(μ), V̄ and VM are
twice differentiable almost everywhere in Spt(μ).

Consider now the change of variable z = ∇V (y) in E. As in [12], using a remark due to
McCann, this change of variable gives ωnF(y) = |det(D2

AV (y))|, and by (2.1) we get

ωn

f (x)

JE(x)
� ωnF

(
p(x)

) = ∣∣det
(
D2

AV
(
p(x)

))∣∣

for almost all x in the support of μ.
From the definition of the function V̄ , we have that its Hessian is given by D̄2

AV̄ (x)(ξ, η) =
D2

AV (p(x))(P (ξ),P (η)) for a.a. points x ∈ R
n+k and any vectors ξ and η, where P is the

orthogonal projection on E. As the orthogonal projection on E is also the tangent map of p, it
follows that, for a.a. x ∈ Spt(μ),

det
(
D̄2

AV̄ (x)|TxM

) = J 2
E(x)det

(
D2

AV
(
p(x)

))
,

from which we deduce

ωnJE(x)f (x) �
∣∣det

(
D̄2 V̄ (x)|

)∣∣.
A TxM
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As the restriction of a nonnegative matrix is still nonnegative, the arithmetic–geometric inequal-
ity gives

nω
1
n
n JE(x)

1
n f (x)

1
n � tr

(
D̄2

AV̄ (x)|TxM

)
. (3.1)

As f vanishes on C , Proposition 1.3 and Remark 1.4 imply that a.e. in Spt(μ)

nω
1
n
n JE(x)

1
n f (x)

1
n � 
AVM − n〈H, ∇̄V̄ 〉, (3.2)

where H is the mean curvature vector of M .
Multiplication by u of the previous inequality gives

nω
1
n
n

cE(u)
1
n

J
1

n−1
E u

n
n−1 � u
AVM − nu〈H, ∇̄V̄ 〉. (3.3)

By Proposition 1.3 we have that 
D′VΩ = ν +h with ν a nonnegative Radon measure. Using
Remark 1.4 and the Lebesgue decomposition ν = νac + νs , we get

∫
M\C

u
AVM − nu〈H, ∇̄V̄ 〉 =
∫

M\C

udνac,

and since ν and u are nonnegative we obtain

∫
M\C

(
u
AVM − nu〈H, ∇̄V̄ 〉)dvM �

∫
M\C

udν

�
∫
M

udν

�
∫
M

u
D′VM dvM

−
∫
M

uhdvM (3.4)

� −
∫
M

〈∇u,∇VM 〉dvM

+ n

∫
u|H |dvM. (3.5)
M
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As |V̄ | � 1, we also have |∇VM | � 1 on M , and, since the left-hand side of Eq. (3.3) vanishes
on C , integrating this equation on M \ C gives the desired Sobolev inequality:

nω
1
n
n

(∫
M

J
1

n−1
E u

n
n−1 dvM

) n−1
n

�
∫
M

|∇u|dvM + n

∫
M

u|H |dvM.

The isoperimetric companion of this Sobolev inequality is

nω
1
n
n

(∫
Ω

J
1

n−1
E dvM

) n−1
n

� vol(∂Ω) + n

∫
Ω

|H |dvM,

and this inequality is sharp as we have equality if M = E and Ω is a ball. �
3.2. The classical isoperimetric inequality

To get the usual isoperimetric inequality (without any weight), we can perform an integration
on the Grassmannian of n-planes in R

n+k .
Let F be an n-plane in R

n+k , and let

αn,k = 1

Vol(Gn,n+k)

∫
Gn,n+k

KE(F )
1
n dE,

where the integration is taken for the Haar measure of Gn,n+k . Using the homogeneity of Gn,n+k

and the invariance of the Haar measure, it is easy to see that αn,k does not depend on the choice
of F .

Theorem 3.2. Let i :Mn → R
n+k be an isometric immersion, and let E be an n-dimensional

linear subspace of R
n+k . For any regular domain Ω ⊂ M we have

nω
1
n
n αn,k Vol(Ω)

n−1
n � vol(∂Ω) + n

∫
Ω

|H |dvM.

The Sobolev counterpart of this inequality is

nω
1
n
n αn,k

(∫
M

|u| n
n−1 dvM

) n−1
n

�
∫
M

|∇u|dvM + n

∫
M

|H ||u|dvM

for any function u ∈ C∞
c (M).

Proof. Choose a > 0, and let f = J a
Eu

n
n−1

cE,a(u)
, where cE,a(u) = ∫

M
Ja

Eu
n

n−1 . Following the previous
proof, Eq. (3.3) becomes

nω
1
n
n

1 J
a+1
n

E u
n

n−1 � u
AVM − nu〈H, ∇̄V̄ 〉

c(u) n
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a.e. in M \ C , where we also used that cE,a(u) � c(u) = ∫
M

u
n

n−1 . Integrating on M \ C , using
inequality (3.5) and letting a → 0 gives

nω
1
n
n

c(u)
1
n

∫
M

J
1
n

E u
n

n−1 dvM �
∫
M

|∇u|dvM + n

∫
M

u|H |dvM.

As JE(x) = KE(TxM), integrating on Gn,n+k with respect to E we get

nω
1
n
n αn,k

(∫
M

u
n

n−1 dvM

) n−1
n

�
∫
M

|∇u|dvM + n

∫
M

u|H |dvM.

The isoperimetric companion of this Sobolev inequality is

nω
1
n
n αn,k Vol(Ω)

n−1
n � vol(∂Ω) + n

∫
Ω

|H |dvM

for any regular domain Ω ⊂ M . �
The isoperimetric inequality obtained in this theorem is not the expected one, as αn,k < 1.

However, we have that limn→∞ αn,1 = 1, so that this inequality is not far from being sharp for
hypersurfaces of high dimension.

To compute the limit, note that αn,1 = 1
vol(Sn)

∫
Sn |〈η, ξ 〉| 1

n dvSn(ξ), for a given η ∈ Sn. Taking
normal coordinates on Sn centered at η we get

αn,1 = vol(Sn−1)

vol(Sn)

π∫
0

|cos r| 1
n sinn−1 r dr =

∫ π

0 |cos r| 1
n sinn−1 r dr∫ π

0 sinn−1 r dr
.

Using that |cos r| � cos(π
2 − 1

n
)χ[0, π

2 − 1
n
]∪[ π

2 + 1
n
,π], we have

αn,1 �
cos

1
n (π

2 − 1
n
)(

∫ π

0 sinn−1 r dr − ∫ π
2 + 1

n
π
2 − 1

n

sinn−1 r dr)

∫ π

0 sinn−1 r dr

�
cos

1
n (π

2 − 1
n
)(

∫ π

0 sinn−1 r dr − 1
2n

)∫ π

0 sinn−1 r dr
.

As Wallis’ integral satisfies
∫ π

0 sinn−1 r dr ∼∞
√

2π
n−1 , this lower bound tends to 1 when n tends

to infinity.
This shows that our result improves the constant of this kind of isoperimetric inequalities for

submanifolds. In fact, the constants given in [19] and [16] are of the form nω
1
n
n βn with βn tending

to 0 when the dimension tends to infinity.
Using ideas of L.M. Simon, P.M. Topping obtained the inequality 2π Vol(Ω) � (vol(∂Ω) +

2
∫ |H |)2 for any surface in R

2+k (cf. [23, Appendix A]). A simple calculation proves that

Ω
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this inequality is better than the one we get by our method. Note that for minimal surfaces
in R

3, A. Ros and A. Stone obtained the inequality 2π
√

2 Vol(Ω) � vol(∂Ω)2 (cf. [9, §10.1
for a proof]).

3.3. Transference plans “moving with the point”

In the preceding section, we do not get the expected isoperimetric inequality because the
Jacobian of the projection on E, which is less than or equal to one, naturally appear. To avoid this
problem, the idea would be to use at each point of M the projection on the tangent space TxM ,
and hence to use a family of transportations “moving with the point”.

To illustrate this point, let us consider the case of hypersurfaces. Let i :Mn → R
n+1 be an

isometric immersion, and let u ∈ C∞
c (M) be a nonnegative function.

Choose a nondecreasing smooth function ϕ on R+ such that ϕ vanishes in a neighborhood
of 0, 0 � ϕ � 1, and ϕ(1) = 1.

For each ξ ∈ Sn, we consider the orthogonal projection pξ :M → ξ⊥, Jξ the determinant of

its Jacobian, and we note fξ = ϕ(Jξ )u
n

n−1

cξ (u)
, where cξ (u) = ∫

M
ϕ(Jξ )u

n
n−1 .

Considering the optimal transportations Tξ :M → ξ⊥ which push forward the measure
fξ dvM on M to the normalized Lebesgue measure of the unit ball of ξ⊥, we can define the
following map

Φ :

{
M × Sn → R

n+1,

(x, ξ) �→ Tξ (x).

Using the Gauss map g of M , we define

X :

{
M → R

n+1,

x �→ Φ(x,g(x)).

As Xx ∈ g(x)⊥ for each x ∈ M , X is just a vector field on M , and the question is: can we use
this vector field as a “Knothe map” to prove some Sobolev inequality on M?

For each ξ ∈ Sn, the optimal transportation Tξ is the gradient of a convex function V̄ξ which is
the extension to R

n+1 of a convex function in ξ⊥. By Proposition 2.8, the function V̄ξ is smooth.

In the sequel we shall note T x
(x,ξ)Φ :TxM → R

n+1 (resp. T
ξ

(x,ξ)Φ : ξ⊥ → R
n+1) the tangent

map to Φ with respect to the first (resp. to the second) variable.
As the derivative of the Gauss map is given by the shape operator, for a vector e ∈ TxM we

have, for any x ∈ M ,

(e.X)(x) = (e.∇̄V̄ξ )|ξ=g(x)
− T

ξ

(x,g(x))Φ.Sx(e)

where Sx is the shape operator of M at x. And making the sum over an orthonormal basis of
TxM we get

div(X)(x) = tr
(
D̄2V̄ξ (x)|TxM

)
| − tr

(
T

ξ

(x,g(x))Φ ◦ Sx

)
. (3.6)
ξ=g(x)
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From this expression for div(X) we can deduce the following proposition:

Proposition 3.3. Let i :Mn → R
n+1 be an isometric immersion. For any regular domain Ω ⊂ M

we have

nω
1
n
n Vol(Ω)1− 1

n � vol(∂Ω) +
∫
Ω

∣∣tr(T ξ

(x,g(x))
Φ ◦ Sx

)∣∣dvM(x).

The Sobolev counterpart of this inequality is

nω
1
n
n

(∫
M

|u| n
n−1 dvM

) n−1
n

�
∫
M

|∇u|dvM +
∫
M

|u|∣∣tr(T ξ

(x,g(x))Φ ◦ Sx

)∣∣dvM(x)

for any function u ∈ C∞
c (M).

These inequalities are sharp.

Proof. Following the proof of Theorem 3.1, for any ξ ∈ Sn and any x ∈ Spt(fξ ), Eq. (3.1) gives

nω
1
n
n Jξ (x)

1
n fξ (x)

1
n � tr

(
D̄2V̄ξ (x)|TxM

)
,

with the usual Hessian, V̄ξ being smooth. Using the fact that Jg(x)(x) = 1 and cξ (u) �
∫
M

u
n

n−1 =
c(u) we get

nω
1
n
n

u(x)
1

n−1

c(u)
1
n

� tr
(
D̄2V̄ξ (x)|TxM

)
|ξ=g(x)

� div(X)(x) + tr
(
T

ξ

(x,g(x))Φ ◦ Sx

)
.

Multiplying by u, integrating by part, and using that |Xx | � 1 for any x ∈ M we obtain

nω
1
n
n

(∫
M

u
n

n−1 dvM

) n−1
n

�
∫
M

|∇u|dvM +
∫
M

utr
(
T

ξ

(x,g(x))Φ ◦ Sx

)
dvM.

The isoperimetric counterpart of this Sobolev inequality is

nω
1
n
n Vol(Ω)1− 1

n � vol(∂Ω) +
∫
M

tr
(
T

ξ

(x,g(x))Φ ◦ Sx

)
dvM,

and this inequality is sharp as we have equality for any geodesic ball lying in any hyperplane
of R

n+1. �
Note that the result of the previous proposition is not so far from that of Theorem 3.1, as the

third term involves the shape operator whose trace is the mean curvature. The remaining problem
is to deal with the derivative of the transports map with respect to the parameter ξ .
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3.4. A weighted Lp Sobolev inequality

In [12] the authors also obtained the sharp Lp Sobolev inequalities on R
n in a similar way,

using a different target measure (cf. [12, Theorem 2]). In our setting, we get weighted Sobolev
inequalities, with weights involving a negative power of JE . For this weight to be finite almost
everywhere, we shall assume that the critical set C of the projection is negligible in M .

Theorem 3.4. Let i :Mn → R
n+k be an isometric immersion, and let E be an n-dimensional

linear subspace of R
n+k such that the critical set of the orthogonal projection from M to E is

negligible.
For any 1 < p < n, and for any function u ∈ C∞

c (M) we have

Sn,p

(∫
M

J
1

n−1
E |u| np

n−p dvM

) n−p
np

�
∫
M

J
− p−1

n−1
E |∇u|p dvM + n(n − p)

p(n − 1)

∫
M

J
− p−1

n−1
E |H ||u|dvM

where Sn,p is the Lp Sobolev constant of R
n. This inequality is sharp.

Proof. Let f = J

1
n−1

E u
np

n−p

cE(u)
, where cE(u) = ∫

M
J

1
n−1

E u
np

n−p . As f vanishes on C , we have p#μ =
F(y)dy with F given by formula (2.1). We follow the proof of Theorem 3.1, except that ∇V is
the solution of the problem of Monge between the measures p#μ and G(z)dz, where the function
G ∈ C∞

c (E) will be made precise later.
Using the change of variable formula between F(y)dy and G(z)dz, the relation between f

and G becomes

f (x)

JE(x)
� F

(
p(x)

)

� G
(∇V

(
p(x)

))∣∣det
(
D2

AV
(
p(x)

))∣∣
� G

(∇̄V̄ (x)
)∣∣det

(
D2

AV
(
p(x)

))∣∣.
From this point, we follow the steps of the proof of Theorem 3.1: by the arithmetic–geometric

inequality and Proposition 1.3, Eq. (3.2) becomes

JE(x)
1
n G

(∇V̄ (x)
)− 1

n � 1

n
f (x)−

1
n 
AVM − f (x)−

1
n 〈H, ∇̄V̄ 〉.

As C is negligible, this inequality occurs a.e. in the support of u. Multiplying both parts by

JE(x)− 1
n f (x) and integrating on M we get

∫
M

G
(∇V̄ (x)

)− 1
n f (x) dvM � 1

ncE(u)
n−1
n

∫
M

u
p(n−1)
n−p 
AVM − 1

cE(u)
n−1
n

∫
M

u
p(n−1)
n−p 〈H, ∇̄V̄ 〉.

As the map ∇̄V̄ :M → E push the measure μ = f dvM on G(y)dy, the left-hand side of this in-

equality reads
∫

G(y)
n−1
n dy. On the right-hand side, we use Proposition 1.3 to compare 
AVM
E
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and 
D′VM , as in Eq. (3.4) where since C is negligible, h = n〈H, ∇̄V̄ 〉 a.e. Then, integration by
part gives

∫
E

G(y)
n−1
n dy � − p(n − 1)

n(n − p)cE(u)
n−1
n

∫
M

u
n(p−1)
n−p 〈∇u,∇VM 〉 − 1

cE(u)
n−1
n

∫
M

u
p(n−1)
n−p 〈H, ∇̄V̄ 〉.

If q = p
p−1 is the dual exponent to p, using Hölder inequality and |∇VM | � |∇̄V̄ | we get

n(n − p)

p(n − 1)

∫
E

G(y)
n−1
n dy

� 1

cE(u)
n−1
n

(∫
M

J
1

n−1
E u

np
n−p |∇̄V̄ |q

) 1
q
(∫

M

J
− p−1

n−1
E |∇u|p

) 1
p

+ n(n − p)

p(n − 1)cE(u)
n−1
n

(∫
M

J
1

n−1
E u

np
n−p |∇̄V̄ |q

) 1
q
(∫

M

J
− p−1

n−1
E |u|p|H |p

) 1
p

,

which gives

n(n − p)

p(n − 1)

∫
E

G(y)
n−1
n dy � 1

cE(u)
n−p
np

(∫
M

f |∇̄V̄ |q
) 1

q
(∫

M

J
− p−1

n−1
E |∇u|p

) 1
p

+ n(n − p)

p(n − 1)cE(u)
n−p
np

(∫
M

f |∇̄V̄ |q
) 1

q
(∫

M

J
− p−1

n−1
E |u|p|H |p

) 1
p

.

Using once again that ∇̄V̄ push μ on G(z)dz we obtain

n(n − p)

p(n − 1)

∫
E

G(y)
n−1
n dy

(
∫
E

|y|qG(y)dy)
1
q

� 1

cE(u)
n−p
np

(∫
M

J
− p−1

n−1
E |∇u|p

) 1
p

+ n(n − p)

p(n − 1)cE(u)
n−p
np

(∫
M

J
− p−1

n−1
E |u|p|H |p

) 1
p

.

Taking G = v
np

n−p where ‖v‖ np
n−p

= 1, the supremum over all function v of the left-hand side is

the Sobolev constant of R
n (cf. the characterization of Sn,p given in Section 1). Thus we have

Sn,p

(∫
M

J
1

n−1
E |u| np

n−p dvM

) n−p
np

�
∫
M

J
− p−1

n−1
E |∇u|p dvM + n(n − p)

p(n − 1)

∫
M

J
− p−1

n−1
E |H ||u|dvM.

Moreover, this inequality is sharp because it is just the Euclidean Lp Sobolev inequality of R
n

when M = E. �
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4. Inequalities for submanifolds in warped products

In the previous section the main tools where the projection on a subspace (seen as Euclidean
n space) and the use of optimal transport in this subspace. As soon as we have these tools on a
manifold, we can expect Sobolev inequalities for its submanifolds.

A typical example is hyperbolic space, where horospheres are isometric to Euclidean space
and where the projections on them are well defined. In fact, hyperbolic space is a particular
case of warped product for which we can use optimal transportation to get weighted Sobolev
inequalities on their submanifolds.

4.1. Warped products

Consider a warped product N = R × R
n+k (with k � 0) endowed with the metric gN = dt2 +

w(t)2 dy2 where w is a smooth function, and dy2 is the Euclidean metric on R
n+k . In the sequel

we shall note (t, y) a point in N where y = (y1, . . . , yn+k) ∈ R
n+k .

Let E be an n-linear subspace of R
n+k ; we can assume, without loss of generality, that E

is the subspace spanned by the first n vectors of the canonical basis of R
n+k . We denote by

p :N → E the projection on E: p(t, y) = (y1, . . . , yn). In the sequel we assume that E is
endowed with the Euclidean metric, and we have that, if ξ ∈ T(t,y)N belongs to the subspace
spanned by ( ∂

∂y1
, . . . , ∂

∂yn
) then |T(t,y)p.ξ | = 1

w(t)
|ξ |.

Let V :E → R be a function on E, and let V̄ be its extension to N defined by V̄ (t, y) =
V (y1, . . . , yn). By a standard computation we have w(t)|∇̄V̄ (t, y)| = |∇V (p(t, y))| and

D̄2V̄ = −2
w′

w

n∑
i=1

∂V

∂yi

dyi dt +
n∑

i,j=1

∂2V

∂yi∂yj

dyi dyj . (4.1)

The main difference with the Euclidean case, is that, with the terms coming from the Hessian
of V , we get extra terms coming from the extrinsic curvature of {t} × R

n+k in N .
Consider now an isometric immersion i :Mn → N , where M is an n-dimensional manifold,

and let τ :M → R be the restriction to M of the first coordinate function on N .
For x ∈ M , let JE(x) = |det(q)|, where q is the orthogonal projection (in TxN ) from TxM to

the subspace spanned by ( ∂
∂y1

, . . . , ∂
∂yn

). If we still note p :M → E the restriction of the projec-
tion p to the submanifold M , for each x ∈ M the absolute value of the Jacobian determinant of p

at x is 1
w(τ(x))n

JE(x). The critical set of p is C = {x ∈ M | JE(x) = 0}.
Considering a convex function V on E, we have that the symmetric two form

B = D̄2V̄ + 2
w′

w

n∑
i=1

∂V

∂yi

dyi dt

is nonnegative, and for any x ∈ TxM we have

tr(B|TxM
) = tr

(
D̄2V̄|TxM

) + 2
w′

〈∇τ,∇VM 〉. (4.2)

w
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In the sequel we will use a nonsmooth convex function V on E. Using its second derivatives
(well defined almost everywhere) and Eq. (4.1), we define the Hessian of V̄ in the sense of
Aleksandrov:

D̄2
AV̄ = −2

w′

w

n∑
i=1

∂V

∂yi

dyi dt +
n∑

i,j=1

∂2V

∂yi∂yj

dyi dyj . (4.3)

Moreover we can mimic the proof of Proposition 1.3, the main point for doing this being that
the Riemannian measure of N is a product measure which can be written using the measure
on M and the Jacobian determinant of p. Let VM be the restriction of V̄ to M , using Riesz
theorem together with Eqs. (1.1) and (4.2) we have that 
D′VM − n〈H, ∇̄V̄ 〉 + 2w′

w
〈∇τ,∇VM 〉

is a nonnegative Radon measure ν. Therefore, 
D′VM is also a Radon measure and, if we note

AVM the density of its absolutely continuous part with respect to dvM , we have


AVM = tr
(
D̄2

AV̄ (x)|TxM

) + n〈H, ∇̄V̄ 〉

on any domain D ⊂ M on which p is a local diffeomorphism.
The other consequence of the nonnegativity of ν is that, mimicking the arguments leading to

inequality (3.5), we have

∫
M\C

ϕ
AVM − nϕ〈H, ∇̄V̄ 〉 + 2ϕ
w′

w
〈∇τ,∇VM〉 � −

∫
M

〈∇ϕ,∇VM 〉dvM

+ n

∫
M

ϕ
|H |
w

+ 2ϕ
w′

w
〈∇τ,∇VM〉 (4.4)

for any nonnegative ϕ ∈ C∞
c (M).

Remark 4.1. When taking w(t) = et , the manifold N is isometric to hyperbolic space H
n+k+1.

In this case, the first coordinate function is a Buseman function centered at some point at infinity,
the submanifolds {t}×R

n+k are horospheres, and the metric gN = dt2 +e2t dy2 is the hyperbolic
metric read in horospherical coordinates.

4.2. Weighted isoperimetric inequality

Using the notation above we get the following result:

Theorem 4.2. Let i :Mn → R × R
n+k be an isometric immersion where R × R

n+k is endowed
with the metric dt2 + w(t)2 dy2, and let E be an n-dimensional linear subspace of R

n+k . For
any regular domain Ω ⊂ M we have

nω
1
n
n

(∫ (
w(τ)nJE

) 1
n−1 dvM

) n−1
n

�
∫

w(τ)dv∂Ω + n

∫
w(τ)|H |dvM.
Ω ∂Ω Ω
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The Sobolev counterpart of this inequality is

nω
1
n
n

(∫
M

(
w(τ)nJE

) 1
n−1 |u| n

n−1 dvM

) n−1
n

�
∫
M

w(τ)|∇u|dvM + n

∫
M

w(τ)|H ||u|dvM

for any function u ∈ C∞
c (M).

Proof. Let f = (w(τ)nJE)
1

n−1 u
n

n−1

cE(u)
, where u ∈ C∞

c (M) is a nonnegative function, and cE(u) =∫
M

(w(τ)nJE)
1

n−1 u
n

n−1 dvM .
Following the proof of Theorem 3.1, there exists a convex function V on E such that ∇V is

the solution of the problem of Monge between p#μ and
χBE

ωn
dz.

As f vanishes on the critical set C , the measure p#μ is absolutely continuous with respect to
the Lebesgue measure on E and its density reads

F(y) =
∑

x∈p−1(y)∩Spt(μ)

w(τ(x))nf (x)

JE(x)
.

Also V may not be smooth, we can use derivatives in the sense of Aleksandrov and, by a
change of variable in E, we get

ωn

w(τ(x))nf (x)

JE(x)
� ωnF

(
p(x)

) = det
(
D2

AV
(
p(x)

))
(4.5)

for a.a. x ∈ Spt(μ). Let B = D̄2
AV̄ + 2w′

w

∑n
i=1

∂V
∂yi

dyi dt ; for any unitary vector ξ ∈ TxM , using

Eq. (4.3), we have B(ξ, ξ) = D2
AV (p(x))(Txp.ξ, Txp.ξ). Therefore we get

JE(x)2

w(τ(x))2n
det

(
D2

AV
(
p(x)

)) = det(B|TxM
).

It follows from Eq. (4.3) that, as V is convex, B|TxM
is nonnegative and, with the geometric–

arithmetic inequality, the inequality (4.5) becomes

nω
1
n
n

J
1
n

E

w(τ)
f

1
n � tr(B|TxM

), (4.6)

from which we have

nω
1
n
n

J
1
n

E

w(τ)
f

1
n � 
AVM − n〈H, ∇̄V̄ 〉 + 2

w′(τ )

w(τ)
〈∇τ,∇VM〉, (4.7)

and multiplying by u(x)w(τ(x))2 gives

nω
1
n
n

1

(
w(τ)nJE

) 1
n−1 u

n
n−1 � uw(τ)2
AVM − nuw(τ)2〈H, ∇̄V̄ 〉 + 2uw(τ)w′(τ )〈∇τ,∇VM 〉.
cE(u) n
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Integrating this inequality on M \ C and using inequality (4.4) we get

nω
1
n
n

cE(u)
1
n

∫
M

(
w(τ)nJE

) 1
n−1 u

n
n−1 dvM � −

∫
M

w(τ)2〈∇u,∇VM 〉 + n

∫
M

uw(τ)|H |,

and since w(τ)|∇VM | � w(τ)|∇̄V̄ | � 1 we obtain the desired inequality:

nω
1
n
n

cE(u)
1
n

∫
M

(
w(τ)nJE

) 1
n−1 u

n
n−1 dvM �

∫
M

w(τ)|∇u| + n

∫
M

uw(τ)|H |. �

4.3. Weighted Lp Sobolev inequalities

As for the Euclidean submanifolds, we can also prove weighted Lp Sobolev inequalities.

Theorem 4.3. Let i :Mn → R × R
n+k be an isometric immersion where R × R

n+k is endowed
with the metric dt2 + w(t)2 dy2, and let E be an n-dimensional linear subspace of R

n+k such
that the critical set of the projection on E is negligible in M . For any 1 < p < n, and for any
function u ∈ C∞

c (M) we have

Sn,p

(∫
M

(
w(τ)nJE

) 1
n−1 |u| np

n−p dvM

) n−p
np

�
∫
M

J
− p−1

n−1
E w(τ)

n−p
n−1 |∇u|p dvM

+ n(n − p)

p(n − 1)

∫
M

J
− p−1

n−1
E w(τ)

n−p
n−1 |H |p|u|p dvM.

Sketch of proof. Let us start with a function u ∈ C∞
c (M) and the measure μ = f dvm where

f = (w(τ)nJE)
1

n−1 u
np

n−p

cE(u)
, with cE(u) = ∫

M
(w(τ)nJE)

1
n−1 u

np
n−p .

Then we just have to follow step by step the proof of Theorem 3.4, using the tools of the proof
of Theorem 4.2 to handle the different terms coming from the metric of N . �
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