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0. Introduction

In the celebrated paper [20] W.T. Gowers started his classification program for Banach spaces. The goal is to identify
classes of Banach spaces which are

1. hereditary, i.e. if a space belongs to a given class, then all of its closed infinite dimensional subspaces as well,
2. inevitable, i.e. any Banach space contains an infinite dimensional subspace in one of those classes,
3. defined in terms of richness of family of bounded operators in the space.

The famous Gowers’ dichotomy brought first two classes: spaces with unconditional basis and hereditarily indecomposable
spaces. The further classification, described in terms of isomorphisms, concerned minimality and strict quasiminimality.
A Banach space X is minimal if every closed infinite dimensional subspace of X contains a further subspace isomorphic to X .
A Banach space X is called quasiminimal if any two infinite dimensional subspaces Y , Z of X contain further isomorphic
subspaces. The classical spaces �p , 1 � p < ∞, c0 are minimal and the Tsirelson space T [S1,1/2] is the first known strictly
quasiminimal space (i.e. without minimal subspaces) [15]. The results of W.T. Gowers led to the question of the refinement
of the classes and classification of already known Banach spaces. A further step in the first direction was made by the
third named author [31], who proved that a strictly quasiminimal Banach space contains a subspace with no subsymmetric
sequence. An extensive refinement of list of the classes and study of examples were made recently by V. Ferenczi and
C. Rosendal [16,17].

The mixed Tsirelson spaces T [(Mn, θn)n], for Mn = An or Sn , as the basic examples of spaces not containing �p or c0,
form a natural class to be studied with respect to the classification program. The first step was made by T. Schlumprecht [5],
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who proved that his famous space S = T [(An,1/ log2(n+1))n] is complementably minimal. The result of Schlumprecht holds
for a certain class of mixed Tsirelson spaces T [(Akn , θn)n] by [27]. On the other hand, the Tzafriri space T [(An, c/

√
n )n] [36]

is not minimal by [21]. However the original Tsirelson space T [S1,1/2] is not minimal [15], every normalized block se-
quence is equivalent to a subsequence of the basis (a property studied also in [33]). We show that mixed Tsirelson spaces
T [(An, θn)n], for which Tzafriri space is a prototype, are saturated with subspaces with this “blocking principle”.

V. Ferenczi and C. Rosendal [16] introduced and studied a stronger notion of quasiminimality. A Banach space X with a
basis is sequentially minimal [16], if any block subspace of X contains a block sequence (xn) such that every block subspace
of X contains a copy of a subsequence of (xn). The related notions in mixed Tsirelson spaces defined by families (Sn) and
their relation to existence of �ω

1 -spreading models were studied in [25,22]. In [29] it was shown that the spaces T [(An, θn)n],
as well as T [(Sn, θn)n] satisfying the regularity condition θn/θn ↘ , where θ = limn θ

1/n
n , are sequentially minimal. We show

that the modified mixed Tsirelson spaces T M [(Sn, θn)n] with the above property are also sequentially minimal.
The major tool in the study of mixed Tsirelson spaces T [(Sn, θn)n] are the tree-analysis of norming functionals and the

special averages introduced in [7], see also [11]. The basic idea to prove quasiminimality is to produce in every subspace a
sequence of appropriate special averages of rapidly increasing lengths and show these sequences span isomorphic subspaces.
The major obstacle in study of modified mixed Tsirelson spaces is estimating the norms of splitting of a vector into pairwise
disjoint parts instead of consecutive parts as in non-modified setting. In order to overcome it, we introduced special types
of averages, so-called Tsirelson averages, describing in fact local representation of the Tsirelson space T [S1, θ], with θ =
supn θ

1/n
n , in the considered space. Then we are able to estimate the action of a norming functional on a linear combination

of Tsirelson averages by the action of a norming functional on suitable averages in the Tsirelson space T [S1, θ]. Using those
estimations we prove the sequential minimality of modified mixed Tsirelson space satisfying the regularity condition. Special
averages, a weaker form of Tsirelson averages, are also the main tool for proving arbitrary distortability of T M [(Sn, θn)] in
case θn/θn ↘ 0, the result known before in non-modified setting under the condition θn/θn → 0 [3].

In the second part of the paper we deal with the existence of strictly singular non-compact operators in mixed Tsirelson
spaces. The existence of non-trivial strictly singular operators, i.e. operators whose none restriction to an infinite dimensional
subspace is an isomorphism, was also studied in context of classification program of Banach space, both in search for
sufficient conditions and examples on known spaces. A space on which all the bounded operators are compact perturbations
of multiple of the identity was constructed recently by S.A. Argyros and R. Haydon [10], who solved “scalar-plus-compact”
problem. The existence of strictly singular non-compact operators was shown on Gowers–Maurey space and Schlumprecht
space [6], as well as on a class of spaces defined by families (Sn)n [19]. T. Schlumprecht [35], studying the richness of
the family of operators on a Banach space in connection with the “scalar-plus-compact” problem, defined two classes of
Banach spaces. Class 1 refers to a variation of a “blocking principle”, while a space belongs to Class 2 if and only if it admits
a strictly singular non-compact operator in any subspace (see Definition 3.3). T. Schlumprecht asked if any Banach space
contains a subspace with a basis which is either of Class 1 or Class 2. We show that a mixed Tsirelson space with the
canonical form T [(An, cn

n1/q )n] belongs to Class 1 if infn cn > 0 and to Class 2 if limn cn = 0.
In [23] a block sequence (xn)n∈N generating �1-spreading model was constructed in Schlumprecht space S . This re-

sult combined with the result of I. Gasparis [19] led to the question if some biorthogonal sequence to (xn)n generates a
c0-spreading model in S∗ . We remark that this is not the case. In general, it is still unknown if any sequence in S∗ gener-
ates a c0-spreading model. Finally we show that in (modified) mixed Tsirelson spaces defined by (Sn)n containing a block
sequence generating �ω

1 -spreading model there is a strictly singular non-compact operator on a subspace.
We describe now briefly the content of the paper. In the first section we recall the basic notions of the theory of mixed

Tsirelson spaces and their modified versions, including the canonical representation of these spaces and the notion of a tree-
analysis of a norming functional (Definition 1.8). The second section is devoted to the study of modified mixed Tsirelson
spaces T M [(Sn, θn)n] satisfying the regularity condition. We extend the notion of an averaging tree (Definition 2.5) and
present the notions of averages of different types, providing also upper (Lemma 2.10) and lower (Lemma 2.14) “Tsirelson-
type” estimates. We conclude the section with the result on arbitrary distortion for spaces with θn/θn ↘ 0 (Theorem 2.19)
and sequential minimality (Theorem 2.20). In the last section we study the existence of non-compact strictly singular op-
erators in mixed Tsirelson spaces T [(An, θn)n] (Theorem 3.4). We discuss the behavior of a biorthogonal sequence to the
sequence generating �1-spreading model in Schlumprecht space (Proposition 3.6) and the case of (modified) mixed Tsirelson
spaces defined by families (Sn)n admitting �ω

1 -spreading model (Theorem 3.8). We finish with the comments and questions
concerning the Tzafriri space and richness of the set of subsymmetric sequences in a Banach space.

1. Preliminaries

We recall the basic definitions and standard notation.
By a tree we shall mean a non-empty partially ordered set (T ,�) for which the set {y ∈ T : y � x} is linearly ordered

and finite for each x ∈ T . If T ′ ⊆ T then we say that (T ′,�) is a subtree of (T ,�). The tree T is called finite if the set T
is finite. The root is the smallest element of the tree (if it exists). The terminal nodes are the maximal elements. A branch
in T is a maximal linearly ordered set in T . The immediate successors of x ∈ T , denoted by succ(x), are all the nodes y ∈ T
such that x � y but there is no z ∈ T with x � z � y. A node x is a sibling of a node y, if x, y ∈ succ(z) for some z ∈ T . If X
is a linear space, then a tree in X is a tree whose nodes are vectors in X .
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Let X be a Banach space with a basis (ei). The support of a vector x = ∑
i xiei is the set supp x = {i ∈ N: xi 
= 0},

the range of x, denoted by range x is the minimal interval containing supp x. Given any x = ∑
i aiei and finite E ⊂ N put

Ex = xE = ∑
i∈E aiei . We write x < y for vectors x, y ∈ X , if max supp x < min supp y. A block sequence is any sequence

(xi) ⊂ X satisfying x1 < x2 < · · · . A closed subspace spanned by an infinite block sequence (xn) is called a block subspace and
denoted by [(xn)].

Notation 1.1. Given any two vectors x, y ∈ X we write x � y, if supp x ⊂ supp y, and we say that x and y are incomparable,
if supp x ∩ supp y = ∅.

Given a block sequence (xn) ⊂ X and a functional f ∈ X∗ we say that f begins in xn , if minsupp f ∈
(maxsupp xn−1,maxsupp xn].

A basic sequence (xn) C-dominates a basic sequence (yn), C � 1, if for any scalars (an) we have∥∥∥∥∑
n

an yn

∥∥∥∥ � C

∥∥∥∥∑
n

anxn

∥∥∥∥.

Two basic sequences (xn) and (yn) are C-equivalent, C � 1, if (xn) C-dominates (yn) and (yn) C-dominates (xn).
We shall use the notions describing different ways of asymptotic representation of �p , 1 � p < ∞, and c0 in a Banach

space.

Definition 1.2. Let E be a Banach space with a 1-subsymmetric basis (un), i.e. 1-equivalent to any of its infinite subse-
quences. Let (xn) be a seminormalized basic sequence in a Banach space X . We say that (xn)n generates (un) as a spreading
model, if for any k ∈ N and any (ai)

k
i=1 ⊂ R we have

lim
n1→∞ lim

n2→∞· · · lim
nk→∞

∥∥∥∥∥
k∑

i=1

aixni

∥∥∥∥∥
X

=
∥∥∥∥∥

k∑
i=1

aiui

∥∥∥∥∥
E

.

By [13] any seminormalized basic sequence admits a subsequence generating spreading model. We say that (xn) gener-
ates �p- (resp. c0-)spreading model, if (un) is equivalent to the u.v.b. of �p (resp. c0).

We say that a Banach space X with a basis is �p-asymptotic, 1 � p � ∞, if any block sequence n � x1 < · · · < xn is
C-equivalent to the u.v.b. of �n

p , for any n ∈ N and some universal C � 1.
We work on two types of families of finite subsets of N: (An)n∈N and (Sα)α<ω1 . Let

An = {F ⊂ N: #F � n}, n ∈ N.

Schreier families (Sα)α<ω1 , introduced in [1], are defined by induction:

S0 = {{k}: k ∈ N
} ∪ {∅},

Sα+1 = {F1 ∪ · · · ∪ Fk: k � F1 < · · · < Fk, f1, . . . , Fk ∈ Sα}, α < ω1.

If α is a limit ordinal, choose αn ↗ α and set

Sα = {F : F ∈ Sαn and n � F for some n ∈ N}.
Given a family M = An or Sn we say that a sequence E1, . . . , Ek of subsets of N is

1. M-admissible, if E1 < · · · < Ek and (min Ei)
k
i=1 ∈ M,

2. M-allowable, if (Ei)
k
i=1 are pairwise disjoint and (min Ei)

k
i=1 ∈ M.

Let X be a Banach space with a basis. We say that a sequence x1 < · · · < xn is M-admissible (resp. -allowable), if (supp xi)
n
i=1

is M-admissible (resp. -allowable).

Definition 1.3 (Mixed and modified mixed Tsirelson space). Fix a sequence of families (Mn) = (Akn ) or (Skn ) and sequence
(θn) ⊂ (0,1) with limn→∞ θn = 0. Let K ⊂ c00 be the smallest set satisfying the following:

1. (±e∗
n)n ⊂ K ,

2. for any f1 < · · · < fk in K , if ( f i)
k
i=1 is Mn-admissible for some n ∈ N, then θn( f1 + · · · + fk) ∈ K .

We define a norm on c00 by ‖x‖ = sup{ f (x): f ∈ K }, x ∈ c00. The mixed Tsirelson space T [(Mn, θn)n] is the completion of
(c00,‖ · ‖).

The modified mixed Tsirelson space T M [(Mn, θn)n] is defined analogously, by replacing admissibility by allowability of the
sequences.
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It is standard to verify that the norm ‖ · ‖ defined above is the unique norm on c00 satisfying the equation

‖x‖ = max

{
‖x‖∞, sup

{
θn

k∑
i=1

‖Ei x‖: (Ei)
k
i=1 − Mn-admissible (resp. -allowable), n ∈ N

}}
.

It follows immediately that the u.v.b. (en) is 1-unconditional in the space T [(Mn, θn)n] and its modified version. It was
proved in [7] that any T [(Skn , θn)n] is reflexive, also any T [(Akn , θn)n] is reflexive, provided θn > 1

kn
for at least one

n ∈ N [11].
Taking Mn = M and θn = θ for any n we obtain the classical Tsirelson-type space T [M, θ]. Recall that T [An, θ] = c0 if

θ � 1/n and T [An, θ] = �p , if θ = 1/ q
√

n for q satisfying 1/p + 1/q = 1 [12,11]. The space T [S1,1/2] is the Tsirelson space.
Schlumprecht space S is the space T [(An, 1

log2(n+1)
)n], Tzafriri space is T [(An, c√

n
)n] for 0 < c < 1. Modified Tsirelson-

type spaces are isomorphic to their non-modified version [12,15,28], whereas the situation is quite different in mixed
setting [9].

We present now the canonical form of a (modified) mixed Tsirelson space in both cases Mn = Akn or Skn , n ∈ N.

Definition 1.4. (See [27].) A mixed Tsirelson space T [(Akn , θn)n∈N] is called a p-space, for p ∈ [1,∞), if there is a sequence
(pN )N ⊂ (1,∞) such that

1. pN → p as N → ∞, and pN � pN+1 > p for any N ∈ N,
2. T [(Akn , θn)N

n=1] is isomorphic to �pN for any N ∈ N.

A p-space T [(An, θn)n∈N] is called regular, if θn ↘ 0 and θnm � θnθm for any n,m ∈ N. Recall that any p-space is isometric
to a regular p-space [29].

Notation 1.5. Let T [(An, θn)n∈N] be a regular p-space. If we set θn = 1/n1/qn with qn ∈ (1,∞), n ∈ N, then q = limn qn =
supn qn ∈ (0,∞], where 1/p + 1/q = 1, with usual convention 1/∞ = 0.

In the situation as above let cn = θnn1/q ∈ (0,1), n ∈ N, if p > 1. To unify the notation put cn = θn , n ∈ N, in case p = 1.

A space T M [(Sn, θn)n∈N] with θn ↘ 0 and θn+m � θnθm is called a regular space. Notice that any modified mixed Tsirelson
space T M [(Skn , θn)n∈N] is isometric to a regular modified mixed Tsirelson space (cf. [3]).

Notation 1.6. For a regular modified mixed Tsirelson space T M [(Sn, θn)n] let θ = limn θ
1/n
n = supn θ

1/n
n ∈ (0,1]. We shall use

also the following condition:

(♣)
(
θn/θ

n)
n ↘ i.e. θn+m � θnθ

m for any n,m ∈ N.

Given two families M, N of finite subsets of N define

M[N ] = {
F1 ∪ · · · ∪ Fk: F1, . . . , Fk ∈ N , (F1, . . . , Fk) M-admissible, k ∈ N

}
.

It follows straightforwardly that Sn[Sm] = Sn+m , for any n,m ∈ N.

Lemma 1.7. The space T M [(Sn[A2], θn)n] is 3-isomorphic to T M [(Sn, θn)n].

The proof of the above follows that of [29, Lemma 4.5] with “admissible” sequences replaced by “allowable” ones.
The following notion provides a useful tool for estimating norms in mixed Tsirelson spaces and their modified versions:

Definition 1.8 (The tree-analysis of a norming functional). Let f ∈ K , the norming set of T [(Mn, θn)n] (resp. T M [(Mn, θn)n]). By
a tree-analysis of f we mean a finite family ( fα)α∈T indexed by a tree T with a unique root 0 ∈ T (the smallest element)
such that the following hold

1. f0 = f and fα ∈ K for all α ∈ T ,
2. α ∈ T is maximal if and only if fα ∈ (±e∗

n),
3. for every not maximal α ∈ T there is some n ∈ N such that ( fβ)β∈succ(α) is an Mn-admissible (resp. -allowable) se-

quence and fα = θn(
∑

β∈succ(α) fβ). We call θn the weight of fα .

For any α ∈ T , α > 0, we define the tag t(α) = t( fα) as t(α) = ∏
α>β�0 weight( fβ).

For any α ∈ T we define also inductively the order of α as follows: ord(0) = 0 and for any β ∈ succ(α) we put ord(β) =
ord(α) + n, where weight( fα) = θn .
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Notice that every functional f ∈ K admits a tree-analysis, not necessarily unique.
We shall use repeatedly the following

Remark 1.9. Let X = T M [(Sn, θn)n] with (♣). Let ( fα)α∈T be a norming tree of a norming functional f ∈ K and α ∈ T not a
terminal node. Let fα = θrα

∑
β∈succ(α) fβ . Then by definition of Schreier families given any k ∈ [ord(α),ord(α) + rα] we can

write fα as follows

fα = θrα

∑
t∈Aα

∑
s∈Ft

f s

where ( f s)s∈Ft is Srα−(k−ord(α))-allowable, for any t ∈ Aα , and (gt)t∈Aα is Sk−ord(α)-allowable, with gt = θrα−(k−ord(α))

∑
s∈Ft

ft ,
t ∈ Aα . In particular for any fα and x ∈ X with non-negative coefficients we get by (♣)

fα(x) = θrα

θrα−(k−ord(α))

∑
t∈Aα

gt(x) � θk−ord(α)
∑

t∈Aα

gt(x).

As t(α) � θord(α) � θord(α) it follows that t(α) fα(x) � θk ∑
t∈Aα

gt(x).

2. Modified mixed Tsirelson spaces defined on Schreier families

In this section we present the main results on sequential minimality and arbitrary distortability of regular modified
mixed Tsirelson spaces T M [(Sn, θn)] with (♣). In the first subsection we discuss the notion of an average, in the next two
subsections we present “Tsirelson-type” estimations needed for the proof of main theorems in the last subsection. Since
the u.v.b. in any (modified) mixed Tsirelson space and its dual is unconditional, we work in the sequel on functionals and
vectors with non-negative coefficients. From now on we fix a regular modified mixed Tsirelson space X = T M [(Sn, θn)n∈N].

2.1. Averages

In this part we recall the notion of an average [7] and present basic facts.

Definition 2.1. A vector x in a Banach space X with a basis is called an (M, ε)-average of a block sequence (xi)i ⊂ X , for
M ∈ N and ε > 0, if x = ∑

i∈G ai xi for some G ∈ SM and (ai)i∈G ⊂ (0,1] with
∑

i∈G ai = 1 and for any F ∈ SM−1 we have∑
i∈F ai < ε.

We shall use the following facts in the sequel.

Fact 2.2. (See [8, Lemma 4.9].) Let x = ∑
i∈F ai xi be an (M, ε)-average of normalized vectors (xi)i∈F , M ∈ N, ε > 0 and E

an SM−1-allowable family of sets. Let G = F \ K , where K = {i ∈ F : ∃E ∈ E , E begins in xi}. Then for every i ∈ G the set
{Exi: E ∈ E , Exi 
= 0} is S1-allowable and

∑
E∈E

‖Ex‖ �
∑
E∈E

∥∥∥∥E

(∑
i∈G

aixi

)∥∥∥∥ + 2ε/θM .

Fact 2.3. Let x = ∑
i∈F ai xi be an (M, ε)-average of normalized vectors (xi)i∈F , M ∈ N, ε > 0 and f a norming functional

with a tree-analysis ( fα)α∈T . Then there is subtree T ′ of T such that any terminal node of T ′ has order at least M and
the functional f ′ defined by the tree-analysis ( fα)α∈T ′ satisfies f (x) � f ′(x) + 2ε.

Proof. Let E be the collection of all terminal nodes of T of order smaller than M . Let G = {i ∈ F : some fα begins in xi,

α ∈ E }. Since the set ( fα)α∈E is SM−1-allowable, it follows G \ {min G} ∈ SM−1 and f (
∑

i∈G ai xi) � amin G +∑
i∈G\{min G} ai �

2ε. Let T ′ be the tree T with removed nodes from the family E . Then f (x) � f ′(x) + f (
∑

i∈G ai xi) � f ′(x) + 2ε. �
Lemma 2.4. Let X satisfy (♣). Let x = ∑

i ai xi be an (M, ε)-average of a normalized block sequence (xi)i ⊂ X, M ∈ N. Then for any
j ∈ N, j < M and S j -allowable (El)l we have∑

l

‖Elx‖ � θ−1
1 θ M− j−1

∑
l

∑
i

ai‖Elxi‖ + 4ε/θM .

In particular ‖x‖ � θ−1θ M−1 + 4ε/θM .
1
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Proof. Take an S j-allowable sequence (El)l . For any l take a norming functional fl with ‖Elx‖ = fl(x) and its tree-analysis
( f l

α)α∈Tl . Let E be the collection of all terminal nodes α ∈ Tl for all l, such that ordTl (α) � M − 1 − j. Then the set ( fα)α∈E
is SM−1-allowable. By Fact 2.3 we can assume with error 2ε that all terminal nodes of all Tl have order at least M − j.

We will add in the tree-analysis ( f l
α)α∈Tl additional nodes (ht)t of order M − j − 1, by grouping some of nodes of Tl ,

and by (♣) obtain the desired estimation.
For any l let El be collection of all α ∈ Tl which are maximal with respect to the property ordTl (α) � M − j − 1. Fix

α ∈ El . Then by the above reduction α is not terminal, so f l
α = θrα

∑
s∈succ(α) f l

s for some Srα -allowable ( f l
s). By Remark 1.9

for k = M − j − 1 there are SM− j−1−ord(α)-allowable functionals (ht)t∈Aα with

t(α) f l
α(x) � θ M− j−1

∑
t∈Aα

ht(x).

It follows that (ht)t∈Al is SM− j−1-allowable, where Al = ⋃
α∈El

Aα . Now we have

‖Elx‖ = fl(x) =
∑
α∈El

t(α) f l
α(Elx)

�
∑
α∈El

θ M− j−1
∑

t∈Aα

ht(Elx) = θ M− j−1
∑
t∈Al

ht(Elx).

Taking into account the error from erasing nodes with too small orders we obtain∑
l

‖Elx‖ � θ M− j−1
∑

l

∑
t∈Al

ht(Elx) + 2ε � · · · .

Notice that (ht)t∈A is SM−1-allowable, where A = ⋃
l Al . By Fact 2.2 with error 2ε/θM we assume that the family

(ht(xi))t: ht (xi)
=0 is S1-allowable for each i and thus we have:

· · · � θ M− j−1
∑

l

∑
i

ai

∑
t: ht (xi) 
=0

ht(Elxi) + 4ε/θM

� θ M− j−1θ−1
1

∑
l

∑
i

ai‖Elxi‖ + 4ε/θM . �

2.2. Averaging trees

In order to control the norm of splitting of a vector of special type into allowable, not only admissible parts, we compare
it to the norm of splitting of a corresponding vector in the original Tsirelson space T [S1, θ]. In this section we present the
upper “Tsirelson-type” estimate for (M, ε)-averages with more refined structure. We shall use the notion of an averaging
admissible tree [3], with additional features:

Definition 2.5. We call a tree (x j
i )

M,N j

j=0, i=1 in X with weights (N j
i )

M,N j

j=1, i=1 ⊂ N and errors (ε
j
i )

M,N j

j=1, i=1 ⊂ (0,1), an averaging
tree, if

1. (x j
i )i∈I j is a block sequence for any j, 1 = N M � · · · � N0.

Moreover for any j = 1, . . . , M and i = 1, . . . , N j we have the following:
2. there exists a non-empty interval I j

i ⊂ {1, . . . , N j−1} with #I j
i = N j

i such that succ(x j
i ) = (x j−1

s )
s∈I j

i
,

3. x j
i = 1/N j

i

∑
s∈I j

i
x j−1

s ,

4. 2/ε
j
i < N j

i � minsupp x j
i ,

5. ε
j
i+1 < 1/(2i maxsupp x j

i ), maxsupp x j
i < N j

i+1.

Remark 2.6. In the situation as above we define coefficients (a j
i )

M,N j

j=0, i=1 ⊂ (0,1], as satisfying xM = ∑N j

i=1 a j
i x j

i . It follows

straightforwardly that for any j = 0, . . . , M , i = 1, . . . , N j we have the following

6.
∑N j

i=1 a j
i = 1,

7. a j
i = ∏M

r= j+1
1

Nr
ir

, where xr
ir

� x j
i for each M � r > j,

8. a j
i = ∑

m: x0
m�x j

i
a0

m .

Notice that any x j
i is a ( j, ε j

i )-average of (x0
m) 0 j .
xm�xi
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To show the last statement notice that by (4) for any j, i � 1 the block sequence succ(x j
i ) is S1-admissible, thus any

block sequence (x0
m)

x0
m�x j

i
is S j -admissible. To complete the proof notice that by the standard reasoning (cf. for example

[30], last part of the proof of Proposition 3.6) we have the following fact:

Fact. Fix a block sequence (xm)m and let (xi)
N
i=1 be a block sequence of (M − 1, εi)-averages of (xm)m∈Ai such that N > 2/ε

and εi+1 < 1/2i maxsupp xi . Then x = 1
N (x1 + · · · + xN ) is an (M, ε)-average of (xm)m∈Ai , i=1,...,N .

The above remark together with the construction of an averaging tree presented in [3] yields the standard

Fact 2.7. For any block sequence (xm)m of X , any ε > 0 and any M ∈ N there is an (M, ε)-average x of (xm) with an averaging

tree (x j
i )

M,N j

j=0, i=1 in X with suitable weights and errors (ε
j
i )

M,N j

j=1, i=1 such that xM
1 = x, εM

1 = ε and (x0
m)m ⊂ (xm)m .

In order to deal with allowable splittings, we need the next result, stating – roughly speaking – that a restriction of an
average x with an averaging tree high enough is still an average y, with a strict control on the error on the new average y
– depending on the error in the averaging tree of x corresponding to minsupp y.

Lemma 2.8. Let (x j
i ), (N j

i ), (a j
i ), (ε

j
i ) form an averaging tree for an (M + M̃, ε)-average x, M, M̃ ∈ N, ε > 0, of a normalized block

sequence (x0
i )i , satisfying for any i, j the following

1. N j
i = 2k j

i for some k j
i ,

2. ε
j
1 � θMε/2, ε j

i+1 � θMε/2i maxsupp x j
i .

Then for any I ⊂ N with N M
min I

∑
i∈I aM

i ∈ N the vector y = ∑
i∈I aM

i xM
i is a restriction of an (M, εM

min I )-average of some block

sequence (y0
k ) with ‖y0

k‖ � 1 and such that the following property holds:

(P) for every k, i, l either xM
i � yl

k or xM
i � yl

k or xM
i and yl

k are incomparable, where (yl
k)k,l is the family of nodes of averaging tree

of y.

Proof. Let εI = εM
min I . We represent y = ∑

i∈I aM
i xM

i as a restriction of an (M, εI )-average. We construct inductively on

l = M, M − 1, . . . ,0 an averaging tree (yl
k)

M,Kl
l=0,k=1 with weights (W l

k) and coefficients (cl
k), where yl

k = 1/W l
k

∑
s∈ J l

k
yl−1

s and

cl
k = ∏

r>l: yl
k�yr

kr

1
W r

kr
, such that yM

1 = y and the following is satisfied

(P0) cl
k yl

k = ∑
m∈Al

k
a0

mx0
m , cl

k = ∑
m∈Al

k
a0

m for every k and l < M ,

(P1) for every k, i, l either xl
i � yl

k or xl
i is incomparable with yl

k ,

(P2) for every i, j,k, l either x j
i � yl

k or x j
i � yl

k or x j
i and yl

k are incomparable,
(P3) for every k, l we have W l

k = min{Nl
i: xl

i � yl
k}.

We allow one difference from the original definition: # J M
1 = L = N M

min I

∑
i∈I aM

i , not W M
1 , otherwise # J l

k = W l
k for any

l < M .
Let yM

1 = ∑
i∈I aM

i xM
i = ∑

m∈A a0
mx0

m , cM
1 = 1, AM

1 = A and W M
1 = N M

min I � minsupp y. All properties (P0)–(P3) are obvi-
ously satisfied.

Assume we have defined (yl
k)k , (W l

k)k and (cl
k)k for some M � l > 2 satisfying the above. Fix k and consider Al

k . Pick
any m ∈ Al

k . By (P1) in inductive assumption we have xr
ir

� yr
kr

for any l � r � M , ir,kr with x0
m � xr

ir
and x0

m � yr
kr

. Thus
Nr

ir
� W r

kr
for any l � r � M , ir,kr as above. By Remark 2.6 and (P3) we have

a0
m =

M∏
r=1

1

Nr
ir

�
M∏

r=l

1

Nr
ir

�
M∏

r=l

1

W r
kr

= cl
k

W l
k

.

Recall that all coefficients a0
m, cl

k,1/W l
k are some powers of 1/2 and (a0

m)m is non-increasing. Moreover for l < M we have∑
m∈Al

k
a0

m = cl
k , hence we can split Al

k into W l
k-many successive sets (Al−1

s )
W l

k
s=1 such that for each s we have

∑
l−1

a0
m = cl

k

W l
k

.

m∈As
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In case l = M we have
∑

m∈AM
1

a0
m = L/W M

1 , hence we can split AM
1 into L-many sets (AM−1

s )L
s=1 such that for each s we

have ∑
m∈AM−1

s

a0
m = cM

1

W M
1

= 1

W M
1

.

We define then (yl−1
s )s and (cl−1

s )s by

cl
k

W l
k

yl−1
s =

∑
m∈Al−1

s

a0
mx0

m, cl−1
s = cl

k

W l
k

.

Hence obviously yl
k = 1/W l

k

∑
s yl−1

s . Let also W l−1
s = min{Nl−1

i : xl−1
i � yl−1

s } and thus we finish construction of vectors on
level l − 1 satisfying (P0) and (P3).

Now we verify property (P1). Notice that by property (P1) on level l for each k we have supp yl
k = ⋃{supp xl

i: xl
i � yl

k} =⋃{supp xl−1
s : xl−1

s � yl
k}. In case l < M by Remark 2.6 and (P0) for l we have

∑
r: yl−1

r �yl
k

cl−1
r = W l

k

cl
k

W l
k

= cl
k =

∑
m∈Al

k

a0
m =

∑
s: xl−1

s �yl
k

al−1
s ,

and as in the construction each al−1
s � cl

k/W l
k = cl−1

r . In case of l = M we have

∑
r: yM−1

r �yM
k

cM−1
r = L

cM
1

W M
1

= L

W l
k

=
∑

m∈AM
1

a0
m =

∑
s: xM−1

s �yM
k

aM−1
s ,

and each aM−1
s � 1/W M

1 = cM−1
r . Since all coefficients are powers of 1/2 and the sequence (al−1

s )s is non-increasing we can
partition the set {s: xl−1

s � yl
k} into

⋃{Br: yl−1
r � yl

k} such that for any r we have cl−1
r = ∑

s∈Br
al−1

s . Consequently for any

yl−1
r � yl

k and xl−1
s � yl

k we have either yl−1
r � xl−1

s or yl−1
r and xl−1

s are incomparable.

The property (P2) is verified analogously by induction. If for some l,k, j we have supp yl
k = ⋃{supp x j

i : x j
i � yl

k}, then

we show that for any yl−1
r � yl

k and x j−1
s � yl

k we have either yl−1
r � x j−1

s or yl−1
r and x j−1

s are incomparable. The same

argument works if supp x j
i = ⋃{supp yl

k: x j
i � yl

k} for some i, j, l.
Define the error δl

k for each l = M, . . . ,1 and k = 1, . . . , Kl . For k = 1 and any l = M, . . . ,1 let δl
1 = εI . By property (P1)

for any l,k there is some ik � k with

maxsupp yl
k � maxsupp xl

ik
< minsupp xl

ik+1 � minsupp yl
k+1.

Let δl
k+1 = εl

ik+1 for any k � 1. We verify condition (5) of Definition 2.5. For k = 1 and l = M, . . . ,1 we have W l
1 � N M

min I �
2/εM

min I = 2/δl
1. On the other hand we have for any l = M − 1, . . . ,1 and k = 1, . . . , Kl − 1

δl
k+1 = εl

ik+1 < 1/2ik maxsupp xl
ik

� 1/2k maxsupp yl
k,

and W l
k+1 � Nl

ik+1 > 2/εl
ik+1 = 2/δl

k+1.

Hence (yl
k)k,l , (W l

k)k,l , (cl
k)k,l , (δl

k)k,l form an averaging tree and thus y is (M, εI )-average of (y0
k )k . Notice that

∥∥c0
k y0

k

∥∥ =
∥∥∥∥ ∑

m∈A0
k

a0
mx0

m

∥∥∥∥ �
∑

m∈A0
k

a0
m = c0

k ,

therefore ‖y0
k‖ � 1. Moreover property (P2) includes property (P). �

Remark 2.9. Note that by the construction each sequence (yl−1
s )s∈ J l

k
is S1-admissible for any k, l. Hence it readily follows

that for every set F of incomparable nodes (yl
k) the functional

∑
yl

k∈F θ M−le∗
minsupp yl

k
is a norming functional on the space

T [S1, θ].
Note also that for any k0, l0 the family (xM

i : xM
i � yl0

k0
, l0 = min{m � l � 0: xM

i ≺ yl
k for some k}) is S1-admissible.

The next lemma provides a “Tsirelson-type” upper estimate for the norms of averages.

Lemma 2.10. Let (x j
i ), (N j

i ), (a j
i ), (ε

j
i ) form an averaging tree for a (2M − 3, ε)-average x, M > 1, ε > 0, of a normalized block

sequence (x0)i , satisfying for any i, j the following:
i
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1. N j
i = 2k j

i for some k j
i ,

2. ε
j
1 � θMε/2, ε j

i+1 � θMε/2i maxsupp x j
i .

Fix an SM−4-allowable family E of subsets of N, such that the family {E ∈ E : ExM
i 
= 0} is S1-allowable for any i, and coefficients

(tE)E∈E ⊂ [0,1].
Then there is a partition (V E )E∈E of nodes (x0

i )i , with minsupp x0
min V E

� min E, such that

∑
E∈E

tE‖Ex‖ � C
∑
E∈E

tE

∥∥∥∥ ∑
i∈V E

a0
i eminsupp x0

i

∥∥∥∥
T [S1,θ ]

+ Cε

for some universal constant C depending only on θ1 and θ .

Proof. STEP 1. Let us recall that x is an (M − 3, ε)-average of (xM
i )i . First let Ei = {E ∈ E : E begins at xM

i } and J = {i:
Ei 
= ∅}. As (xM

i )i∈ J\min J is SM−4-admissible, we have

∑
E∈E

tE

∥∥∥∥E
∑
i∈ J

aM
i xM

i

∥∥∥∥ �
∑
i∈ J

aM
i

∑
E∈E

∥∥ExM
i

∥∥ � θ−1
1

∑
i∈ J

aM
i � θ−1

1 2ε.

For any E ∈ E let I E = {i /∈ J : ExM
i 
= 0}, iE = min I E and εE = εM

iE
. Compute

∑
E∈E

εE � εθM

∑
i∈ J

∑
E∈Ei

1/2iE−1 maxsupp xM
iE −1

� εθM

∑
i∈ J

maxsupp xM
i /2i maxsupp xM

i � εθM .

STEP 2. Fix E ∈ E . Let
∑

i∈I E
aM

i xM
i = ∑

m∈K a0
mx0

m . Notice that each a0
m � 1/N M

iE
and (a0

m)m is non-increasing, therefore

we can partition K into intervals A < B with
∑

m∈A a0
m = L/N M

iE
and

∑
m∈B a0

m = δ/N M
iE

for some L ∈ N and 0 � δ < 1. Hence

we can erase
∑

m∈B a0
mx0

m with error δ/N M
iE

� 1/N M
iE

� εE .

After this reduction by Lemma 2.8 the vector y = ∑
i∈I E

aM
i xM

i is a restriction of an (M − 2, εE )-average
∑

k c2
k y2

k with

‖y2
k‖ � 1 and property (P) given by a suitable averaging tree (yl

k)k,l with proper weights, coefficients and errors.
We take the family K = {k: minsupp xM

i ∈ range y2
k for some xM

i }. Since (xM
i )i is an SM−3-admissible family and y is an

(M − 2, εE )-average of (y2
k ), we can erase

∑
k∈K c2

k y2
k with error 2εE . For any i let

lE,i = min
{

M � l � 0: yl
k � xM

i for some k
}
.

By the above reduction and (P) we can assume that lE,i � 2 for all i ∈ I E . Let

K E,i = {
k: y2

k � xM
i

}
for any i ∈ I E .

Compute by Lemma 2.4 for the (M − 2, εE )-average
∑

k c2
k y2

k and j = 0

‖Ex‖ =
∥∥∥∥E

∑
k

c2
k y2

k

∥∥∥∥ �
∥∥∥∥∑

k/∈K

c2
k E y2

k

∥∥∥∥ + 2εE

� θ−1
1 θ M−3

∑
i∈I E

∑
k∈K E,i

c2
k

∥∥E y2
k

∥∥ + 6εE/θM

= θ−1
1 θ M−3

∑
i∈I E

aM
i

∑
k∈K E,i

∥∥∥∥ c2
k

aM
i

E y2
k

∥∥∥∥ + 6εE/θM .

STEP 3. Fix i /∈ J . Put Fi = {E ∈ E : i ∈ I E } = {E ∈ E : ExM
i 
= 0}. For any E ∈ Fi and k ∈ K E,i let wk = c2

k

aM
i

E y2
k . Notice that

(wk)k is a partition of xM
i . For each k ∈ K E,i take the norming functional fk with fk(wk) = ‖wk‖ and supp fk ⊂ supp wk .

We gather all the terminal nodes in the tree-analysis of fk for all k ∈ K E,i , E ∈ Fi , of order smaller than M − lE,i . By the
assumption on E and the fact that lE,i � 2 they form an SM−1-allowable family, hence as xM

i is an (M, εM
i )-average, we can

erase these nodes with total error 2εM .
i
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By Remark 1.9, adding nodes in the tree-analysis of each fk , k ∈ K E,i , on the level M − lE,i , we get ‖wk‖ �
θ M−lE,i

∑
l f l

k(xM
i ) for some SM−lE,i -allowable functionals ( f l

k)l . Pick Ei with tEi θ
−lEi ,i = max{tEθ−lE,i : E ∈ Fi}. Let li = lEi ,i

and compute

∑
E∈Fi

tE

∑
k∈K E,i

∥∥∥∥ c2
k

aM
i

E y2
k

∥∥∥∥ �
∑
E∈Fi

tEθ M−lE,i
∑

k∈K E,i

∑
l

f l
k

(
xM

i

) + 2εM
i � · · · .

Notice again that ( f l
k)l,k∈K E,i , E∈Fi is an SM−1-allowable family (as before by lE,i � 2 and assumption on E ). As xM

i is an

(M, εM
i )-average of suitable (x0

m)m , by Fact 2.2 with error 2εM
i /θM , we may assume that for any m the family (supp f l

k ∩
supp x0

m)l,k∈K E,i , E∈Fi is S1-allowable. Therefore we continue the estimation

· · · � tEi θ
M−li

∑
E∈Fi

∑
k∈K E,i

∑
l

f l
k

(
xM

i

) + 4εM
i /θM � θ−1

1 tEi θ
M−li + 4εM

i /θM .

STEP 4. We define J E = {i: E = Ei} ⊂ I E for any E ∈ E . Notice that ( J E )E∈E are pairwise disjoint and compute, using
the previous steps

∑
E∈E

tE‖Ex‖ �
∑
E∈E

tE

∥∥∥∥E
∑
i∈ J

aM
i xM

i

∥∥∥∥ +
∑
E∈E

tE

∥∥∥∥E
∑
i∈I E

aM
i xM

i

∥∥∥∥ (STEP 1)

� 2θ−1
1 ε + θ−1

1 θ M−3
∑
E∈E

∑
i∈I E

aM
i

∑
k∈K E,i

tE

∥∥∥∥ c2
k

aM
i

E y2
k

∥∥∥∥ + 6
∑
E∈E

εE/θM (STEP 2)

� θ−1
1 θ M−3

∑
i /∈ J

aM
i

∑
E∈Fi

∑
k∈K E,i

tE

∥∥∥∥ c2
k

aM
i

E y2
k

∥∥∥∥ + (
6 + 2θ−1

1

)
ε

� θ−2
1 θ M−3

∑
i /∈ J

aM
i tEi θ

M−li + 4
∑

i

εM
i /θM + (

6 + 2θ−1
1

)
ε (STEP 3)

� θ−2
1 θ M−3

∑
E∈E

tE

∑
i∈ J E

aM
i θ M−li + (

10 + 2θ−1
1

)
ε � · · · .

By Remark 2.9 for any E ∈ E the formula
∑

i∈I E
θ M−li+1e∗

minsupp xM
i

defines a norming functional in T [S1, θ]. Therefore for

any E ∈ E we have

∑
i∈ J E

aM
i θ M−li � θ−1

∥∥∥∥ ∑
i∈ J E

aM
i eminsupp xM

i

∥∥∥∥
T [S1,θ ]

,

and we continue the above estimation

· · · � θ−2
1 θ M−4

∑
E∈E

tE

∥∥∥∥ ∑
i∈ J E

aM
i eminsupp xM

i

∥∥∥∥
T [S1,θ ]

+ (
10 + 2θ−1

1

)
ε � · · · .

Consider zM
i = 1/aM

i

∑
x0

m�xM
i

a0
meminsupp x0

m
, for i = 1, . . . , N M , which are (M, εM

i )-averages in T [S1, θ] by Remark 2.6. As

‖zM
i ‖T [S1,θ] � θ M for each i, we continue

· · · � θ−2
1 θ−4

∑
E∈E

tE

∥∥∥∥ ∑
i∈ J E

aM
i zM

i

∥∥∥∥
T [S1,θ ]

+ (
10 + 2θ−1

1

)
ε

� θ−2
1 θ−4

∑
E∈E

tE

∥∥∥∥ ∑
i∈ J E

∑
x0

m�xM
i

a0
meminsupp x0

m

∥∥∥∥
T [S1,θ ]

+ Cε,

which ends the proof with C = 10 + 2θ−2
1 θ−4 and V E = {m: x0

m � xM
i , i ∈ J E } for each E ∈ E . �

2.3. Special types of averages

For the rest of this subsection we assume that the considered regular modified mixed Tsirelson space X = T M [(Sn, θn)n]
satisfies (♣). In this setting we present the lower “Tsirelson-type” estimate, using special types of averages. We start with
[29, Corollary 4.10] recalled below.
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Proposition 2.11. For any block subspace Y of X , any M ∈ N and 0 < ε < θMθ M/4, there is an (M, ε)-average x ∈ Y of some
normalized block sequence in Y such that

θ M− j D � sup

{∑
i

‖Ei x‖: S j-allowable (Ei)

}
� θ M− j/D

for any 0 � j � M and some universal constant D depending only on θ1 and θ .

Proof. We recall [29, Lemma 4.9], whose proof is valid, line by line, also in the modified case. [29, Lemma 4.9] and
Lemma 2.4 yield the proposition. �
Definition 2.12. A special (M, ε)-average x, M ∈ N, ε > 0, is any (M, ε)-average satisfying assertion of Proposition 2.11.

For the next lemma we shall need the following observation.

Fact 2.13. Fix M ∈ N. Then for any G ∈ SM and any z = ∑
i∈G aiei ∈ T [S1, θ], (ai)i∈G ⊂ [0,1], there is a norming functional f

with a tree-analysis with height at most M , such that ‖z‖T [S1,θ] � 2 f (z).

Proof. Take a norming functional g with a tree-analysis (gt)t∈T satisfying g(z) = ‖z‖T [S1,θ] . Let I be the set of all terminal
nodes of T with order at most M and let g1 be the restriction of g to I and g2 = g − g1. If g1(z) � g2(z) then let f = g1.
Assume that g1(z) � g2(z) and compute

g(z) � 2g2(z) � 2θ M+1
∑

i∈G\I

ai � 2θ M
∑
i∈G

ai = 2 f (z),

where f = θ M ∑
i∈G e∗

i , which ends the proof. �
The major obstacle in obtaining the lower “Tsirelson-type” estimate for norm is the fact that given an (M, ε)-average

x = ∑
i∈F ai xi we do not control the norm of

∑
i∈G ai xi , G ⊂ F , in general case. The next result provides a block sequence(xi)

for which any SM -admissible subsequence dominates suitable subsequence of the basis in the original Tsirelson space. This
result is a generalization in the setting of mixed Tsirelson spaces of [8, Prop. 3.3].

Lemma 2.14. For every block subspace Y of X and every M ∈ N, δ > 0, there exists a block sequence (xi) of Y satisfying for any G ∈ SM
and scalars (ai)i∈G∥∥∥∥∑

i∈G

aixi

∥∥∥∥ � 1

2
(1 − δ)

∥∥∥∥∑
i∈G

ai‖xi‖eminsupp xi

∥∥∥∥
T [S1,θ ]

. (2.1)

Proof. Assume the contrary. Notice first that for any M ∈ N we have(
m
√

θm
)M � m

√
θMm � m

√
θmM ,

thus limm→∞ m
√

θMm = θ M . Pick m ∈ N such that m
√

θMm >
m
√

D2(1 − δ)θ M with D as in Proposition 2.11. Take a block
sequence (x0

i )i of special (Mm, ε)-averages, for some ε > 0.
Since (2.1) fails there is an infinite sequence G1

k of successive elements of SM and coefficients (a1
i )i∈G1

k
such that∥∥∥∥ ∑

i∈G1
k

a1
i x0

i

∥∥∥∥ <
1

2
(1 − δ)

∥∥∥∥ ∑
i∈G1

k

a1
i

∥∥x0
i

∥∥em0
i

∥∥∥∥
T [S1,θ ]

,

where m0
i = minsupp x0

i for each i. Set x1
k = ∑

i∈G1
k

a1
i x0

i , k ∈ N, and by Fact 2.13 take norming functionals f 1
k of the space

T [S1, θ] with a tree-analysis of height at most M with∥∥∥∥ ∑
i∈G1

k

a1
i

∥∥x0
i

∥∥em0
i

∥∥∥∥
T [S1,θ ]

� 2 f 1
k

( ∑
i∈G1

k

a1
i

∥∥x0
i

∥∥em0
i

)
.

Assume that we have defined (x j−1
k )k and ( f j−1

k )k for some j < m. Then the failure of (2.1) implies the existence of a

sequence (G j
k)k of successive elements of SM and a sequence (a j

i )i∈G j
k

such that∥∥∥∥ ∑
i∈G j

a j
i x j−1

i

∥∥∥∥ <
1

2
(1 − δ)

∥∥∥∥ ∑
i∈G j

a j
i

∥∥x j−1
i

∥∥e
m j−1

i

∥∥∥∥
T [S1,θ ]

,

k k
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where m j−1
i = minsupp x j−1

i . Set x j
k = ∑

i∈G j
k

a j
i x j−1

i , for k ∈ N, and take norming trees f j
k of the space T [S1, θ] with a

tree-analysis of height at most M such that∥∥∥∥ ∑
i∈G j

k

a j
i

∥∥x j−1
i

∥∥e
m j−1

i

∥∥∥∥
T [S1,θ ]

� 2 f j
k

( ∑
i∈G j

k

a j
i

∥∥x j−1
i

∥∥e
m j−1

i

)
.

The inductive construction ends once we get the vector xm
1 and the functional f m

1 .

Each functional f j
k is of the form

∑
i∈G j

k
θ l j

i e∗
m j−1

i

, by construction satisfying

∥∥x j
k

∥∥ < (1 − δ)
∑
i∈G j

k

θ l j
i a j

i

∥∥x j−1
i

∥∥. (2.2)

Inductively, beginning from f m
1 we produce a tree-analysis of some norming functional f on T [S1, θ] by substituting each

terminal node e∗
m j

k

, j = 1, . . . ,m, by the tree-analysis of the functional f j
k .

Put G = ⋃
km−1∈Gm

1

⋃
km−2∈Gm−1

km−1

· · ·⋃k1∈G2
k2

G1
k1

. Let (li)i∈G be such that f = ∑
i∈G θ li e∗

m0
i
. Notice that li � mM for any

i ∈ G , as the height of each f j
i does not exceed M . We compute the norm of xm

1 , which is of the form

xm
1 =

∑
km−1∈Gm

1

∑
km−2∈Gm−1

km−1

· · ·
∑

k1∈G2
k2

∑
i∈G1

k1

am
km−1

. . .a1
i x0

i =
∑
i∈G

bix
0
i .

Since each x0
i is a special (mM, ε)-average, for some SmM−li -allowable sequence (El)l∈Li we have ‖x0

i ‖ �
D2θmM−li

∑
l∈Li

‖Elx
0
i ‖.

We have on one hand by repeated use of (2.2)∥∥xm
1

∥∥ � (1 − δ)m
∑
i∈G

θ li bi
∥∥x0

i

∥∥
� (1 − δ)m D2

∑
i∈G

θ li biθ
mM−li

∑
l∈Li

∥∥Elx
0
i

∥∥
= (1 − δ)m D2θmM

∑
i∈G

bi

∑
l∈Li

∥∥Elx
0
i

∥∥.

On the other hand notice that (El)l∈⋃
i∈G Li

is SmM -allowable by the definition of f and (li)i∈G , thus∥∥xm
1

∥∥ � θmM

∑
i∈G

bi

∑
l∈Li

∥∥Elx
0
i

∥∥,

which brings θmM � (1 − δ)m D2θmM , a contradiction with the choice of m. �
Definition 2.15. A Tsirelson (M, ε)-average x ∈ X , M ∈ N, ε > 0, is an (M, ε)-average x = ∑

i∈F ai xi of a normalized block
sequence (xi) satisfying the assertion of Lemma 2.14 with δ = 1/2.

Notice that by Lemma 2.4 every Tsirelson average is also a special average (with a possibly different constant).

Definition 2.16. A RIS of (special, Tsirelson) averages is any block sequence of (special, Tsirelson) (nk, ε/2k)-averages (xk) ⊂ X
for ε > 0 and (nk)k ⊂ N satisfying

θlk+1‖xk‖�1 � ε

2k+1
, k ∈ N,

where lk = max{l ∈ N: 4l � nk}, k ∈ N.

We need the following technical lemma, mostly reformulating [22, Lemma 7]:

Fact 2.17. Take RIS of normalized averages (xk), for some (nk) ⊂ N and ε > 0, and some x = ∑
k bkxk with (bk) ⊂ [0,1]. Then

for any norming functional f with a tree-analysis ( fα)α∈T there is a subtree T ′ such that the corresponding functional f ′
defined by the tree-analysis ( fα)α∈T ′ satisfies f (x) � f ′(x) + 3ε and the following hold for any k

(a) any node α of T ′ with fα(xk) 
= 0 satisfies ord(α) < nk+1/4,
(b) any terminal node α of T ′ with fα(xk) 
= 0 satisfies ord(α) � nk .
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Proof. In order to prove (a) we repeat the reasoning from the proof of [22, Lemma 7]. For any k let Fk be the collection of
all nodes in T which are minimal with respect to the property ord(α) � nk+1/4 and fα(xk) 
= 0. Then∑

α∈Fk

t(α) fα(xk) � θlk+1‖xk‖�1 � ε

2k+1
.

Thus we can erase all nodes from Fk restricted to supports of xk , for all k, with error
∑

k bk
ε

2k+1 � ε.
For (b) we use Fact 2.3 for erasing all terminal nodes α of T with fα(xk) 
= 0 with error 2εk , for any k. �

Lemma 2.18. Let x = ∑
k akxk be an (M, ε)-average of RIS of normalized special averages (xk), for (nk) ⊂ {M + 3, M + 4, . . .} and

0 < ε < θM .
Then ‖x‖ � D ′θM , for some universal constant D ′ depending only on θ and θ1 .

Proof. Take a norming functional f with a tree-analysis ( fα)α∈T such that ‖x‖ = f (x). Using Fact 2.17 pick the subtree T ′
satisfying (a) and (b) and the corresponding functional f ′ .

Let E be collection of all α ∈ T ′ maximal with respect to the property ord(α) � M − 1. Notice that E is SM−1-allowable.
Fix α ∈ E . Then α is not terminal, so fα = θrα

∑
s∈succ(α) f s . As in Remark 1.9 we partition succ(α) = ⋃

t∈Aα
Ft in such

a way that ( f s)s∈Ft is Sord(s)−(M−1)-allowable for every t ∈ Aα and (gt)t∈Aα is SM−1−ord(α)-allowable, where gt = ∑
s∈Ft

f s .
Let A = ⋃

α∈E Aα and notice that (gt)t∈A is SM−1-allowable. Let H denote the set of all k such that some gt , t ∈ A, begins
in xk . Since x is an (M, ε)-average we have ‖∑

k∈H akxk‖ �
∑

k∈H ak � 2ε.
By definition of H for any α ∈ E and k /∈ H with fα(xk) 
= 0 there is an immediate successor of α beginning before xk .

Thus by (a) we have for any k /∈ H

(c) for any α ∈ E with fα(xk) 
= 0 the order of immediate successors of α is at most nk/4,
(d) {gt : t ∈ A, gt(xk) 
= 0} restricted to supp xk is S1-allowable.

Fix k /∈ H and t ∈ A with gt(xk) 
= 0 and let Bk
t = {s ∈ Ft : f s(xk) 
= 0}.

Fix s ∈ Bk
t and take the subtree Ts of T ′ consisting of s (as a root) and of all successors of s in T ′ . By Remark 1.9, using

(b) and (c) we can add nodes in Ts on level nk − ord(s) obtaining (hs,r)r∈Cs which is Snk−ord(s)-allowable satisfying

f s(xk) �
∑
r∈Cs

θnk−ord(s)hs,r(xk).

Compute for k /∈ H using the above and (♣)

f ′(xk) =
∑
t∈A

∑
s∈Bk

t

t(s) fs(xk)

� θM

∑
t∈A

∑
s∈Bk

t

θord(s)−M
∑
r∈Cs

θnk−ord(s)hs,r(xk)

� θM

∑
t∈A

∑
s∈Bk

t

∑
r∈Cs

θnk−Mhs,r(xk).

Notice that the family {hs,r: r ∈ Cs, s ∈ Bk
t } for any fixed t ∈ A,k /∈ H is Snk−M+1-allowable. Therefore by (d) the family

{hs,r: r ∈ Cs, s ∈ Bk
t , t ∈ A} for any fixed k /∈ H is Snk−M+2-allowable and hence since xk is a normalization of an (nk, εk)-

special average, we continue the estimation

· · · � θMθnk−M D2θ−nk+M−2 = D2θ−2θM .

We compute

f (x) � f ′(x) + 3ε �
∑
k/∈H

ak f ′(xk) + 5ε � D2θ−2θM + 5ε �
(

D2θ−2 + 5
)
θM ,

which ends the proof of the lemma. �
2.4. Main results

Recall that a Banach space (X,‖ · ‖) is λ-distortable, λ > 1, if X admits an equivalent norm | · |, such that for any infinite
dimensional subspace Y of X we have sup{|x|/|y|: x, y ∈ Y , ‖x‖ = ‖y‖ = 1} � λ. A Banach space X is arbitrarily distortable,
if it is λ-distortable for any λ > 1. It is an open question if there exists a Banach space λ-distortable for some λ > 1, but not
arbitrarily distortable. A natural candidate for such an example is the Tsirelson space T [S1,1/2].
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Theorem 2.19. Let X be a regular modified mixed Tsirelson space T M [(Sn, θn)n]. If θn/θn ↘ 0, then X is arbitrarily distortable.

Proof. We show that the norm defined as ‖x‖n = sup{∑i ‖Ei x‖, (Ei) Sn-admissible}, x ∈ X , cθn/θn-distorts X , for any n ∈ N

and universal c > 0. Clearly ‖ · ‖ � ‖ · ‖n � 1/θn‖ · ‖, n ∈ N. Fix an infinite dimensional subspace Y of X . By Proposition 2.11
there is y ∈ Y with ‖y‖ � θn/D and ‖y‖n � D . On the other hand, again by Proposition 2.11 and Lemma 2.18 there is x ∈ Y
with ‖x‖ � D ′θn and ‖x‖n � 1. Considering x/‖x‖ and y/‖y‖ we obtain cθn/θn-distortion of X with c = 1/D2 D ′ . �

Recall that a Banach space X with a basis is called sequentially minimal [16], if any block subspace of X contains a
block sequence (xn) such that every block subspace of X contains a copy of a subsequence of (xn). Notice that this property
implies quasiminimality of X .

Theorem 2.20. Let X be a regular modified mixed Tsirelson space T M [(Sn, θn)n]. If θn/θn ↘ , then X is sequentially minimal.

The theorem follows immediately from the following result:

Lemma 2.21. Let (xk)k, (yk)k be RIS of Tsirelson (2Mk − 3, εk)-averages, Mk > 4, ε < (6C)−1 , with C as in Lemma 2.10, such that

1. xk has an averaging tree (x j
k,i)i, j , (N j

k,i)i, j , (ε
j
k,i)i, j , (a j

k,i)i, j , yk has an averaging tree (y j
k,i)i, j , (N j

k,i)i, j , (ε
j
k,i)i, j , (a j

k,i)i, j , both
satisfying conditions (1) and (2) of Lemma 2.10 for any k,

2. minsupp x0
k,i = minsupp y0

k,i and ‖x0
k,i‖ = ‖y0

k,i‖ = 1 for any k, i,

3. εk � θ2Mk−3θ
2Mk−3ε/2k+2 for any k.

Then (xk/‖xk‖)k and (yk/‖yk‖)k are equivalent.

Notice first that the lemma above yields Theorem 2.20, as given a block sequence (wn) in X , a block subspace Y of X
and k ∈ N, we can choose block sequences (ui) ⊂ [(wn)] and (vi) ⊂ Y satisfying the assertion of Lemma 2.14 for 2Mk − 3.
Passing to subsequences if necessary and using small perturbations we obtain block sequences (u′

i) and (v ′
i) of the form

u′
i = ui + δiemi , v ′

i = vi + δiemi , for some (mi) ⊂ N with mi = minsupp u′
i = minsupp v ′

i for each i and small (δi) ⊂ (0,1),
which are equivalent to (ui) and (vi) respectively and still satisfy the assertion of Lemma 2.14 for 2Mk − 3. Then by Fact 2.7
construct on these sequences two Tsirelson (2Mk −3, εk)-averages with averaging trees as in Lemma 2.21 with equal systems
of weights, errors and coefficients, obtaining xk and yk for each k ∈ N.

Now we proceed to the proof of Lemma 2.21.

Proof of Lemma 2.21. Notice first that by Lemma 2.4 and definition of a Tsirelson average we have estimation

θ2Mk−3/4 � ‖xk‖ � 5θ−2
1 θ2Mk−3, k ∈ N,

and the same estimation for ‖yk‖, k ∈ N.
We show first that (yk/‖yk‖)k dominates (xk/‖xk‖)k . Let x = ∑

k dkxk/‖xk‖ be of norm 1, with (dk) ⊂ [0,1], and take its
norming functional f with a tree-analysis ( fα)α∈T . Let y = ∑

k dk yk/‖yk‖. By Fact 2.17 we can assume with error ε that
ord(α) < Mk+1/4 � Mk+1 − 4 for any α ∈ T with fα(xk) 
= 0. For any k > 1 let

Ek = {α ∈ T : fα begins at xk and has a sibling beginning before xk}.
By our reduction ord(α) < Mk − 4 for any α ∈ Ek , k � 2. We replace in the tree-analysis of f each functional fα ,
α ∈ Ek , by two functionals gα = fα |supp xk and kα = fα − gα , obtaining a tree-analysis of a functional g on the space
X2 = T [(Sn[A2], θn)n], which by Lemma 1.7 is 3-isomorphic to X .

Notice that (gα)α∈Ek,k�2 have pairwise disjoint supports and (
⋃

α∈Ek
supp gα) ∩ supp xk = supp f ∩ supp xk , hence

f |supp xk = ∑
α∈Ek

t(α)gα . For each k � 2 consider the set Jk = {i: some gα begins at xMk
k,i }. Notice that by our reduction

(gα)α∈Ek is SMk−4-allowable, thus (xMk
k,i )i∈ Jk\min Jk is SMk−4-admissible and recall that xk is an (Mk − 3, εk)-average of (xMk

k,i ).

Let g′
α , α ∈ Ek , be the restriction of gα to

⋃
i /∈ Jk

supp xMk
k,i . Then we have the following estimation

f (x) = d1

‖x1‖ f (x1) +
∑
k�2

dk

‖xk‖ f (xk)

� d1

‖x1‖ f (x1) +
∑
k�2

dk

‖xk‖
∑
α∈Ek

t(α)g′
α(xk) +

∑
k

dk

‖xk‖
∑
i∈ Jk

aMk
k,i

∥∥xMk
k,i

∥∥
� d1

‖x1‖ f (x1) +
∑ dk

‖xk‖
∑
α∈E

t(α)g′
α(xk) + 8

∑
εkθ

−2Mk+3
k�2 k k
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� d1

‖x1‖ f (x1) +
∑
k�2

dk

‖xk‖
∑
α∈Ek

t(α)g′
α(xk) + ε.

Fix k � 2. Notice that by definition the set {g′
α: g′

α(xMk
k,i ) 
= 0} restricted to the support of xM

k,i is S1-allowable for any i.

Therefore by Lemma 2.10 we pick suitable partition (Vα)α∈Ek of nodes (x0
k,i)i with minsupp x0

k,min Vα
� minsupp g′

α for each
α ∈ Ek and by definition of a Tsirelson average obtain

∑
α∈Ek

t(α)g′
α(xk) � C

∑
α∈Ek

t(α)

∥∥∥∥ ∑
i∈Vα

a0
k,ieminsupp x0

k,i

∥∥∥∥
T [S1,θ ]

+ Cεk

� C
∑
α∈Ek

t(α)

∥∥∥∥ ∑
i∈Vα

a0
k,ieminsupp y0

k,i

∥∥∥∥
T [S1,θ ]

+ Cεk

� 4C
∑
α∈Ek

t(α)

∥∥∥∥ ∑
i∈Vα

a0
k,i y0

k,i

∥∥∥∥ + Cεk

� 4C
∑
α∈Ek

t(α)hα(yk) + Cεk,

where hα is a norming functional on X with hα(yk) = ‖∑
i∈Vα

a0
k,i y0

k,i‖ and supp hα ⊂ ⋃
i∈Vα

supp y0
k,i , thus minsupp hα �

minsupp x0
k,min Vα

� minsupp g′
α for each α ∈ Ek .

We modify the tree-analysis of g , replacing each node gα , α ∈ Ek , k � 2, by the functional hα . As minsupp hα �
minsupp gα for each α, we obtain a tree-analysis of some norming functional h on X2. We compute, by Lemma 1.7 and the
above estimations including the estimation on the norms of (xk)k and (yk)k ,

1 = f (x) � d1 +
∑
k�2

dk

‖xk‖
∑
α∈Ek

t(α)gα(xk) + ε

� d1 + 80Cθ−2
∑
k�2

dk

‖yk‖
∑
α∈Ek

t(α)hα(yk) + 4C
∑
k�2

εk

θ2Mk−3
+ ε

� d1 + 80Cθ−2h

(∑
k�2

dk

‖yk‖ yk

)
+ 3Cε

� 241Cθ−2‖y‖ + 1/2,

which means that (yk/‖yk‖)k dominates (xk/‖xk‖)k . Since the conditions are symmetric, the opposite domination follows
analogously. �
3. Strictly singular non-compact operators

3.1. Spaces defined by families (An)n

In spaces defined by families (An)n the crucial tool is formed by �p-averages.

Definition 3.1. A vector x ∈ X is called a C–�p-average of length m, for p ∈ [1,∞], m ∈ N and C � 1 if x = ∑m
i=1 xi/‖∑m

i=1 xi‖
for some normalized block sequence (xn)m

n=1 which is C-equivalent to the unit vector basis of �m
p .

Recall that an operator on a Banach space X is called strictly singular if its restriction to any infinite dimensional subspace
of X is not an isomorphism.

Definition 3.2. (See [35].) Let X be a Banach space with a basis (en). Then X is in

1. Class 1, if any normalized block sequence in X has a subsequence equivalent to a subsequence of (en).
2. Class 2, if each block sequence has further normalized block sequences (xn) and (yn) such that the map xn �→ yn

extends to a bounded strictly singular operator between [(xn)] and [(yn)].

T. Schlumprecht in [35] asked if any Banach space contains a subspace with a basis which is either of Class 1 or Class 2
and gave the following sufficient condition for the existence of strictly singular non-compact operator in the space.
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Theorem 3.3. (See [35, Thm. 1.1].) Let (xn) and (yn) be two normalized basic sequences generating spreading models (un) and (vn)

respectively. Assume that (un) is not equivalent to the u.v.b. of c0 and (un) strongly dominates (vn), i.e.∥∥∥∥
∞∑

i=1

ai vi

∥∥∥∥ � max
n∈N

δn max
#F�n

∥∥∥∥∑
i∈F

aiui

∥∥∥∥
for some sequence (δn) with δn ↘ 0, n → ∞. Then the map xn �→ yn extends to a bounded strictly singular operator between [(xn)]
and [(yn)].

Theorem 3.4. Let X = T [(An, cn
n1/q )n] be a regular p-space, with p ∈ [1,∞). Then

1. if infn cn > 0, then X is saturated with subspaces of Class 1,
2. if cn → 0, n → ∞, then X is in Class 2.

Proof. (1). We show that any block subspace of X contains a normalized block sequence (us)s with the following “blocking
principle” (“shift property” in [33]): any normalized block sequence (y j) j is equivalent to any (uk j ) j , with y j < uk j+1 and
uk j < y j+1. It follows that the subspace [(us)] is sequentially minimal.

By [29, Prop. 2.10] any block subspace of X contains an �p-asymptotic subspace of X . Let W be such �p-asymptotic
subspace, spanned by a normalized block sequence (wk)k . Let C be the asymptotic constant of W , i.e. any normalized block
sequence (zi)

n
i=1 with z1 > n in W is C-equivalent to the u.v.b. of �n

p .
For any subspace Y of X spanned by normalized block sequence (yn) let ‖∑

n an yn‖Y ,∞ = supn∈N |an|.
Fix two strictly increasing sequences of integers (mn)n ⊂ N and (N j) j ⊂ N and take normalized block sequences (vn)n of

(wk)k and (u j) j of (vn)n such that

1. vn > mn in W for any n,
2. for any y ∈ [(vi)i>n] we have ‖y‖W ,∞ < 1/(8m5

n), for any n,
3. u j > N j in V = [(vn)n] for any j,
4. for any y ∈ [(ui)i> j] we have ‖y‖V ,∞ < 1/(8N5

j ), for any j,

5. p
√

N j � C2 j+7 for any j,
6. N jθmn < 1/2n+5 for any n � j (in particular mn � N j for any n � j),
7. θmn

∑
i<n # supp vi < 1/2n+5 for any n.

Notice that every vector y ∈ [(vi)i>n] is a 2C–�p -average of length mn of some normalized block sequence (yi)
mn
i=1 of (wk)k .

Indeed, by [29, Claim 3.8] and condition (2) split y into (F yi)
mn
i=1 with almost equal norm, obtaining by condition (1) and

�p-asymptoticity of W that y is a suitable average. The same holds in V : every vector y ∈ [(ui)i> j] is a 2C–�p -average of

length N j of some normalized block sequence (yi)
N j

i=1 (block with respect to (vn)n).
We show that in such setting we can prove the above theorem repeating the proof of [29, Theorem 3.1]. We consider any

normalized block sequence (y j) of (u j) and as (z j) we take (uk j ) with y j < uk j+1 and uk j < y j+1. By the above observation

y j = (y j
1 +· · ·+ y j

N j
)/‖y j

1 +· · ·+ y j
N j

‖ and uk j = (u j
1 +· · ·+u j

N j
)/‖u j

1 +· · ·+u j
N j

‖, where (yi
j)

N j

i=1 and (ui
j)

N j

i=1 are normalized

block sequences with respect to (v j) j . Notice that (N j) are big enough by condition (5). We again use the above observation
obtaining that each yi

j and vi
j is an �p-average of a block sequence of (wk)k , of suitable length with parameters satisfying

the assertion of a version of [29, Lemma 3.2] for C-averages instead of 2-averages (by conditions (6) and (7)). Therefore
repeating the proof of [29, Theorem 3.1] we obtain uniform equivalence of (y j) and (uk j ) and hence “blocking principle”
stated above.

(2). Fix a block subspace Y of X . By [29, Theorem 2.9] p is in Krivine set of Y . Take finite normalized block sequences
(yi)i such that for some (mi)i ⊂ N

1. each yi is 2 − �p-averages of length Ni � (2mi)
p ,

2. θmi

∑
j<n # supp y j � 1/2i+5 for any i,

3. 2i+5θmi → 0, i → ∞.

Passing to a subsequence we can assume that (yi) generates a spreading model (vi).

Lemma 3.5. The spreading model (vi) is strongly dominated by the u.v.b. of �p .

Proof. Take k ∈ N and (ai)
N
i=1 ∈ c00 with ‖(ai)‖∞ � 1/k2 and ‖(ai)‖�p = 1. Choose M by (3) in definition of (yi) with

Nθmi � 1/2i+5 for any i > M and 1/2M � 1/k. We have ‖∑N
i=1 ai vi‖ � 2‖∑N+M ãi yi‖, where ãi+M = ai , i = 1, . . . , N .
i=1+M
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Take a norming functional f with a tree-analysis ( ft)t∈T and supp f ⊂ supp y, where y = ∑N+M
i=1+M ãi yi . By

[29, Lemma 2.5] up to multiplying by 36 we can assume that for any ft and yi we have either supp ft ⊂ yi , supp ft ⊃
supp yi ∩ supp f or supp ft ∩ supp yi = ∅. We say that ft covers yi , if t is maximal in T with supp ft ⊃ supp yi ∩ supp f .

Let A = {t ∈ T : ft covers some yi }. Given any t ∈ A let It = {i = 1 + M, . . . , N + M: ft covers yi}. Let θmt be the weight
of ft . If mt > mi for some i ∈ It let it be the maximal element of It with this property. Otherwise let it = 0.

For any i ∈ It let J i = {s ∈ succ(t): supp f s ⊂ supp yi}. By [29, Lemma 2.8] we have
∑

s∈ J i
f s(yi) � 8(# J i)

1/q for each
i ∈ It , i > it .

First let Lt = {i /∈ It : supp yi ∩ supp f ⊂ supp ft}. Notice that for any i ∈ Lt there is some fti – successor of ft so that
supp yi ∩ supp f ⊂ supp fti . Hence

ft

(∑
i∈Lt

ãi yi

)
� θmit

(∑
i∈Lt

fti (ãi yi)

)
� Nθmit

� 1/2it+2.

Thus f (
∑

t∈A,i∈Lt
yi) � 1/2M and we erase this part for all t with error � 1/k. Notice that by condition (2) in choice of (yi)

we have

ft

( ∑
i∈It , i<it

yi

)
� θmit

∑
i<it

# supp yi � 1/2it+2,

so we can again erase this part for all t with error 1/k.
Let g be the restriction of f to

⋃
t∈A supp yit and h = f − g . First we consider g(y) = ∑

t∈A t( ft)ãit ft(yit ). Let B = {t ∈ A:
ord( ft) � k}, hence #B � k. Then

∑
t∈B ãit ft(yit ) � #B/k2 � 1/k, hence we can erase this part with error 1/k. Notice that∑

t∈A\B
1

ord( ft )1/q e∗
it

is a norming functional on �p , hence

∑
t∈A\B

ãit t( ft) ft(yit ) �
∑

t∈A\B

ãit

cord( ft )

(ord( ft))1/q
� max

n�k
cn

∥∥(ãit )t∈A\B
∥∥

�p
� max

n�k
cn.

We consider h(y) = ∑
t∈A

∑
i∈It , i>it

ãi
∑

s∈ J i
t( f s) f s(yi). Let D = {s ∈ J i, i ∈ It , i > it , t ∈ A: ord( f s) � k}. Then∑

t∈A

∑
i∈It , i>it

∑
s∈ J i∩D

ãi f s(yi) � #D/k2 � 1/k,

and we again erase this part with error 1/k. For any i ∈ It , i > it for some t ∈ A let ri = ord( ft)mt and compute, using
Hölder inequality,∑

t∈A

∑
i∈It , i>it

∑
s∈ J i\D

ãit( f s) f s(yi) �
∑
t∈A

∑
i∈It , i>it

ãi8(# J i)
1/qθri

� 8 max
n�k

cn

∑
t∈A

∑
i∈It , i>it

ãi
(# J i)

1/q

r1/q
i

� 8 max
n�k

cn
∥∥(ãi)i∈It , i>it , t∈A

∥∥
�p

� 8 max
n�k

cn.

We put all the estimates together obtaining

f (y) � 36
(

9 max
n�k

cn + 4/k
)
.

Therefore we proved that 
ε = sup{‖∑
i∈N

ai vi‖: supi∈N |ai | � ε, ‖(ai)i∈N‖�p = 1} converges to zero, as ε → 0. By
[35, Lemma 2.4] there are some (δn)n ⊂ (0,∞) with δn ↘ 0 such that for any (ai)i ∈ c00∥∥∥∥∑

i

ai vi

∥∥∥∥ � max
n∈N

δn max
#F�n

∥∥(ai)i∈F
∥∥

�p
,

which ends the proof of the lemma. �
We continue the proof of Theorem 3.4. By the proof of [29, Thm 2.9], p is in the Krivine set of Y in Lemberg sense [24],

i.e. for any n there is a normalized block sequence (x(n)
i )i ⊂ Y generating spreading model (u(n)

i )i such that (u(n)
i )n

i=1 is
1-equivalent to the u.v.b. of �n

p .

Pick (mn)n such that δmn � 1/4n . Apply [4, Prop. 3.2] to constants Cn = 2n , n ∈ N and normalized block sequences (x(mn)
i )i

generating spreading models (u(mn)
i )i . We obtain thus a seminormalized block sequence (xi)i generating spreading model

(ui)i which Cn dominates (u(mn)
)i for any n ∈ N. By Lemma 3.5 we have
i
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∥∥∥∥∑
i

ai vi

∥∥∥∥ � max
n∈N

δn max
#F�n

∥∥(ai)i∈F
∥∥

�p

� max
n∈N

δmn max
#F�mn+1

∥∥(ai)i∈F
∥∥

�p

� max
n∈N

1/4n max
#F�mn+1

∥∥∥∥∑
i∈F

aiu
(mn+1)

i

∥∥∥∥
� max

n∈N

Cn+1/4n max
#F�mn+1

∥∥∥∥∑
i∈F

aiui

∥∥∥∥
� max

n∈N

2/2n max
#F�mn+1

∥∥∥∥∑
i∈F

aiui

∥∥∥∥.

Notice that (ui)i is not equivalent to the u.v.b. of c0, thus by Theorem 3.3 we finish the proof. �
In [19] the construction of non-compact strictly singular operators was based on c0-spreading model of higher order

in the dual space. However this method does not follow straightforwardly in case of p-spaces, as the observation below
shows. In [23] it was shown that Schlumprecht space S = T [(An, 1

log2(n+1)
)n] introduced in [34] contains a block sequence

(yk) generating an �1-spreading model. We show that no biorthogonal sequence to (yk) generates a c0-spreading model.
An analogous example is constructed in [8]: a mixed Tsirelson space defined by (Sn)n which admits a block sequence (zk)

generating an �ω
1 -spreading model (cf. Definition 3.7), such that no biorthogonal sequence to (zk) generates cω

0 -spreading
model.

Proposition 3.6. Consider the sequence (yk) generating an �1-spreading model constructed in [23], yk = ∑k
m=1 vk,m, k ∈ N. Take

any block sequence (y∗
k ) ⊂ S∗ so that y∗

k (yl) = δl,k. Then the sequence (y∗
k ) does not generate a c0-spreading model.

Proof. We can assume that supp y∗
k = supp yk , k ∈ N. Consider two cases:

CASE 1. There is m0 ∈ N, δ > 0 and an infinite K ⊂ N with |y∗
k (

∑m0
m=1 vk,m)| � δ for any k ∈ K .

Let z∗
k be the restriction of y∗

k to the support of
∑m0

m=1 vk,m , k ∈ K . Then (z∗
k )k∈K is a seminormalized block sequence

in S∗ , majorized by (y∗
k )k∈K . Since by the form of (vm,k) the length of supp(

∑m0
m=1 vk,m) is constant, we can pick some sub-

sequence (z∗
k )k∈L of (z∗

k )k∈K consisting of, up to controllable error, equally distributed vectors, i.e. for some finite sequence
(ai)i∈I ⊂ R and (nk,i)i∈I,k∈L with nk,i < nk,i+1 and nk,max I < nk+1,1 we have ‖zk − ∑

i∈I aienk,i ‖ � 1/2k , k ∈ L. As the u.v.b.
in S is subsymmetric, the same holds for (z∗

k )k∈L , thus (z∗
k )k∈L is equivalent to spreading model generated by itself. It follows

that (y∗
k ) cannot generate c0-spreading model.

CASE 2. If the first case does not hold, pick increasing (N j) j ⊂ N so that∣∣∣∣∣y∗
N j

( N j−1∑
m=1

v N j ,m

)∣∣∣∣∣ � 1/2 j, j ∈ N.

Consider the norm of vectors z∗
j = y∗

N1
+ · · · + y∗

N j
, j ∈ N. Put

xN1 = yN1 , xN j =
N j∑

m=N j−1+1

v N j ,m, j > 1.

By the choice of (N j) j we have y∗
N j

(xN j ) � 1 − 1/2 j for any j ∈ N.

We estimate the norm of x j = xN1 + · · · + xN j , j ∈ N. We can assume that (N j) j was chosen to increase fast enough so
that (xN j ) is D-equivalent to the unit basis of S (see Remark 5, Lemma 2 [23]). Thus ‖x j‖ � D j/ f ( j) for every j ∈ N. By the
choice of (N j) j and definition of xN j we have z∗

j (x j) � j − 1. Hence∥∥z∗
j

∥∥ � z∗
j (x j)/‖x j‖ � f ( j)( j − 1)/D j � f ( j)/2D, j ∈ N.

Notice that the same scheme works if we replace N1, . . . , N j by any Nn1 , . . . , Nn j in definition of z j , hence no subsequence
of (y∗

k ) can produce a c0-spreading model. �
3.2. Spaces defined by families (Sn)n

Regarding the existence of strictly singular operators from subspaces of mixed Tsirelson spaces we prove the following
result, which is a “localization” of Schlumprecht result in mixed Tsirelson spaces. First recall the definition of higher order
�1-spreading models.
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Definition 3.7. We say that a normalized basic sequence (xn)n∈N in a Banach space generates a C − �α
1 -spreading model,

α < ω1, C � 1, if for any F ∈ Sα the sequence (xn)n∈F is C-equivalent to the u.v.b. of �#F
1 .

Notice that in case of α = 1 we obtain the classical �1-spreading model. We recall that [M], M ⊂ N, denotes the family
of all infinite subsequences of M , [M]< – the family of all finite subsequences of M .

Theorem 3.8. Let X = T [(Sn, θn)n] or T M [(Sn, θn)n] be a regular (modified) mixed Tsirelson space. If X contains a block sequence
(yn) generating an �ω

1 -spreading model then there are a subspace Y ⊂ [(yn)] and a strictly singular non-compact operator T : Y → X.

We recall that in [25] it was proved that if a sequence (θn) satisfies limm lim supn
θm+n
θn

> 0 then the regular mixed
Tsirelson space X = T [(Sn, θn)n] is subsequentially minimal if and only if any block subspace of X admits an �ω

1 -spreading
model, if and only if any block subspace of X has Bourgain �1-index greater than ωω . These conditions hold in particular if
sup θ

1/n
n = 1 [27]. In [8,22] analogs of these results were studied in the partly modified setting.

To prove the theorem we first define an index measuring the best constant of �α
1 -spreading models generated by subse-

quences of a given sequence. Let �x := (xn)n∈N be a normalized block sequence in X . Set

δα(�x) = sup
{
δ > 0: ∃M ∈ [N] such that (xn)n∈M generates δ − �α

1 -spreading model
}
.

The following properties of δα(�x) follow readily from the definition.

a) δα((xn)n∈N) = δα((xn)n�n0 ) for all n0 ∈ N.
b) δ((xn)n∈M) � δα((xn)n∈N) for all M ∈ [N].
c) (δα(�x))α<ω1 is a non-increasing family.

By standard arguments we may stabilize δα(�x). Namely passing to a subsequence we may assume that δα((xn)n∈N) =
δα((xn)n∈M) for every M ∈ [N].

By the reflexivity of the space X [9], Bourgain theorem yields that δα(�x) > 0 for countably many α’s, enumerate them as
(αn)n . As X is an �1-asymptotic space it follows that δn(�x) > 0 for all n ∈ N.

Inductively we choose M1 ⊃ M2 ⊃ · · · infinite subsets of N such that

δαn

(
(x j) j∈Mn

) = δαn (x j) j∈L ∀L ∈ [Mn].
We define the family

Fn = {
A ∈ [N]<: ∃x∗ ∈ B X∗ with x∗(xi) > 2δαn

(
(x j) j∈Mn

)
for all i ∈ A

}
.

By [18, Theorem 1.1] there exists N ∈ [Mn] such that

either Sαn ∩ [N] ⊂ Fn or Fn ∩ [N] ⊂ Sαn .

In the first case by 1-unconditionality of the basis it follows that (xn)n∈N and hence (xk)k∈Mn contains a subsequence which
generates 2δαn − �

αn
1 -spreading model, a contradiction. Hence additionally by the above and [30] we may assume that

(Mn)n∈N satisfies also the following

Fn(Mn) ⊂ Sαn , (3.1)

Sαn−1 ∩ {F ⊂ N: min F � min Mn} ⊂ Sαn . (3.2)

Let M = (mi)i , where mi = min Mi , be a diagonal set and let δαn = δαn ((xmi )i). Passing to a subsequence we may assume that∑
n nδαn < 0.25. Let ‖∑

i ai xmi ‖ = 1 and let x∗ ∈ B X∗ such that
∑

i ai x∗(xmi ) = 1. By the unconditionality we may assume
that x∗(xmi ) � 0 for every i. Let 2δα0 = 1 and

Fk = {
i: x∗(xmi ) ∈ (2δαk ,2δαk−1 ]

}
and F 1

k = Fk ∩ {1, . . . ,k − 1}, F 2
k = Fk ∩ {k,k + 1, . . .}.

From (3.1), (3.2) we get F 2
k ∈ Sαk ∩ {F ⊂ N: min F � k} = Gk . It follows

∥∥∥∥∑
i

aixmi

∥∥∥∥ =
∑

i

aix
∗(xmi ) =

∞∑
k=1

∑
i∈Fk

aix
∗(xmi )

=
∞∑

k=1

( ∑
i∈F 1

aix
∗(xmi ) +

∑
i∈F 2

aix
∗(xmi )

)

k k
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�
∞∑

k=2

2δαk−1(k − 1)max
i

|ai| +
∞∑

k=1

2δαk−1

∑
i∈F 2

k

|ai|

� 0.5

∥∥∥∥∑
i

aixmi

∥∥∥∥ +
∞∑

k=1

2δαk−1 sup
F∈Gk

∑
i∈F

|ai|.

Therefore by the above inequalities we have∥∥∥∥∑
i

ai xmi

∥∥∥∥ � 4
∞∑

k=1

δαk−1

(
(xmi )i

)
sup
F∈Gk

∑
i∈F

|ai| for all (ai)i, (3.3)

where Gk = Sαk ∩ {F ⊂ N: min F � k}.

Proof of Theorem 3.8. Let �e = (en)n∈N be the basis of X . Recall [7,9] that for every j ∈ N and every (n, θn)-average
∑

i∈F aiei
(special convex combination) of the basis we have

θn �
∥∥∥∥∑

i∈F

aiei

∥∥∥∥ � 2θn.

It follows readily that δn(�e) ∈ [θn,2θn] and δω(�e) = 0.
Let (yn)n∈N be a normalized block sequence (yn)n∈N generating �ω

1 -spreading model, i.e. for some c � 1∥∥∥∥∑
i

ai yi

∥∥∥∥ � c
∑
i∈F

|ai| ∀n ∈ N, F ∈ Sn, min F � n.

By the previous reasoning for (xn)n∈N = (en)n∈N we pick an M = (mi) ∈ [N] and a sequence αk ↗ ω such that∑
k kδαk ((emi )i) < ∞ and (3.3) holds. Setting D = ∑

k θαk−1 �
∑

k δαk−1 ((emi )i) we have∥∥∥∥∑
i

aiemi

∥∥∥∥ � 8
∑

k

θαk−1 sup
F∈Gk

∑
i∈F

|ai |

� 8D

c
sup

k
c sup

F∈Gk

∑
i∈F

|ai|

� 8D

c

∥∥∥∥∑
i

ai yi

∥∥∥∥.

It follows that the operator extending the mapping yn → emn factors through a c0-saturated space and hence is strictly
singular and non-compact (as (yn)n∈N is normalized). �
3.3. Remarks and questions

As a corollary to Theorem 3.4, part (1), we obtain that the (non-modified) Tzafriri space Y has an �2-asymptotic sub-
space Z which satisfies a blocking principle in the sense of [14], called a “shift property” in [33]. The only known spaces
with a blocking principle so far were similar to T , T ∗ and their variations. The two major ingredients used in [14] for prov-
ing the minimality of T ∗ are the blocking principle and the saturation with �n∞ ’s. It is shown in [21] that Tzafriri space Y
contains uniformly �n∞ ’s. It is not known whether Y is uniformly saturated with �n∞ ’s. In the opposite direction, we do not
know if Z contains a convexified Tsirelson space T (2) (which is equivalent to its modified version).

Aside from the main topic of our paper, we want to finish with some observations about subsymmetric sequences (i.e.
basic sequences equivalent to all its subsequences) in two concrete spaces and pose corresponding related questions about
the richness of the set of subsymmetric sequences in a Banach space. In 1977 Altshuler [2] (cf. e.g. [26]) constructed a
Banach space with a symmetric basis which contains no �p or c0, and all its symmetric basic sequences are equivalent. In
1981 C. Read [32] constructed a space with, up to equivalence, precisely two symmetric bases. More precisely, Read proved
that any symmetric basic sequence in his space CR is equivalent either to the u.v.b. of �1 or to one of the two symmetric
bases of CR. A careful look at the papers of Altshuler and Read shows that their proofs work similarly for the more general
case of all subsymmetric basic sequences. This observation leads to the following questions:

Question 1. Does there exist a space in which all subsymmetric basic sequences are equivalent to one basis, and that basis
is not symmetric?
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We remark that Altshuler’s space has a natural subsymmetric version but we do not know if it satisfies the above
property.

Question 2. Does there exist a space with exactly two subsymmetric bases, which are not symmetric?

References

[1] D. Alspach, S.A. Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992) 1–44.
[2] Z. Altshuler, A Banach space with a symmetric basis which contains no �p or c0, and all its symmetric basic sequences are equivalent, Compos.

Math. 35 (1977) 189–195.
[3] G. Androulakis, E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math. 109 (1999) 125–149.
[4] G. Androulakis, E. Odell, T. Schlumprecht, N. Tomczak-Jaegermann, On the structure of the spreading models of a Banach space, Canad. J. Math. 57 (4)

(2005) 673–707.
[5] G. Androulakis, T. Schlumprecht, The Banach space S is complementably minimal and subsequentially prime, Studia Math. 156 (3) (2003) 227–242.
[6] G. Androulakis, T. Schlumprecht, Strictly singular, non-compact operators exist on the space of Gowers and Maurey, J. London Math. Soc. (2) 64 (2001)

655–674.
[7] S.A. Argyros, I. Deliyanni, Examples of asymptotic �1 Banach spaces, Trans. Amer. Math. Soc. 349 (1997) 973–995.
[8] S.A. Argyros, I. Deliyanni, A. Manoussakis, Distortion and spreading models in modified mixed Tsirelson spaces, Studia Math. 157 (3) (2003) 199–236.
[9] S.A. Argyros, I. Deliyanni, D. Kutzarova, A. Manoussakis, Modified mixed Tsirelson spaces, J. Funct. Anal. 159 (1998) 43–109.

[10] S.A. Argyros, R. Haydon, A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem, Acta Math. 206 (1) (2011) 1–54.
[11] S.A. Argyros, S. Todorcevic, Ramsey Methods in Analysis, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2005.
[12] S. Bellenot, Tsirelson superspaces and �p , J. Funct. Anal. 69 (2) (1986) 207–228.
[13] A. Brunel, L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (4) (1974) 294–299.
[14] P. Casazza, W.B. Johnson, L. Tzafriri, On Tsirelson’s space, Israel J. Math. 47 (1984) 81–98.
[15] P. Casazza, E. Odell, Tsirelson’s space and minimal subspaces, in: Texas Functional Analysis Seminar, Longhorn Notes, University of Texas, 1982–1983,

pp. 61–76.
[16] V. Ferenczi, C. Rosendal, Banach spaces without minimal subspaces, J. Funct. Anal. 257 (2009) 149–193.
[17] V. Ferenczi, C. Rosendal, Banach spaces without minimal subspaces – Examples, Ann. Inst. Fourier (Grenoble), in press.
[18] I. Gasparis, A dichotomy theorem for subsets of the power set of the natural numbers, Proc. Amer. Math. Soc. 129 (3) (2001) 759–764.
[19] I. Gasparis, Strictly singular non-compact operators on hereditarily indecomposable Banach spaces, Proc. Amer. Math. Soc. 131 (2002) 1181–1189.
[20] W.T. Gowers, An infinite Ramsey theorem and some Banach space dichotomies, Ann. of Math. 156 (2002) 797–833.
[21] M. Junge, D. Kutzarova, E. Odell, On asymptotically symmetrical Banach spaces, Studia Math. 173 (3) (2006) 203–231.
[22] D. Kutzarova, D. Leung, A. Manoussakis, W.-K. Tang, Minimality properties of Tsirelson type spaces, Studia Math. 187 (2008) 233–263.
[23] D. Kutzarova, P.K. Lin, Remarks about Schlumprecht space, Proc. Amer. Math. Soc. 128 (2000) 2059–2068.
[24] H. Lemberg, Sur un théorème de J.-L. Krivine sur la finie représentation de �p dans un espace de Banach, C. R. Math. Acad. Sci. Paris 292 (14) (1981)

669–670.
[25] D. Leung, W.-K. Tang, �1-spreading models in subspaces of mixed Tsirelson spaces, Studia Math. 172 (1) (2006) 47–128.
[26] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Springer-Verlag, Berlin, New York, 1977.
[27] A. Manoussakis, On the structure of a certain class of mixed Tsirelson spaces, Positivity 5 (3) (2001) 193–238.
[28] A. Manoussakis, A note on certain equivalent norms on Tsirelson’s space, Glasg. Math. J. 46 (2004) 379–390.
[29] A. Manoussakis, A.M. Pelczar, Quasiminimality of mixed Tsirelson spaces, Math. Nachr. 284 (14–15) (2011) 1924–1947.
[30] E. Odell, N. Tomczak-Jaegermann, R. Wagner, Proximity to �1 and distortion in asymptotic �1 spaces, J. Funct. Anal. 150 (1997) 101–145.
[31] A. Pelczar, Subsymmetric sequences and minimal spaces, Proc. Amer. Math. Soc. 131 (3) (2003) 765–771.
[32] C.J. Read, A Banach space with, up to equivalence, precisely two symmetric bases, Israel J. Math. 40 (1981) 33–53.
[33] C. Rosendal, Characterising subspaces of Banach spaces with a Schauder basis having the shift property, arXiv:1106.0472.
[34] T. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991) 81–95.
[35] T. Schlumprecht, How many operators exist on a Banach space?, in: Trends in Banach Spaces and Operator Theory, Memphis, TN, 2001, in: Contemp.

Math., vol. 321, Amer. Math. Soc., Providence, RI, 2003, pp. 295–333.
[36] L. Tzafriri, On the type and cotype of Banach spaces, Israel J. Math. 32 (1979) 3–38.


	Isomorphisms and strictly singular operators in mixed Tsirelson spaces
	0 Introduction
	1 Preliminaries
	2 Modiﬁed mixed Tsirelson spaces deﬁned on Schreier families
	2.1 Averages
	2.2 Averaging trees
	2.3 Special types of averages
	2.4 Main results

	3 Strictly singular non-compact operators
	3.1 Spaces deﬁned by families (An)n
	3.2 Spaces deﬁned by families (Sn)n
	3.3 Remarks and questions

	References


