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0. Introduction

In the celebrated paper [20] W.T. Gowers started his classification program for Banach spaces. The goal is to identify
classes of Banach spaces which are

1. hereditary, i.e. if a space belongs to a given class, then all of its closed infinite dimensional subspaces as well,
2. inevitable, i.e. any Banach space contains an infinite dimensional subspace in one of those classes,
3. defined in terms of richness of family of bounded operators in the space.

The famous Gowers’ dichotomy brought first two classes: spaces with unconditional basis and hereditarily indecomposable
spaces. The further classification, described in terms of isomorphisms, concerned minimality and strict quasiminimality.
A Banach space X is minimal if every closed infinite dimensional subspace of X contains a further subspace isomorphic to X.
A Banach space X is called quasiminimal if any two infinite dimensional subspaces Y, Z of X contain further isomorphic
subspaces. The classical spaces £,, 1 < p < 00, cg are minimal and the Tsirelson space T[S1, 1/2] is the first known strictly
quasiminimal space (i.e. without minimal subspaces) [15]. The results of W.T. Gowers led to the question of the refinement
of the classes and classification of already known Banach spaces. A further step in the first direction was made by the
third named author [31], who proved that a strictly quasiminimal Banach space contains a subspace with no subsymmetric
sequence. An extensive refinement of list of the classes and study of examples were made recently by V. Ferenczi and
C. Rosendal [16,17].

The mixed Tsirelson spaces T[(My, 6n)n], for My = A, or Sy, as the basic examples of spaces not containing £, or ¢,
form a natural class to be studied with respect to the classification program. The first step was made by T. Schlumprecht [5],
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who proved that his famous space S = T[(A;, 1/log,(n+1)),] is complementably minimal. The result of Schlumprecht holds
for a certain class of mixed Tsirelson spaces T[(Ax,,6n)n] by [27]. On the other hand, the Tzafriri space T[(An, ¢/+/n)n] [36]
is not minimal by [21]. However the original Tsirelson space T[S7,1/2] is not minimal [15], every normalized block se-
quence is equivalent to a subsequence of the basis (a property studied also in [33]). We show that mixed Tsirelson spaces
T[(Ap, 6n)n], for which Tzafriri space is a prototype, are saturated with subspaces with this “blocking principle”.

V. Ferenczi and C. Rosendal [16] introduced and studied a stronger notion of quasiminimality. A Banach space X with a
basis is sequentially minimal [16], if any block subspace of X contains a block sequence (x,) such that every block subspace
of X contains a copy of a subsequence of (x,). The related notions in mixed Tsirelson spaces defined by families (S,) and
their relation to existence of £{’-spreading models were studied in [25,22]. In [29] it was shown that the spaces T[(Ay, 6n)nl,

as well as T[(Sy, 6n)n] satisfying the regularity condition 6,/6™ \, where 6 = lim, 0,3/", are sequentially minimal. We show
that the modified mixed Tsirelson spaces Tp[(Syq, 6n)n] With the above property are also sequentially minimal.

The major tool in the study of mixed Tsirelson spaces T[(Sy, 6n)n] are the tree-analysis of norming functionals and the
special averages introduced in [7], see also [11]. The basic idea to prove quasiminimality is to produce in every subspace a
sequence of appropriate special averages of rapidly increasing lengths and show these sequences span isomorphic subspaces.
The major obstacle in study of modified mixed Tsirelson spaces is estimating the norms of splitting of a vector into pairwise
disjoint parts instead of consecutive parts as in non-modified setting. In order to overcome it, we introduced special types
of averages, so-called Tsirelson averages, describing in fact local representation of the Tsirelson space T[Sq, 6], with 6 =
sup, 0,.}/", in the considered space. Then we are able to estimate the action of a norming functional on a linear combination
of Tsirelson averages by the action of a norming functional on suitable averages in the Tsirelson space T[Sq, 6]. Using those
estimations we prove the sequential minimality of modified mixed Tsirelson space satisfying the regularity condition. Special
averages, a weaker form of Tsirelson averages, are also the main tool for proving arbitrary distortability of Ty[(Sy, 6,)] in
case 6, /6" \ 0, the result known before in non-modified setting under the condition 6,/6" — 0 [3].

In the second part of the paper we deal with the existence of strictly singular non-compact operators in mixed Tsirelson
spaces. The existence of non-trivial strictly singular operators, i.e. operators whose none restriction to an infinite dimensional
subspace is an isomorphism, was also studied in context of classification program of Banach space, both in search for
sufficient conditions and examples on known spaces. A space on which all the bounded operators are compact perturbations
of multiple of the identity was constructed recently by S.A. Argyros and R. Haydon [10], who solved “scalar-plus-compact”
problem. The existence of strictly singular non-compact operators was shown on Gowers-Maurey space and Schlumprecht
space [6], as well as on a class of spaces defined by families (S;), [19]. T. Schlumprecht [35], studying the richness of
the family of operators on a Banach space in connection with the “scalar-plus-compact” problem, defined two classes of
Banach spaces. Class 1 refers to a variation of a “blocking principle”, while a space belongs to Class 2 if and only if it admits
a strictly singular non-compact operator in any subspace (see Definition 3.3). T. Schlumprecht asked if any Banach space
contains a subspace with a basis which is either of Class 1 or Class 2. We show that a mixed Tsirelson space with the
canonical form T[(Aj, n%)“] belongs to Class 1 if inf;, ¢, > 0 and to Class 2 if lim, ¢, =0.

In [23] a block sequence (X;)nen generating £1-spreading model was constructed in Schlumprecht space S. This re-
sult combined with the result of I. Gasparis [19] led to the question if some biorthogonal sequence to (x,), generates a
co-spreading model in S*. We remark that this is not the case. In general, it is still unknown if any sequence in S* gener-
ates a cp-spreading model. Finally we show that in (modified) mixed Tsirelson spaces defined by (S;), containing a block
sequence generating ¢{’-spreading model there is a strictly singular non-compact operator on a subspace.

We describe now briefly the content of the paper. In the first section we recall the basic notions of the theory of mixed
Tsirelson spaces and their modified versions, including the canonical representation of these spaces and the notion of a tree-
analysis of a norming functional (Definition 1.8). The second section is devoted to the study of modified mixed Tsirelson
spaces Tpy[(Sy, 6n)n] satisfying the regularity condition. We extend the notion of an averaging tree (Definition 2.5) and
present the notions of averages of different types, providing also upper (Lemma 2.10) and lower (Lemma 2.14) “Tsirelson-
type” estimates. We conclude the section with the result on arbitrary distortion for spaces with 6,/6™ \ 0 (Theorem 2.19)
and sequential minimality (Theorem 2.20). In the last section we study the existence of non-compact strictly singular op-
erators in mixed Tsirelson spaces T[(Apn, 6n)n] (Theorem 3.4). We discuss the behavior of a biorthogonal sequence to the
sequence generating ¢1-spreading model in Schlumprecht space (Proposition 3.6) and the case of (modified) mixed Tsirelson
spaces defined by families (Sp), admitting ¢¢’-spreading model (Theorem 3.8). We finish with the comments and questions
concerning the Tzafriri space and richness of the set of subsymmetric sequences in a Banach space.

1. Preliminaries

We recall the basic definitions and standard notation.

By a tree we shall mean a non-empty partially ordered set (7, <) for which the set {y € 7: y < x} is linearly ordered
and finite for each x € 7. If 7’ C T then we say that (7", <) is a subtree of (7, <). The tree 7 is called finite if the set 7
is finite. The root is the smallest element of the tree (if it exists). The terminal nodes are the maximal elements. A branch
in 7 is a maximal linearly ordered set in 7. The immediate successors of x € 7, denoted by succ(x), are all the nodes y € 7
such that x < y but there is no z € 7 with x <z < y. A node x is a sibling of a node y, if x, y € succ(z) for some ze€ 7. If X
is a linear space, then a tree in X is a tree whose nodes are vectors in X.
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Let X be a Banach space with a basis (e;). The support of a vector x =) ; x;e; is the set suppx = {i € N: x; # 0},
the range of x, denoted by rangex is the minimal interval containing suppx. Given any x = ) ;a;e; and finite E C N put
Ex=Xxp =) ;cpaiei. We write x < y for vectors x, y € X, if maxsuppx < minsuppy. A block sequence is any sequence
(x;) C X satisfying x; < x < ---. A closed subspace spanned by an infinite block sequence (x,) is called a block subspace and
denoted by [(xp)].

Notation 1.1. Given any two vectors x, y € X we write x < y, if suppx C suppy, and we say that x and y are incomparable,
if suppxNsuppy =40.

Given a block sequence (x;) C X and a functional f € X* we say that f begins in x,, if minsupp f €
(maxsupp Xp—1, maxsupp x, .

A basic sequence (x;) C-dominates a basic sequence (y,), C > 1, if for any scalars (a,) we have

Zanyn Zanxn
n n

Two basic sequences (x,) and (y,) are C-equivalent, C > 1, if (x,) C-dominates (y,) and (y,) C-dominates (x;).
We shall use the notions describing different ways of asymptotic representation of ¢;, 1 < p < oo, and ¢o in a Banach
space.

<C

Definition 1.2. Let E be a Banach space with a 1-subsymmetric basis (uy), i.e. 1-equivalent to any of its infinite subse-
quences. Let (x;) be a seminormalized basic sequence in a Banach space X. We say that (x,), generates (u) as a spreading
model, if for any k € N and any (ai)é‘ﬂ C R we have

k k
i=1 i=1

lim lim --- lim
np—0oony—0o0 n— 00

X E

By [13] any seminormalized basic sequence admits a subsequence generating spreading model. We say that (x,) gener-
ates £,- (resp. co-)spreading model, if (u,) is equivalent to the u.v.b. of £, (resp. co).

We say that a Banach space X with a basis is £p-asymptotic, 1 < p < oo, if any block sequence n < x; < --- <Xy is
C-equivalent to the u.v.b. of ¢7, for any n € N and some universal C > 1.

We work on two types of families of finite subsets of N: (Ap)nen and (Sg)a <o, - Let

An={FCN: #F <n}, neN.
Schreier families (Sy)q<w,. introduced in [1], are defined by induction:
So = {{k}: k e N} U {#},
Sy+r1={F1U---UF: k<Fy<---<Fy, f1,...,Fr €8Sy}, a<uw.
If o is a limit ordinal, choose o, /' « and set
Soa ={F: F € Sy, and n < F for some n € N}.
Given a family M = A, or S, we say that a sequence Eq,..., Ey of subsets of N is

1. M-admissible, if Ey < --- < Ex and (minEy)¥_, e M,
2. M-allowable, if (E,~)§‘:1 are pairwise disjoint and (min E,')i-‘=1 e M.

Let X be a Banach space with a basis. We say that a sequence x; < --- < X, is M-admissible (resp. -allowable), if (suppx;)}_,
is M-admissible (resp. -allowable).

Definition 1.3 (Mixed and modified mixed Tsirelson space). Fix a sequence of families (Mpy) = (Ay,) or (Sk,) and sequence
(6n) C (0,1) with lim,_, o, 6, = 0. Let K C coo be the smallest set satisfying the following:

1 (e CK,
2. forany f1 <--- < fr in K, if (f,-)i.‘:1 is Mj-admissible for some n € N, then 6,(f1 +---+ fx) € K.

We define a norm on cog by ||x|| = sup{f(x): f € K}, x € coo. The mixed Tsirelson space T[(M, 6,)n] is the completion of
(coos Il - ID-

The modified mixed Tsirelson space Tp[(Mp, 6p)n] is defined analogously, by replacing admissibility by allowability of the
sequences.
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It is standard to verify that the norm || - || defined above is the unique norm on cqg satisfying the equation

k
lx]| = max[ [1%]l 0o » sup[@n Z |Eix||: (E,')i-‘:1 — Mpy-admissible (resp. -allowable), n € N] ]
i=1

It follows immediately that the u.v.b. (ey) is 1-unconditional in the space T[(Mj,6,),] and its modified version. It was
proved in [7] that any T[(Sk,,6n)n] is reflexive, also any T[(A,,6n)n] is reflexive, provided 6, > % for at least one
neN [11].

Taking M, = M and 6, =6 for any n we obtain the classical Tsirelson-type space T[M, #]. Recall that T[A,, 0] =cq if
6 <1/n and T[Ap, 0] =¢p, if 6 =1/¥n for q satisfying 1/p + 1/qg =1 [12,11]. The space T[S7, 1/2] is the Tsirelson space.

Schlumprecht space S is the space T[(A;, log2(++1))”]' Tzafriri space is T[(A;, %m)n] for 0 < ¢ < 1. Modified Tsirelson-
type spaces are isomorphic to their non-modified version [12,15,28], whereas the situation is quite different in mixed
setting [9].

We present now the canonical form of a (modified) mixed Tsirelson space in both cases M, = Ay, or S, neN.

Definition 1.4. (See [27].) A mixed Tsirelson space T[(A,, 6n)nen] is called a p-space, for p € [1, 00), if there is a sequence
(PN)IN C (1, 00) such that

1. py— pas N— oo, and py > pny1 > p forany NeN,
2. T[(A,, 9,1)111\’:]] is isomorphic to £p, for any N e N.

A p-space T[(An, On)nen] is called regular, if 6, \ 0 and 6y > 6,6, for any n, m € N. Recall that any p-space is isometric
to a regular p-space [29].

Notation 1.5. Let T[( Ay, 0y)nen] be a regular p-space. If we set 6, = 1/n'/9 with g, € (1, 00), n € N, then q = lim, g, =
sup, qn € (0, oo], where 1/p + 1/q = 1, with usual convention 1/c0 =0.
In the situation as above let ¢, =6,n'/% € (0, 1), n €N, if p > 1. To unify the notation put c, =6,, n €N, in case p = 1.

A space Tp[(Sn, On)nen] wWith 6, \( 0 and 6,1, > 0,6 is called a regular space. Notice that any modified mixed Tsirelson
space Ty [(Sk,, On)nen] is isometric to a regular modified mixed Tsirelson space (cf. [3]).

Notation 1.6. For a regular modified mixed Tsirelson space Tp[(Sy, Op)n] let 6 =limy, 9,}/" = sup, 9”1/" € (0, 1]. We shall use

also the following condition:

(&) (6n/0"),\ il Opym <66 foranyn,meN.

Given two families M, N of finite subsets of N define
MINT={F1U---UF: F,...,Fx €N, (Fq,..., Fy) M-admissible, k € N}.

It follows straightforwardly that S;[Sp] = Spym, for any n,m e N.
Lemma 1.7. The space Ty [(Sn[A2], 6n)n] is 3-isomorphic to Ty [(Sp, On)n].

The proof of the above follows that of [29, Lemma 4.5] with “admissible” sequences replaced by “allowable” ones.
The following notion provides a useful tool for estimating norms in mixed Tsirelson spaces and their modified versions:

Definition 1.8 (The tree-analysis of a norming functional). Let f € K, the norming set of T[(My, 6n)n] (resp. Ty [(My, 6p)n]). By
a tree-analysis of f we mean a finite family (fy)qe7 indexed by a tree 7 with a unique root 0 € 7 (the smallest element)
such that the following hold

1 fo=fand foeK forall x € 7,

2. o €7 is maximal if and only if fy € (£e}),

3. for every not maximal « € 7 there is some n € N such that (fg)gesucc@) 1S an Mpy-admissible (resp. -allowable) se-
quence and fo =00 (3 gesucc() fp)- We call 0, the weight of fy.

For any a € 7, o > 0, we define the tag t(«) =t(fo) as t(&) = [~ g0 weight(fp).
For any o € 7we define also inductively the order of « as follows: ord(0) =0 and for any 8 € succ(e) we put ord(8) =
ord(«) + n, where weight( fy) = 6,.
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Notice that every functional f € K admits a tree-analysis, not necessarily unique.
We shall use repeatedly the following

Remark 1.9. Let X = Ty[(Sp, 6n)n] with (&). Let (fy)ae7 be a norming tree of a norming functional f € K and o € 7 not a
terminal node. Let f, =06, Zﬁesucc(m fp. Then by definition of Schreier families given any k € [ord(«), ord(«) + 1] we can
write fy as follows

f(x :Ora Z Z fs
teAy SeF:

where (fs)seF, IS Sr,—(k—ord(a))-allowable, for any t € Ay, and (g¢)tea, iS Sk—ord(a)-allowable, with g; = gr,l—(k—ord((x))zsept ft
t € Ay. In particular for any f, and x € X with non-negative coefficients we get by (&)

9r —ord(a
fa®) = ——"—— " g (0 <O@ Y " g ().

Or"‘ —(k—ord(e)) teAy teAy

As t(at) < Oord(@) < 0@ it follows that t(a) fo(X) <O Y a, g (X).
2. Modified mixed Tsirelson spaces defined on Schreier families

In this section we present the main results on sequential minimality and arbitrary distortability of regular modified
mixed Tsirelson spaces Tp[(Sy, 6,)] with (&). In the first subsection we discuss the notion of an average, in the next two
subsections we present “Tsirelson-type” estimations needed for the proof of main theorems in the last subsection. Since
the w.v.b. in any (modified) mixed Tsirelson space and its dual is unconditional, we work in the sequel on functionals and
vectors with non-negative coefficients. From now on we fix a regular modified mixed Tsirelson space X = Tp[(Sp, On)nen]-

2.1. Averages

In this part we recall the notion of an average [7] and present basic facts.

Definition 2.1. A vector x in a Banach space X with a basis is called an (M, €)-average of a block sequence (x;); C X, for
MeNand € >0, if x=) ;. aix; for some G € Sy and (aj)icc C (0,1] with Y ;.- a; =1 and for any F € Syy—1 we have
Y icrp @i <&.

We shall use the following facts in the sequel.

Fact 2.2. (See [8, Lemma 4.9].) Let x=",_pa;x; be an (M, ¢)-average of normalized vectors (x;)icr, M €N, ¢ >0 and &
an Sy —1-allowable family of sets. Let G = F \ K, where K = {i € F: 3E € £, E begins in x;}. Then for every i € G the set
{Exj: E €&, Ex; #0} is Sq-allowable and

D OIEXI< Y E<Zaixi) H +28/0m.

Ee& Ee& ieG

Fact 2.3. Let x =) ;,_pa;x; be an (M, ¢)-average of normalized vectors (x;)icr, M €N, £ > 0 and f a norming functional
with a tree-analysis (fy)qe7. Then there is subtree 7’ of 7 such that any terminal node of 7’ has order at least M and
the functional f’ defined by the tree-analysis (fy)qc7 satisfies f(x) < f'(x) + 2e.

Proof. Let £ be the collection of all terminal nodes of 7 of order smaller than M. Let G = {i € F: some f, begins in x;,
a € &}. Since the set (fy)aeg is Su—1-allowable, it follows G\ {minG} € Sy—1 and f (3 ;. aixi) < Aminc + ZieG\{minG} a; <

2¢. Let 7' be the tree 7 with removed nodes from the family £. Then f(x) < f'(x) + f(Q jccaixi) < f'(x) +2e. O

Lemma 2.4. Let X satisfy (&). Let x = _; aix; be an (M, &)-average of a normalized block sequence (x;); C X, M € N. Then for any
jeN, j <M and Sj-allowable (E;); we have

D NEXI <07 0M TN S " agl| Epxil| + 48 /6.
l I i

In particular ||x|| < 6;'0M~" + 4 /oy
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Proof. Take an Sj-allowable sequence (E;);. For any I take a norming functional f; with ||Ex|| = fi(x) and its tree-analysis
(fé,)aeT,- Let £ be the collection of all terminal nodes « € 7 for all I, such that ordz; (o) <M — 1 — j. Then the set (fy)aece
is Sy—1-allowable. By Fact 2.3 we can assume with error 2¢ that all terminal nodes of all 7; have order at least M — j.

We will add in the tree-analysis (f&)ae?} additional nodes (h¢); of order M — j — 1, by grouping some of nodes of 7,
and by (&) obtain the desired estimation.

For any I let & be collection of all @ € 7/ which are maximal with respect to the property ordz () < M — j — 1. Fix
o € &. Then by the above reduction « is not terminal, so f!, = 6, > sesucc(a) f! for some Sy, -allowable (f}). By Remark 1.9
for k=M — j —1 there are Sp_j_1—ord(a)-allowable functionals (h¢)¢ea, with
t@) f 0 <OMITT S T he(x).
teAy

It follows that (h¢)tea, is Sy—j—1-allowable, where A; = U%El Ay. Now we have

IExI = fi)) =) t(@) fy (Ex)

weg
<YM e (Ex) = oMY he(Ei).
aeg) teAy teA
Taking into account the error from erasing nodes with too small orders we obtain
Z IEX] <OMI71 "> "hy(Ex) + 26 <
1 teA

Notice that (h¢)tea is Sw—i-allowable, where A = (J;A;. By Fact 2.2 with error 2¢/0y we assume that the family
(he(Xi))e: he(xpz0 is St-allowable for each i and thus we have:

<M= 122(1, > he(Exi) +4¢/0u
it he(x)#0

< eM—f—19;1 Y aillExill +4¢/6m. O
1 i

2.2. Averaging trees

In order to control the norm of splitting of a vector of special type into allowable, not only admissible parts, we compare
it to the norm of splitting of a corresponding vector in the original Tsirelson space T[Sq, 6]. In this section we present the
upper “Tsirelson-type” estimate for (M, €)-averages with more refined structure. We shall use the notion of an averaging
admissible tree [3], with additional features:

Definition 2.5. We call a tree (x )J 0 i—1 In X with weights (N] ] 1 i1 C N and errors (¢; )?/[ ’1\’), 1 € (0, 1), an averaging
tree, if
1. (x{)ielj is a block sequence for any j, 1=NM <... < NO.
Moreover for any j=1,...,M and i=1,.. , NJ we have the following:
2. there exists a non-empty interval Iij c{1,...,Ni—1} with #Ij N] such that succ(x )_ (x )sel.j'
J_ NI ST ’
3. x; =1/N; Zseﬂ X5,
4, 2/8 <N] mmsuppx
5. 81+1 <1/(2 maxsupp x; ) maxsuppx < N1+1

Remark 2.6. In the situation as above we define coefficients (a )] 0 i—1 € (0,1], as satisfying M = Zf\’:]l a{x{. It follows
straightforwardly that for any j=0,...,M, i=1,..., N/ we have the following

6. Zz laz_l .

7 al_]_[r e erwherex =x] foreach M >1> j,
j 0

8. 4 = Zm.x0<x1a

Notice that any xlj is a (j, aij)—average of (x?n)x31 <x{.
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To show the last statement notice that by (4) for any j,i > 1 the block sequence succ(x ) is Sp-admissible, thus any
block sequence (xm) 0 <l is Sj-admissible. To complete the proof notice that by the standard reasoning (cf. for example

[30], last part of the proof of Proposition 3.6) we have the following fact:

Fact. Fix a block sequence (x;)m and let (xi)f\’:l be a block sequence of (M — 1, €;)-averages of (Xm)mea,; such that N > 2/¢
and €41 < 1/2i maxsupp x;. Then x = %(xl +---4xn) is an (M, ¢)-average of (Xm)mea;,i=1,...N-

The above remark together with the construction of an averaging tree presented in [3] yields the standard

Fact 2.7. For any block sequence (Xm)m of X, any & >0 and any M € N there is an (M, ¢)-average x of (x;) with an averaging

tree (xij)?/’:’{)wl,:1 in X with suitable weights and errors (8 )j 1 i—1 such that x’lv' =X, 84\/’ =¢ and (x%)m C (Xm)m-

In order to deal with allowable splittings, we need the next result, stating - roughly speaking - that a restriction of an
average x with an averaging tree high enough is still an average y, with a strict control on the error on the new average y
- depending on the error in the averaging tree of x corresponding to minsupp y.

Lemma 2.8. Let (x{), (N,.j), (a{), (sij)form an averaging tree for an (M + M, €)-average x, M, M € N, ¢ > 0, of a normalized block
sequence (x?)i, satisfying for any i, j the following

1. N’ 2K forsomek
2. 81 <0ue/2, 8, < Oye/2 maxsuppx

Then for any I C N with NM. ™. aM e N the vector y = Y, aMxM

sequence (yk) with ||yk |l <1 and such that the following property holds:

is a restriction of an (M, er"r’l’in )-average of some block

XM

(P) for every k,i,1 either xM < y! or x!

of y.

yk or x and yk are incomparable, where (yk),< | is the family of nodes of averaging tree

We represent y = Y ;. aMxM

Proof. Let & = smm I as a restriction of an (M, &j)-average. We construct inductively on
I=M,M—1,...,0 an averaging tree (yk)I:OI,Qk:l with weights (W}) and coefficients (c}), where y} =1/W}, Yeelt =1 and
C;( =TIl W=, W%r such that y%"' =y and the following is satisfied

Po) chyt = Yoment a%x9, c;( ZmeAl a, for every k and | < M,

Py) for every k, i,l either x y, or xl 1s 1ncomparable with yk,

P,) for every i, j, k, [ either x yk or x yk or x and yk are incomparable,

P3) for every k, | we have W’ = mm{N’ < VL

— o~ o~~~

We allow one difference from the original definition: # /¥ =L =NM_ 5. aM not W}, otherwise #J, = W/, for any
<M.

Let yM =3 aMxM =3 ,a0x0, =1, AY =A and W} =NM
ously satisfied.

Assume we have defined (yk)k, (W )i and (ck)l< for some M >1[ > 2 satisfying the above. Fix k and consider A§<. Pick
any m € Ak. By (P1) in inductive assumption we have Xz, < ykr for any | <r < M, i,k with x x and x ,’cr. Thus
Nl.’r > W,zr for any [ <r < M, i, kr as above. By Remark 2.6 and (P3) we have

< minsupp y. All properties (Pg)-(P3) are obvi-

min/

M M 1

r
T kr

WI

r=1 r
Recall that all coefficients a,?.,, CL, 1/Wll< are some powers of 1/2 and (a%)m is non-increasing. Moreover for | < M we have

. . . w)
Zme Al a% = C;{, hence we can split AL into W,ﬂ-many successive sets (Al;])s:"1 such that for each s we have
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In case | =M we have 3, a9 =L/WM, hence we can split AY into L-many sets (A¥~T)L_| such that for each s we
have

cM 1
2 : aO _ 1
m = M — M-
w w
meAéVI’1 1 1

We define then (y!=1)s and (c1)s by
-1 C§<
W, ys Z a G = Wl :

meAl 1 k

Hence obviously yk = 1/W > y’ 1. Let also W’ 1= min{Nf‘l: P y’;1} and thus we finish construction of vectors on

level | — 1 satisfying (Pp) and (P3). l
Now we verify property (P1). Notice that by property (P1) on level | for each k we have supp yi = (U{supp xﬂ: xi. < yf(} =

Ufsuppxi~': x-1 < yt}. In case [ < M by Remark 2.6 and (Po) for | we have

Z r _Wk Z U Z als_]’

reyk 1-<yk k meAl sial 1-<yk

and as in the construction each a5 < ck/W,’< =c1. In case of | = M we have

M
Z Cy_]=L‘;/y_ I Za Z a1,

T y£”‘1<y,€” k meAl s: xM 1.<yk

and each a~1 < 1/WM = cM~1. Since all coefficients are powers of 1/2 and the sequence (a51)s is non-increasing we can
partition the set {s: xl*1 yfc} into (J{B,: yl, yk} such that for any r we have c Zses al=1. Consequently for any
yT<yh and X1 <yl we have either y-1 5 x’ Tor yi=1 and ;! are incomparable.

The property (P;) is verified analogously by induction. If for some I,k, j we have supp y, = [ J{suppx/: x! < yi}, then
we show that for any y';l < yk and x§_1 < y;( we have either ylf1 = x§_1 or ylf] and x§_1 are incomparable. The same
i yk} for some i, j,l.

Define the error 8,2 foreachI=M,...,1and k=1,...,K;.. Fork=1and any [=M,..., 1 let 8% = ¢1. By property (Pq)
for any [, k there is some i > k with

argument works if supp x{ = (U{supp y§<: x!

maxsupp yk maxsuppx < minsupp xlik+1 < minsupp y;(H.

!
Let 5k+1 : +1
2/eM

_2/8’ On the other hand we have for any =M —1,...,1and k=1,...,K;—1

for any k > 1. We verify condition (5) of Definition 2.5. For k=1 and =M, ..., 1 we have Wll > Nr]\r/llinl >
min [
51<+1 = sﬁl < 1/2”‘ maxsuppxik < 1/2" maxsupp yf{,
and Wk+1 N "> 2/8”+1 2/8,<+1
Hence (yk)kl, (Wk)kl, (ck)k IR (Sk)kl form an averaging tree and thus y is (M, &)-average of (y )k- Notice that

0
< E an =
0

meAy

[958 =] X a2

therefore || y2|| < 1. Moreover property (P;) includes property (P). O

Remark 2.9. Note that by the construction each sequence (yls‘ )se I is Sp-admissible for any k, . Hence it readily follows
; ! : M-I e*
that for every set F of incomparable nodes (y;) the functional Zyi er 0 mmsuppy, is a norming functional on the space

T[S1,60].
Note also that for any kg, Iy the family (va’: le < y;("o, lo=min{m >1>0: xﬁv’ < y%c for some k}) is Si-admissible.

The next lemma provides a “Tsirelson-type” upper estimate for the norms of averages.

Lemma 2.10. Let (x{), (Nij), (alj), (sij) form an averaging tree for a 2M — 3, €)-average x, M > 1, € > 0, of a normalized block
sequence (x?),-, satisfying for any i, j the following:
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1. Nj — 2k for some k,J

2. 81 < 6me/2, 8IH 0M£/2imaxsuppx{.

Fix an Sy—4-allowable family £ of subsets of N, such that the family {E € &: Ele # 0} is Sq-allowable for any i, and coefficients
(te)Eee C [0, 1].
Then there is a partition (Vg)geg of nodes (xo),, with minsupp x°

DOtEIEXI<CY e | Y aleningnn0

Ee& Ee€& ieVg

min Vg > min E, such that

+ Ce
T[S1.6]

for some universal constant C depending only on 61 and 6.

Proof. STEP 1. Let us recall that x is an (M — 3, €)-average of (x?”),-. First let & = {E € £: E begins at le} and | = {i:
E # 0} As (xM)ic j\min J is Sy—4-admissible, we have

Sl £ el | < S S| <o Kol <oz

Ee& ie] ie] Ee& ie]

Forany E€& let [ ={i ¢ J: Ex} 50}, ig =minlg and &g =8{‘£’. Compute
ng < &0y Z Z 1/2E1 maxsuppré’_1
Ee& ie] E€&;

< 80y Z maxsupp xM /2! maxsupp xM < e6jy.

ie]
STEP 2. Fix E€&. Let ) i aMxM =3 a%x%. Notice that each a?, < 1/NM and (@%)p is non-increasing, therefore
we can partition K into intervals A < B with Y405, L/N and 3, pad = S/NM for some L € N and 0 <6 < 1. Hence

we can erase Y, afxp, with error §/NY <1/NY <e

After this reduction by Lemma 2.8 the vector y = ZielE aMxM is a restriction of an (M — 2, eg)-average Y, cZy2 with
I yk I <1 and property (P) given by a suitable averaging tree (yk)kl with proper weights, coefficients and errors.

We take the family K = {k: mmsuppx € range yk for some xM} Since (xM), is an Sp_3-admissible family and y is an
(M — 2, eg)-average of (y ), We can erase » .y ckyk with error 2¢g. For any i let

lgi=min{M >1>0: yh = Al M for some k}.

By the above reduction and (P) we can assume that [ ; > 2 for all i € [. Let

Kei={k: yi <xM} foranyielg.

Compute by Lemma 2.4 for the (M — 2, ¢g)-average Y, czy2 and j=0

||Ex||:HEZc,§yﬁ > cREyR| + 26k
k k¢K
<O7'OM3Y "N | Eyi| + 666 /0m
ielg keKg i
=0;'0M3 > "M kEyk + 66 /0.
ielg keKE i

2
STEP 3. Fix i ¢ J. Put Fi={E€&: iclg}={Ec&: ExM£0}. For any E € 7 and k € K¢ ; let wy = C%Eyﬁ. Notice that

(Wy)k is a partition of x?". For each k € Kg; take the norming functional fy with fi(wy) = ||wk|l and supp fx C supp wk.

We gather all the terminal nodes in the tree-analysis of fi for all k € K¢ ;, E € F;, of order smaller than M — Ig ;. By the
assumption on & and the fact that I ; > 2 they form an Sy—1-allowable family, hence as x?” is an (M, SIM)-average, we can
erase these nodes with total error 28{‘/’ .
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By Remark 1.9, adding nodes in the tree-analysis of each f, k € Kg;, on the level M — Ig;, we get [wg| <
oM—lE.i > f,ﬂ(xf"') for some Sy, ;-allowable functionals (fli)l. Pick E; with tEieflEx*" = max{tg6'Ei: E e F). Let ; = Ig, i
and compute

2t D |

EeFi keKg;

ZtEQM lE.i Z ka i +28

EeF; keKE i

k Eyk

Notice again that (fli)LkEKE_LEE]:i is an Sy—1-allowable family (as before by I ; > 2 and assumption on &). As le is an
(M, 8{‘/’)—average of suitable (x%)m. by Fact 2.2 with error 28{‘/’/91\/1, we may assume that for any m the family (supp f,i N
suppx%)l,keKE,i, EerF; is S1-allowable. Therefore we continue the estimation

<tg MY NN (3 +4el /om <07 e 0Mh + 4gl oy
EeFikeKg; 1

STEP 4. We define Jgp ={i: E=E;} C Ig for any E € £. Notice that (Jg)geg are pairwise disjoint and compute, using
the previous steps

D el Ex <Y te EZafV’x,M‘ +) te EZaﬁ‘”x{”‘ (STEP 1)
Ee& EeE ie] Ee& ielg
2
_ _ _ C
<207 'e+07'0M 3NN "al Yt | Eyi| +6) er/0m (STEP2)
Eefielg kEKE,' i Ee&
<orOMBENY e Y N te | - i3 Eyk +(6+20;")e

i¢] EeFikeKg i

<O720M 3N " aleg oM "+4Zs /6m + (6 +26;")e  (STEP3)

i¢] i
<O7?OM3 N e Yy " aMoMl 4 (1042071 )e <
EcE ie]E
By Remark 2.9 for any E € £ the formula ZIE, oM—li+1ex defines a norming functional in T[S, 6]. Therefore for

mmsuppx
any E € £ we have

Za?”@M”" <o!

ieg

M
Z i € minsupp xM

i€Jg

T[S4,0]
and we continue the above estimation

-2/ M—4 M
<070 Z te Z aj eminsuppx?”
Ee& i€

+ (10426, )e <
TS1.6]

Consider z' = 1/a}" 3" 0 0 < e minsuppx?» for i =1,...,NM, which are (M, &!)-averages in T[S1,6] by Remark 2.6. As

||z lIr1s.61 = > 6M for each i, we continue

<O e Y alz)!

+(10+20;")e

Eee  Miejg 151,61

2 —4

07 te| D0 D dneminaupp |+ CE
EeE i€]exQ<xM T[51.6]

which ends the proof with C =10+ 291_29*4 and Vg ={m: x) <xM i€ Jg} foreach EcE. O
2.3. Special types of averages
For the rest of this subsection we assume that the considered regular modified mixed Tsirelson space X = Ty[(Sp, 6n)n]

satisfies (&). In this setting we present the lower “Tsirelson-type” estimate, using special types of averages. We start with
[29, Corollary 4.10] recalled below.
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Proposition 2.11. For any block subspace Y of X, any M € N and 0 < & < 6)y0M /4, there is an (M, €)-average x € Y of some
normalized block sequence in Y such that

oM-ip > sup{Z |Eix||: Sj-allowable (E,-)} >0M-i/p
i
forany 0 < j < M and some universal constant D depending only on 61 and 6.

Proof. We recall [29, Lemma 4.9], whose proof is valid, line by line, also in the modified case. [29, Lemma 4.9] and
Lemma 2.4 yield the proposition. O

Definition 2.12. A special (M, ¢)-average x, M € N, € > 0, is any (M, €)-average satisfying assertion of Proposition 2.11.
For the next lemma we shall need the following observation.

Fact 2.13. Fix M € N. Then for any G € Sy and any z= )", aie; € T[S1, 0], (aj)iec C [0, 1], there is a norming functional f
with a tree-analysis with height at most M, such that ||z||7(s,,6) < 2f(2).

Proof. Take a norming functional g with a tree-analysis (g¢)ter satisfying g(z) = |z||1(s, 9. Let I be the set of all terminal
nodes of 7 with order at most M and let g; be the restriction of g to I and g» = g — g1. If g1(2) > g2(2) then let f = g;.
Assume that g1(z) < g2(z) and compute

2(2) <2222 <20M*1 Y " a; <20M) "ai=2f(2),
ieG\I ieG

where f=6M ", - e¥, which ends the proof. O

The major obstacle in obtaining the lower “Tsirelson-type” estimate for norm is the fact that given an (M, ¢)-average
X=7icr aix; we do not control the norm of ) ;- aix;, G C F, in general case. The next result provides a block sequence(x;)
for which any Sy-admissible subsequence dominates suitable subsequence of the basis in the original Tsirelson space. This
result is a generalization in the setting of mixed Tsirelson spaces of [8, Prop. 3.3].

Lemma 2.14. For every block subspace Y of X and every M € N, § > 0, there exists a block sequence (x;) of Y satisfying for any G € Sy
and scalars (a;)iec

E aiXi

ieG

1
> 5(1 —4) (2.1)

Zai (1% [l € minsupp x;

icG T[S1,6]

Proof. Assume the contrary. Notice first that for any M € N we have
m M m
(Vom)" < Voum < Vo™,

thus limm— oo &0um = OM. Pick m € N such that /8um > VD2(1 — §)6M with D as in Proposition 2.11. Take a block
sequence (x?),- of special (Mm, ¢)-averages, for some ¢ > 0.
Since (2.1) fails there is an infinite sequence G,l of successive elements of Sy and coefficients (a})iec’l such that

1
| S el <50 -8)] ol 18lens
ieG)

9 = minsuppx? for each i. Set x} = Yicc! alx0

)

T[S1.60]

1
i€Gy
i i%i

T[S1, 0] with a tree-analysis of height at most M with

| Selllew] <2n( Xalllens)
ieG)

iccl
ieGy

where m k € N, and by Fact 2.13 take norming functionals f,} of the space

T[S1.0]

Assume that we have defined (x,:l)k and (fkj*])k for some j < m. Then the failure of (2.1) implies the existence of a
sequence (G,]()k of successive elements of Sy and a sequence (a{)iecj such that
k

Lo ‘1 . i
Hzagxg 1 <§(l—8)HZa{||x{ e,
ieGi j

1
e
ieGj

’

T[S1,60]
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where m{f1 = minsuppxij*l. Set x,{ = Zl Gl a’x ~! for ke N, and take norming trees f, of the space T[Si,60] with a

tree-analysis of height at most M such that

Salld ey | <2n( Sl ey )

1
J o)
i€Gy i€Gy

T[51.0]

The inductive construction ends once we get the vector x| and the functional f{*.

. i j . e
Each functional fk’ is of the form Zie ¢l gl e* j_1» by construction satisfying
koom

I <=8 ot x| (22)
lEGi
Inductively, beginning from fI" we produce a tree-analysis of some norming functional f on T[Sy, 6] by substituting each
terminal node e;i, j=1,...,m, by the tree-analysis of the functional f,f.

Put G = Uy, ,eom Ukm_zeG,Tm‘j] “'U’ﬁerz G} . Let (Ij)icc be such that f =3 ;6le* o+ Notice that I; <mM for any

i € G, as the height of each fij does not exceed M. We compute the norm of x[', which is of the form

Z Z Z Za;?mq“'ail?zzbix?.

km—-1€GY kp_yeGM1 kyq EGZ iG] i€G
km—1 kq

Since each x? is a special (mM,¢)-average, for some Spy_j-allowable sequence (Ej);; we have ||x?|| <

D2gmM=li 7 IERD].
We have on one hand by repeated use of (2.2)

I < —a™ > 6ubi])

ieG
<A =8)"D?Y 0libio™ Y | EX|
ieG leL;
=(1=8)"D*0™ % "b; > |Ex?|.

ieG el

On the other hand notice that (EDie, ¢ L is Smm-allowable by the definition of f and (I;)icc, thus

[ =
ieG lGL,‘

which brings Oy < (1 —8)™D26™M | a contradiction with the choice of m. O

Definition 2.15. A Tsirelson (M, g)-average x € X, M €N, ¢ >0, is an (M, g)-average x = ) ;. a;x; of a normalized block
sequence (x;) satisfying the assertion of Lemma 2.14 with § =1/2.

Notice that by Lemma 2.4 every Tsirelson average is also a special average (with a possibly different constant).

Definition 2.16. A RIS of (special, Tsirelson) averages is any block sequence of (special, Tsirelson) (ng, &/2)-averages (x¢) C X
for € > 0 and (ny), C N satisfying

&
91k+1 lIXklle; < SkF1 keN,

where [, = max{l € N: 4l <n}, ke N.
We need the following technical lemma, mostly reformulating [22, Lemma 7]:

Fact 2.17. Take RIS of normalized averages (xi), for some (n;) C N and ¢ > 0, and some x = ), byxy with (by) C [0, 1]. Then
for any norming functional f with a tree-analysis (fy)qec7 there is a subtree 7’ such that the corresponding functional f’
defined by the tree-analysis (fy)qe7 satisfies f(x) < f/(x) + 3¢ and the following hold for any k

(a) any node o of 77 with fy (x) # O satisfies ord(e) < ngy1/4,
(b) any terminal node « of 7’ with fg(xk) # 0 satisfies ord(c) > n.
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Proof. In order to prove (a) we repeat the reasoning from the proof of [22, Lemma 7]. For any k let Fj be the collection of
all nodes in 7 which are minimal with respect to the property ord(c) > ngy1/4 and fu (xx) # 0. Then

&
D @) fa () <O 1%l < e

aeFy

Thus we can erase all nodes from Fj restricted to supports of xy, for all k, with error ), bkzk% <e.
For (b) we use Fact 2.3 for erasing all terminal nodes « of 7" with f, (x;) 0 with error 2¢y, for any k. O

Lemma 2.18. Let x = ), axx be an (M, €)-average of RIS of normalized special averages (xy), for (ny) C {M +3,M + 4, ...} and
0<e<by.
Then ||x|| < D’0y, for some universal constant D’ depending only on 6 and 6.

Proof. Take a norming functional f with a tree-analysis (fy)qe7 such that ||x|| = f(x). Using Fact 2.17 pick the subtree 7"
satisfying (a) and (b) and the corresponding functional f’.

Let £ be collection of all @ € 7’ maximal with respect to the property ord(«) < M — 1. Notice that £ is Sy_1-allowable.

Fix o € £. Then « is not terminal, so fy =6y, Zsesucc(a) fs. As in Remark 1.9 we partition succ(a) = UteAa F¢ in such
a way that (fs)ser, iS Sord(s)—(m—1)-allowable for every t € Ay and (g¢)tea, IS SM—1—ord(w)-allowable, where g; = Zseﬂ fs.
Let A =|Jyce A and notice that (g¢)iea is Sy—1-allowable. Let H denote the set of all k such that some g, t € A, begins
in x. Since x is an (M, &)-average we have || >,y QiXell < D pepy Ok < 26.

By definition of H for any @ € £ and k ¢ H with fy(x¢) # 0 there is an immediate successor of « beginning before xj.
Thus by (a) we have for any k ¢ H

(c) for any o € € with fy (%) # 0 the order of immediate successors of « is at most n /4,
(d) {g:: te A, gi(xk) # 0} restricted to suppx; is Si-allowable.

Fix k¢ H and t € A with g;(x¢) #0 and let B’t< ={se Fq: fs(x¢)#0}.
Fix s € B’t< and take the subtree 75 of 7" consisting of s (as a root) and of all successors of s in 7’. By Remark 1.9, using
(b) and (c) we can add nodes in 7Z; on level n, — ord(s) obtaining (hs )rec, Which is Sy, _ord(s)-allowable satisfying

) < YOm0 (x).

reCs

Compute for k ¢ H using the above and (&)

Flx) =Y ts) fs(xe)

teA sepk
<Oy Z Z eord(s)fM Z Qn,ﬁord(s)hs’r(xk)
teA seB’[‘ reCs

<omy YD 6" Mhg (x).

k
teA seBk reCs

Notice that the family {hs,: r€Cs, se B’t‘} for any fixed t € A,k ¢ H is Sp,_p1-allowable. Therefore by (d) the family
{hsr: T€Cs, s€ B’t‘, t € A} for any fixed k ¢ H is Sp,_m42-allowable and hence since xi is a normalization of an (n, &)-
special average, we continue the estimation

. < eMenk—MDze—n]<+M—2 — D20—29M
We compute
FO <0 +38 <Y arf ) + 56 < D070y + 56 < (D072 +5)0u,
k¢H

which ends the proof of the lemma. O

2.4. Main results

Recall that a Banach space (X, || - ||) is A-distortable, A > 1, if X admits an equivalent norm | - |, such that for any infinite
dimensional subspace Y of X we have sup{|x|/|y|: x,y €Y, |x]| =|y|l=1} > A. A Banach space X is arbitrarily distortable,
if it is A-distortable for any A > 1. It is an open question if there exists a Banach space A-distortable for some A > 1, but not
arbitrarily distortable. A natural candidate for such an example is the Tsirelson space T[S1, 1/2].
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Theorem 2.19. Let X be a regular modified mixed Tsirelson space Tp[(Sn, On)nl. If 6,/6™ \ 0, then X is arbitrarily distortable.

Proof. We show that the norm defined as ||x[l, =sup{); [[Eix|l, (E;) Sp-admissible}, x € X, c6" /6,-distorts X, for any n € N
and universal ¢ > 0. Clearly || - || < |- ln <1/64] - ||, n € N. Fix an infinite dimensional subspace Y of X. By Proposition 2.11
there is y € Y with | y|| > 6,/D and | y|l» < D. On the other hand, again by Proposition 2.11 and Lemma 2.18 there is x€ Y
with ||x|| < D’6, and |x||, > 1. Considering x/||x|| and y/||y| we obtain c6"/6,-distortion of X with c=1/D?*D’. O

Recall that a Banach space X with a basis is called sequentially minimal [16], if any block subspace of X contains a
block sequence (x,) such that every block subspace of X contains a copy of a subsequence of (x;). Notice that this property
implies quasiminimality of X.

Theorem 2.20. Let X be a regular modified mixed Tsirelson space Tp[(Sn, 6n)nl- If 6,/6™ \(, then X is sequentially minimal.
The theorem follows immediately from the following result:
Lemma 2.21. Let (), (Vi)k be RIS of Tsirelson (2My — 3, &;)-averages, My, > 4, & < (6C)~!, with C as in Lemma 2.10, such that

1. xi has an averaging tree (x,J{,i),-,j, (N Dijs (ek Dis (akl), j» Yk has an averaging tree (yk Dijs (N,< Dijs (slﬂ!i),;j, (a,’(’i),-,j, both
satisfying conditions (1) and (2) ofLemma 2.10 for any k,

; 0 _ i 0 0 || — 140 || — ;

2. minsupp X, ; = minsupp Vi and ||xk,i|| = ||yk’i|| =1 foranyk,i,

< Oomy—30*Mk =3¢ /2K+2 for any k.
Then (x/|1xk Dk and (yi/Ilyk|Dk are equivalent.

Notice first that the lemma above yields Theorem 2.20, as given a block sequence (w,) in X, a block subspace Y of X
and k € N, we can choose block sequences (u;) C [(wy)] and (v;) C Y satisfying the assertion of Lemma 2.14 for 2M;, — 3.
Passing to subsequences if necessary and using small perturbations we obtain block sequences (uj) and (v}) of the form
uf = u; + 8iem;, v} = Vi + diem,, for some (m;) C N with m; = minsupp u{ = minsupp v} for each i and small (&;) C (0, 1),
which are equivalent to (u;) and (v;) respectively and still satisfy the assertion of Lemma 2.14 for 2Mj, — 3. Then by Fact 2.7
construct on these sequences two Tsirelson (2Mj — 3, &;)-averages with averaging trees as in Lemma 2.21 with equal systems
of weights, errors and coefficients, obtaining x; and yj for each k € N.

Now we proceed to the proof of Lemma 2.21.

Proof of Lemma 2.21. Notice first that by Lemma 2.4 and definition of a Tsirelson average we have estimation
0*Me3 14 < x| < 507%0%M3, ke,

and the same estimation for || yk||, k € N.

We show first that (yi/llykl)x dominates (xi/[Ixkl)k. Let x =", dixi/lIXk| be of norm 1, with (dy) C [0, 1], and take its
norming functional f with a tree-analysis (fo)ae7. Let ¥y =), diyk/llykll. By Fact 217 we can assume with error & that
ord(ew) < Mg41/4 < Myy1 —4 for any o € 7 with fy (%) #0. For any k > 1 let

={o € 7: fy begins at x; and has a sibling beginning before x}.

By our reduction ord(e) < My — 4 for any o € &, k > 2. We replace in the tree-analysis of f each functional f,,
a € &, by two functionals g4 = folsuppx, and ko = fo — g, Obtaining a tree-analysis of a functional g on the space
X2 =T[(Sn[A2], 6n)n], which by Lemma 1.7 is 3-isomorphic to X.

Notice that (gu)aecg,, k>2 have pairwise disjoint supports and (Uaa‘,’k supp gx) N suppx; = supp f N suppx, hence

SUPp X, t(a)gy. For each k > 2 consider the set J, = {i: some g, begins at x, Miy Notice that by our reduction
pPPXk = 2k k,i
(8a)ace, 1S Smy—4-allowable, thus (xk’,. )ie Ji\min J, 1S Sm,—4-admissible and recall that x; is an (My — 3, &)-average of (ka ).

Let g/, o € &, be the restriction of g, to Ui¢]k supp x,?/ll" Then we have the following estimation

foo =2 fe 1>+Z—f<k)

I = Il
<2 foay+ Z Y te)gy (x k)+Z N Bl
I =l Il &

—f( x1) + Z” - Zt(a)ga(kaSZske 2Mict3

|X ” k>2 aeéy
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< Do+ Z” ”Zt(a)ga(xme

”X ” k>2 acly

Fix k > 2. Notice that by definition the set {g}: g, (. f) # 0} restricted to the support of xkl is Sp-allowable for any i.

Therefore by Lemma 2.10 we pick suitable partition (V)qcg, of nodes (xk ;)i with minsupp Xk minVy = minsupp g, for each
o € & and by definition of a Tsirelson average obtain

Z t((x)g& *) < C Z t(a) Z al(c),ieminsuppxgi + Cex
aegy aeéy ieVy IT[S1,0]
0
<€ Z t() Z ak,ieminsuppy,?i + Cex
ae& ieVy “IT[S1,0]
<4C Z t(a) Z a,?,iy}?,,» + Cey
aely ieVy
<AC ) t@ha (i) + Cey,
aely

where hy is a norming functional on X with he (i) = || X jey,, af;¥9;1l and supphe C Ujey, Supp yp ;. thus minsupp he >
minsupp x,? minvy = minsupp g,, for each o € &.
We modify the tree-analysis of g, replacing each node g,, o € &, k > 2, by the functional hy. As minsupphy >

minsupp g, for each o, we obtain a tree-analysis of some norming functlonal h on X,. We compute, by Lemma 1.7 and the
above estimations including the estimation on the norms of (), and (y)«,

1_f(x)\d1+2 Tl O (080 + e
k>2 aely
< +8002 Y 2 S e () +4C Y ts
iz Vel 52, >a P23

<di + 80C0*2h(2 ﬁ}%) +3Ce
k

k>2
<241C07 ||yl +1/2,

which means that (yi/||ykl)x dominates (xi/||xk|)k. Since the conditions are symmetric, the opposite domination follows
analogously. O

3. Strictly singular non-compact operators
3.1. Spaces defined by families (An)n
In spaces defined by families (A,), the crucial tool is formed by ¢p-averages.

Definition 3.1. A vector x € X is called a C-£j-average of length m, for pe[1,00]l,meNand C>1ifx= }":1 xi/l Z, 1 Xill
for some normalized block sequence (x,)._; which is C-equivalent to the unit vector basis of 6"’

Recall that an operator on a Banach space X is called strictly singular if its restriction to any infinite dimensional subspace
of X is not an isomorphism.

Definition 3.2. (See [35].) Let X be a Banach space with a basis (ep). Then X is in

1. Class 1, if any normalized block sequence in X has a subsequence equivalent to a subsequence of (ey).
2. Class 2, if each block sequence has further normalized block sequences (x,) and (y,) such that the map x; — yn
extends to a bounded strictly singular operator between [(x;)] and [(yn)].

T. Schlumprecht in [35] asked if any Banach space contains a subspace with a basis which is either of Class 1 or Class 2
and gave the following sufficient condition for the existence of strictly singular non-compact operator in the space.
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Theorem 3.3. (See [35, Thm. 1.1].) Let (x,) and (yn) be two normalized basic sequences generating spreading models (up) and (vy)
respectively. Assume that (up) is not equivalent to the w.v.b. of co and (uy) strongly dominates (vy), i.e.

o0
Zaivi Zaiui
i=1

ieF
for some sequence (8,) with 8§, \, 0, n — oo. Then the map x, > yn extends to a bounded strictly singular operator between [(xp)]
and [(yn)]-

< max dp, max
neN #F<n

Theorem 3.4. Let X = T[(A,, n%)n] be a regular p-space, with p € [1, 00). Then

1. ifinf, ¢y > O, then X is saturated with subspaces of Class 1,
2. ifcp = 0, n — oo, then X is in Class 2.

Proof. (1). We show that any block subspace of X contains a normalized block sequence (us)s with the following “blocking
principle” (“shift property” in [33]): any normalized block sequence (y;); is equivalent to any (Uk;) ji with y; < Uk; g and
Ug; < Yjr. It follows that the subspace [(us)] is sequentially minimal.

By [29, Prop. 2.10] any block subspace of X contains an £,-asymptotic subspace of X. Let W be such £,-asymptotic
subspace, spanned by a normalized block sequence (wyg)k. Let C be the asymptotic constant of W, i.e. any normalized block
sequence (z;){_, with z; >n in W is C-equivalent to the u.v.b. of Eg.

For any subspace Y of X spanned by normalized block sequence (y,) let || >, an¥nlly,co = SUPpen ldnl.

Fix two strictly increasing sequences of integers (mp), C N and (N;); C N and take normalized block sequences (vy), of
(Wi and (uj); of (vy)n such that

vp >my in W for any n,

. for any y € [(v{)i=n] we have ||y|lw.co < 1/(8m,§), for any n,
uj>Njin V =[(vy)y] for any j,

. for any y € [(u;)i~j] we have ||y|lv,c < 1/(8NJ5), for any j,

. YNj = C2/+7 for any j,

. Njbm, < 1/2"> for any n > j (in particular m, > Nj for any n > j),
. Oy > in #suppvi < 1/2"5 for any n.

Notice that every vector y € [(v;)i-n] is a 2C-£p-average of length m, of some normalized block sequence (yi)?l‘l of (Wy)k.
Indeed, by [29, Claim 3.8] and condition (2) split y into (Fy,-)?ﬁ‘1 with almost equal norm, obtaining by condition (1) and
£p-asymptoticity of W that y is a suitable average. The same holds in V: every vector y e [(u;)i~;] is a 2C-£,-average of

length N; of some normalized block sequence (y; f\g] (block with respect to (vp)n).

We show that in such setting we can prove the above theorem repeating the proof of [29, Theorem 3.1]. We consider any
normalized block sequence (y;) of (uj) and as (z;) we take (ukj) with y; < Uk; and Ug; < Yj+1. By the above observation
yi= W] +-~-+yf\,j)/||y{ +~~-+y{\,j I and uy; = (u] +- -~+u{vj)/||u{ +~~+uf\,j |, where (yz)fgl and (u?)f\gl are normalized
block sequences with respect to (v;);. Notice that (N;) are big enough by condition (5). We again use the above observation
obtaining that each yg. and V; is an £,-average of a block sequence of (wy)i, of suitable length with parameters satisfying
the assertion of a version of [29, Lemma 3.2] for C-averages instead of 2-averages (by conditions (6) and (7)). Therefore
repeating the proof of [29, Theorem 3.1] we obtain uniform equivalence of (y;) and (ug;) and hence “blocking principle”
stated above.

(2). Fix a block subspace Y of X. By [29, Theorem 2.9] p is in Krivine set of Y. Take finite normalized block sequences
(yi)i such that for some (m;); C N

1. each y; is 2 — £p-averages of length N; > (2m;)P,
2. O Zj<n#SUPDJ/j < 1/2*> for any i,
3. 250, — 0, i — oo.

Passing to a subsequence we can assume that (y;) generates a spreading model (v;).

Lemma 3.5. The spreading model (v;) is strongly dominated by the u.v.b. of £;,.

Proof. Take k € N and (a,-)f\’1 € coo With [[(a)]lee < 1/k? and ll@i)lle, = 1. Choose M by (3) in definition of (y;) with

N6, < 1/2'*5 for any i > M and 1/2M < 1/k. We have || 1 avill <20 1Y, @ivill, where @iy =a;, i=1,....N.
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Take a norming functional f with a tree-analysis (fi);e7 and supp f C suppy, where y = Z?’;Afr’M a;yi. By
[29, Lemma 2.5] up to multiplying by 36 we can assume that for any f; and y; we have either supp f; C yi, supp fr D
supp y; Nsupp f or supp fr Nsupp y; = @. We say that f; covers y;, if t is maximal in 7~ with supp f; D supp y; Nsupp f.

Let A={teT: f; covers some y;}. Givenany te Alet ;={i=1+M,...,N+ M: f; covers y;}. Let 6, be the weight
of fi. If m¢ > m; for some i € I; let i; be the maximal element of I; with this property. Otherwise let i; = 0.

For any i € I; let J; = {s € succ(t): supp fs C supp y;}. By [29, Lemma 2.8] we have Zse],- fs(vi) <8#J) for each
ie I, i> it.

First let Ly = {i ¢ It: suppy; Nsupp f C supp f;}. Notice that for any i € L; there is some f;, — successor of f; so that
supp y; Nsupp f C supp f¢;. Hence

ft(zai}’i) < Qmi[ (thi(aiy,-)> < Ngmi[ < 1/21}+2.
ieLs iel;

Thus f(ZteA’ieL[ yi) <1/2M and we erase this part for all t with error < 1/k. Notice that by condition (2) in choice of (y;)
we have

ft( > Yi) <O, Y #suppy; <1/2042,
iels,i<ir i<ir
so we can again erase this part for all t with error 1/k.
Let g be the restriction of f to ;.. suppyi, and h = f —g. First we consider g(y) =) .. t(fo)di, fe(yi,). Let B={t € A:

ord(f;) < k} hence #B < k. Then ), G;, ft(¥i,) < #B/k? < 1/k, hence we can erase this part with error 1/k. Notice that
D teA\B W e; is a norming functional on ¢, hence

~ - Cord
> @i t(f)fe(yi) < ) a]-tﬁ<maxcn||(a,t)reA\B||(Z < maxc.
tecA\B tecA\B t

We consider h(y) = ZteA Zielr, i>ir ai Zse]i t(fs)fs(}’i)- Llet D={se J;, i€l i>i, teA: Ol‘d(fs) < k} Then
SO S afstn) <#D/K <1k,
teAiel;,i>ir seJiND

and we again erase this part with error 1/k. For any i € I, i > i; for some t € A let r; = ord(f;)m; and compute, using
Holder inequality,

Yo Y atUafn<y. Y as@in'e,

teAiel;,i>i; s€Ji\D teAiel;, i>i;
1/q
(#] )
< 8maxcy Z Z
1/q
n>k
teAiel;, i>i; l

< 8maxcy || @)iely. i>ir.tea |, <8maxcy.
n>k p n>k

We put all the estimates together obtaining
F < 36(9 max cp +4/k>.
n>k

Therefore we proved that Ag = sup{|| ) ;cn@iVill: supjeylail < &, ll(@)ienlle, = 1} converges to zero, as & — 0. By
[35, Lemma 2.4] there are some (8,)n C (0, 00) with §; N\ 0 such that for any (a;j); € cgo

which ends the proof of the lemma. O

< maxs, max H (@)ieF ”e :

We continue the proof of Theorem 3.4. By the proof of [29, Thm 2.9], p is in the Krivine set of Y in Lemberg sense [24],
i.e. for any n there is a normalized block sequence (x(m )i C Y generating spreading model (u(") )i such that (u("))" ; Is
1-equivalent to the u.v.b. of Z”

Pick (mp)n such that 8y, < 1/4". Apply [4, Prop. 3.2] to constants C, =2", n € N and normalized block sequences (xfm"))i

generating spreading models (u{™");.

(uj); which C, dominates (u(m")),

We obtain thus a seminormalized block sequence (x;); generating spreading model
for any n € N. By Lemma 3.5 we have
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[ e

< mMax s, max | (aj)ier ”g
neN — #F<n P

<mavim o Jeoerls,

Za u(mn+1)
< maan+1/4 max

Zaz“f
#F<mpq
Za,u,

Notice that (u;); is not equivalent to the u.v.b. of cg, thus by Theorem 3.3 we finish the proof. O

<max1/4" max
neN #F<mpyq

<max2/2" max
neN #F<mp4q

In [19] the construction of non-compact strictly singular operators was based on cg-spreading model of higher order
in the dual space. However this method does not follow straightforwardly in case of p-spaces, as the observation below
shows. In [23] it was shown that Schlumprecht space S = T[(Aj, 1og2(1—n+1))"] introduced in [34] contains a block sequence
(yr) generating an £1-spreading model. We show that no biorthogonal sequence to (yy) generates a cp-spreading model.
An analogous example is constructed in [8]: a mixed Tsirelson space defined by (S;), which admits a block sequence (zy)
generating an ¢{’-spreading model (cf. Definition 3.7), such that no biorthogonal sequence to (z) generates cg-spreading
model.

Proposition 3.6. Consider the sequence (yy) generating an £1-spreading model constructed in [23], yx = Z’,;:] Vk.m» k € N. Take
any block sequence (y;) C S* so that y; (yi) = &;.. Then the sequence (y;) does not generate a co-spreading model.

Proof. We can assume that supp y; = supp yx, k € N. Consider two cases:

CASE 1. There is mg € N, § > 0 and an infinite K C N with |y;<"(zm° 1 Vkm)| = 8 for any k € K.

Let z{ be the restriction of y; to the support of Z ~1 Vkm» k € K. Then (z{)rek is a seminormalized block sequence
in §*, majorized by (¥{)kek- Since by the form of (vy; ) the length of supp(zmo=l Vk.m) is constant, we can pick some sub-
sequence (z{)ker Of (z;)kex consisting of, up to controllable error, equally distributed vectors, i.e. for some finite sequence
(@ier CR and (g )ier, ker With ng; < ngiy1 and ng max < Nkg1,1 We have ||z — Y7 aien, Il < 1/2%, k € L. As the u.vb.
in S is subsymmetric, the same holds for (z)ker, thus (z;)ker is equivalent to spreading model generated by itself. It follows
that (yf) cannot generate co-spreading model.

CASE 2. If the first case does not hold, pick increasing (N;); C N so that

Nj—1
*
.VNJ- < Z VNj,m)
m=1

Consider the norm of vectors zjf =yN, tt y",i,j. j €N. Put

<1720, jeN.

Nj
XN1=J/N17 XN}-= Z VNj,m» .’>1
m=Nj,1+1
By the choice of (N;); we have y’{\,j (xnj) =2 1— 1/2J for any jeN.
We estimate the norm of xj =xn, + - -- +Xn;, j € N. We can assume that (Nj); was chosen to increase fast enough so

that (xn;) is D-equivalent to the unit basis of S (see Remark 5, Lemma 2 [23]). Thus ||x;]| < Dj/f(j) for every j € N. By the
choice of (N;); and definition of XN; we have z;f(xj) > j— 1. Hence

|zl = Z;xp/lxjll = FG G = 1/Dj = f(j)/2D,  jeN.

Notice that the same scheme works if we replace Ny,..., Nj by any Np,, ..., Np; in definition of z;, hence no subsequence
of (y§) can produce a co-spreading model. O

3.2. Spaces defined by families (Sp)n

Regarding the existence of strictly singular operators from subspaces of mixed Tsirelson spaces we prove the following
result, which is a “localization” of Schlumprecht result in mixed Tsirelson spaces. First recall the definition of higher order
£1-spreading models.
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Definition 3.7. We say that a normalized basic sequence (X;)nen in a Banach space generates a C — £§-spreading model,
o <wi, C>1,if for any F € S, the sequence (x;)ner is C-equivalent to the u.v.b. of KfF.

Notice that in case of &« =1 we obtain the classical ¢1-spreading model. We recall that [M], M C N, denotes the family
of all infinite subsequences of M, [M]= - the family of all finite subsequences of M.

Theorem 3.8. Let X = T[(Sy, 6n)n] or Ty[(Sn, 6n)nl be a regular (modified) mixed Tsirelson space. If X contains a block sequence
(yn) generating an £¢’-spreading model then there are a subspace Y C [(yy)] and a strictly singular non-compact operator T : Y — X.

We recall that in [25] it was proved that if a sequence (6,) satisfies limy, limsup, erg:” > 0 then the regular mixed
Tsirelson space X = T[(Sy,6n)n] is subsequentially minimal if and only if any block subspace of X admits an £{’-spreading
model, if and only if any block subspace of X has Bourgain ¢1-index greater than w®. These conditions hold in particular if
sup@,}/" =1 [27]. In [8,22] analogs of these results were studied in the partly modified setting.

To prove the theorem we first define an index measuring the best constant of £{-spreading models generated by subse-

quences of a given sequence. Let X := (X;)nen be a normalized block sequence in X. Set

8a(X) = sup{5 > 0: 3M € [N] such that (x,)nem generates § — £ -spreading model}.

The following properties of 8, (X) follow readily from the definition.

a) 8o ((Xn)nen) = 8a((Xn)n>n,) for all ng € N.
b) §((Xn)nem) < 8o ((Xn)nen) for all M e [N].
€) (8a(®))a<w, is a non-increasing family.

By standard arguments we may stabilize 8, (X). Namely passing to a subsequence we may assume that 84 ((Xn)nen) =
8 ((Xp)nem) for every M € [N].

By the reflexivity of the space X [9], Bourgain theorem yields that 8 (X) > 0 for countably many «'s, enumerate them as
(an)n. As X is an £;-asymptotic space it follows that 8,(X) > 0 for all n € N.

Inductively we choose M; D M3 D --- infinite subsets of N such that

San (X)) jeMy) = ey (X)) jer VL € [My].
We define the family

Fn={A€[N]": 3x* € Bx« with x*(x;) > 284, ((x}) jem,) for alli € A}.
By [18, Theorem 1.1] there exists N € [M;] such that

either Sg, N[NICFn or FyN[N]C Sy,.

In the first case by 1-unconditionality of the basis it follows that (x;)nen and hence (xi)kem, contains a subsequence which
generates 28y, — E‘lx”-spreading model, a contradiction. Hence additionally by the above and [30] we may assume that
(Mp)nen satisfies also the following

Fn(Mn) C Sa, (3.1)
Sa,_; N{F CN: minF > min My} C Sg,. (3.2)

Let M = (m;);, where m; = min M;, be a diagonal set and let 8y, = 8, ((Xm;)i). Passing to a subsequence we may assume that
Y NM8a, < 0.25. Let || >";aixm;|l =1 and let x* € Bx» such that );a;x*(xn;) = 1. By the unconditionality we may assume
that x*(xm;) > 0 for every i. Let 264, =1 and

Fie={i: x*(Xm;) € (280, 280, _,1}

and Fl = Fen{1,....k—1}, F2 =Fnikk+1,...}
From (3.1), (3.2) we get F,f € Sg, N{F CN: minF > k} = G. It follows

H D i | =D aix Gm) =Y Y aix* (xm,)

k=1ieFj

Z( > axt (xm) + Y aix* (xm,-)>
k=1

iopl g2
ieF, ieFy
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o0 o0
< 264, (k—1) max |a;] + > 280, Y lail
k=2 k=1

)
ieFy

<0.5 H Za,xml

Therefore by the above inequalities we have

HZaxm

where Gy =Sy, N{F C N: minF > k}.

+228ak 1 sup Zla,

k=1 Feiicr

42:8&,(1 (Xm, )i sup Zlal for all (a;);, (3.3)

FeGi jcr

Proof of Theorem 3.8. Let é = (e;)nen be the basis of X. Recall [7,9] that for every j € N and every (n, 6p)-average > ;. r aie;
(special convex combination) of the basis we have

D e

ieF

< 20y

It follows readily that &, (€) € [6y, 26,] and 8,(€) =0
Let (¥n)nen be a normalized block sequence (yn)nen generating £4-spreading model, i.e. for some ¢ > 1

H Zaly:

By the previous reasoning for (X;)peny = (én)neny We pick an M = (m;) € [N] and a sequence « /' w such that
>k kbay, ((em)i) < oo and (3.3) holds. Setting D =3 0y, , < D ) 8wy, ((em;)i) we have

H Zaiemi <8 Z@ak ; sup Z lai|
i

CZ|G, vneN, FeS,, minF >

ieF

Feliicr
8D
—supc sup Z lai|
k FeGiicp

?H Zai}’i .
1

It follows that the operator extending the mapping y, — em, factors through a co-saturated space and hence is strictly
singular and non-compact (as (¥n)nen is normalized). O

3.3. Remarks and questions

As a corollary to Theorem 3.4, part (1), we obtain that the (non-modified) Tzafriri space Y has an ¢;-asymptotic sub-
space Z which satisfies a blocking principle in the sense of [14], called a “shift property” in [33]. The only known spaces
with a blocking principle so far were similar to T, T* and their variations. The two major ingredients used in [14] for prov-
ing the minimality of T* are the blocking principle and the saturation with ¢7’s. It is shown in [21] that Tzafriri space Y
contains uniformly ¢7’s. It is not known whether Y is uniformly saturated with ¢2_’s. In the opposite direction, we do not
know if Z contains a convexified Tsirelson space T (which is equivalent to its modified version).

Aside from the main topic of our paper, we want to finish with some observations about subsymmetric sequences (i.e.
basic sequences equivalent to all its subsequences) in two concrete spaces and pose corresponding related questions about
the richness of the set of subsymmetric sequences in a Banach space. In 1977 Altshuler [2] (cf. e.g. [26]) constructed a
Banach space with a symmetric basis which contains no £, or co, and all its symmetric basic sequences are equivalent. In
1981 C. Read [32] constructed a space with, up to equivalence, precisely two symmetric bases. More precisely, Read proved
that any symmetric basic sequence in his space CR is equivalent either to the u.v.b. of ¢; or to one of the two symmetric
bases of CR. A careful look at the papers of Altshuler and Read shows that their proofs work similarly for the more general
case of all subsymmetric basic sequences. This observation leads to the following questions:

Question 1. Does there exist a space in which all subsymmetric basic sequences are equivalent to one basis, and that basis
is not symmetric?
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We remark that Altshuler’s space has a natural subsymmetric version but we do not know if it satisfies the above
property.

Question 2. Does there exist a space with exactly two subsymmetric bases, which are not symmetric?
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