

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series A

Journal of Combinatorial Theory, Series A 102 (2003) 425-431

http://www.elsevier.com/locate/jcta

Note

(B)-Geometries and flocks of hyperbolic quadrics

Nicola Durante^a and Alessandro Siciliano^b

^a Dipartimento di Matematica e Applicazioni, Università di Napoli '' Federico II'', Via Cintia–Monte S. Angelo, I-80126 Napoli, Italy ^b Dipartimento di Matematica, Università della Basilicata, Contrada Macchia Romana, I-85100 Potenza, Italy

Received 18 July 2002

Abstract

We give a characteristic-free proof of the classification theorem for flocks of hyperbolic quadrics of PG(3, q).

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Finite geometries; Hyperbolic quadric; (B)-Geometry; Flock

1. Introduction

A *flock* of the hyperbolic quadric \mathcal{Q} of the finite projective space PG(3, q) is a partition of \mathcal{Q} consisting of q+1 irreducible conics. In [12], Thas showed that all flocks of \mathcal{Q} are linear if q is even, and that \mathcal{Q} has non-linear flocks (called *Thas flocks*) if q is odd. Further, in [13], he showed that for q = 3, 7 and $q \equiv 1 \mod 4$ 2 has only (up to a projectivity) the linear flock and the Thas flock.

For q = 11, 23, 59 other flocks of \mathcal{Q} were discovered, independently, by Bader [1], Baker and Ebert (for q = 11, 23) [4], Bonisoli [6] and Johnson [11]. Since these three flocks are related to exceptional near fields, these flocks are called *exceptional flocks*.

Finally, flocks of \mathcal{Q} , q odd, were classified by Bader and Lunardon [3]: Every flock of 2, q odd, is linear, a Thas flock or one of the exceptional flocks.

Bonisoli and Korchmàros presented in [8] another proof of the above classification theorem, always for q odd. Both proofs use the following fundamental theorem by Thas in [13]: if q is odd, each plane containing a conic of a flock of 2 is the axis of an involutorial homology which preserves the flock.

E-mail addresses: ndurante@unina.it (N. Durante), sicilian@pzmath.unibas.it (A. Siciliano).

^{0097-3165/03/\$ -} see front matter © 2003 Elsevier Science (USA). All rights reserved. doi:10.1016/S0097-3165(03)00044-X

The key result to prove Thas' Theorem is Theorem 1 in [13] which is actually an application of a generalization of Segre's Lemma of Tangents. The main ideas of Theorem 1, which holds for every q, are used in this paper to provide a geometric characteristic-free proof of the classification theorem of flocks of \mathcal{Q} .

A maximal exterior set (MES) of \mathcal{Q} is a set of q + 1 points of PG(3, q) such that the line joining any two of them has no point in common with \mathcal{Q} . The polar planes, with respect to \mathcal{Q} , of the points of a MES define a flock, and conversely.

In the recent paper [2], Bader et al. noted a correspondence between regular subgroups of PGL(2, q) and MES of \mathcal{D} by using a matrix model of PG(3, q), q odd. They got this result as a consequence of the result by Bonisoli and Korchmàros in [8, p. 296].

In [2] was also stated a close connection between flocks and (B)-geometries satisfying certain configurational properties, known as *rectangle conditions* [5,7].

In [5], Benz showed that each (B)-geometry can be associated with a suitable permutation set. In [7], Bonisoli stated a necessary and sufficient condition for such a permutation set to be a group.

The latter result is the starting point of our work. In this paper, we directly show that every flock of \mathcal{Q} yields a (B)-geometry whose associated permutation set is actually a group.

2. Hyperbolic quadrics of PG(3, q) and (*B*)-geometries

Let **P** be a non-empty set and Σ , \mathscr{L}^+ , \mathscr{L}^- three non-empty sets of subsets of **P**. The elements of **P** are called *points*, the element of Σ sections (or circles) and the elements of \mathscr{L}^+ resp. \mathscr{L}^- are called *positive generators* resp. *negative generators*.

Point-section and point-generator incidence is simply given by \in in the natural way.

For $P, Q \in \mathbf{P}$ we say that P and Q are *plus parallel* and write $P||_+Q$ if P and Q lie on the same positive generator; we say that P and Q are *minus parallel* and write $P||_-Q$ if P and Q lie on the same negative generator. The structure $\mathcal{B} = (\mathbf{P}, \mathcal{L}^+, \mathcal{L}^-; \Sigma)$ is called a (B)-geometry if the following properties hold:

- (1) for any $P, Q \in \mathbf{P}$ there exists a unique $R \in \mathbf{P}$ with $P||_{+}R||_{-}Q$;
- (2) for any P∈P and s∈Σ, there exist uniquely determined points P₊, P₋∈s with P₊||₊P||₋P₋;
- (3) there exist three pairwise non-parallel points.

A (B)-geometry $\mathscr{B}' = (\mathbf{P}', \mathscr{L}'^+, \mathscr{L}'^-; \Sigma')$ is a (B)-subgeometry of $\mathscr{B} = (\mathbf{P}, \mathscr{L}^+, \mathscr{L}^-; \Sigma)$ if $\mathbf{P}' \subseteq \mathbf{P}$ and the incidence relations are induced on \mathbf{P}' by \in .

By starting with a set X with at least three elements and a permutation set G on X, we get a (B)-geometry $\mathcal{M}(G)$ as follows, see [5,7]: the points of $\mathcal{M}(G)$ are the elements of the cartesian product $X \times X$. The sections of $\mathcal{M}(G)$ are the elements of

G, i.e. for every $s \in G$ we define

 $s = \{(x, x^s) : x \in X\}.$

If a is an element of X we define $(a)^+ = \{(a, y) : y \in X\}$ and $(a)^- = \{(x, a) : x \in X\}$; we set $\mathscr{L}^+ = \{(a)^+ : a \in X\}$ and $\mathscr{L}^- = \{(a)^- : a \in X\}$. Point-section incidence and point-generator incidence is simply given by \in in natural way.

Conversely, let $\mathscr{B} = (\mathbf{P}, \mathscr{L}^+, \mathscr{L}^-; \Sigma)$ be a (*B*)-geometry and *s* be a section of \mathscr{B} . For any $t \in \Sigma$ and $P \in s$, let $T \in t$ such that $T||_+ P$. Then $P^t \in s$ is defined to be the (unique) point of *s* with $P^t||_- T$. Hence, the set Σ defines a permutation set *G* on *s*. It was shown in [5] that \mathscr{B} can be described as the (*B*)-geometry $\mathscr{M}(G)$ associated with *G*. Thus, it is always possible to identify sections of \mathscr{B} with elements of *G*.

Two (B)-geometries $\mathscr{B} = (\mathbf{P}, \mathscr{L}^-, \mathscr{L}^-; \Sigma)$ and $\mathscr{B}' = (\mathbf{P}, \mathscr{L}'^+, \mathscr{L}'^-; \Sigma')$ are isomorphic if there is a bijection

$$\sigma: \mathbf{P} \to \mathbf{P}'$$

such that

$$P \parallel_{\varepsilon} Q \Leftrightarrow P^{\sigma} \parallel_{\varepsilon}' Q^{\sigma},$$

$$s \in \Sigma \Leftrightarrow s^{\sigma} \in \Sigma'$$

for all $P \in \mathbf{P}$ and $s \in \Sigma$; here $\varepsilon = \pm$. Two (*B*)-geometries $\mathcal{M}(G)$ and $\mathcal{M}(G')$ defined by (X, G) and (X', G'), respectively, are isomorphic if and only if there are bijections

$$\alpha, \beta: X \to X$$

such that

$$t \in G \Leftrightarrow \alpha^{-1} t \beta \in G',$$

see [5, Theorem 2].

Remark. If \mathscr{B} is described as the (B)-geometry $\mathscr{M}(G)$ associated with G, we see that G contains the identity. For an arbitrary pair (X, G) it need not be true that G contains the identity permutation. However, the latter result implies that up to an isomorphism one can always assume $id \in G$, as we do in the following.

An ordered quadruple (P_1, P_2, P_3, P_4) of points is a *rectangle* in \mathcal{B} if the relations

$$P_1||_{-}P_2, P_1||_{+}P_3, P_2||_{+}P_4, P_3||_{-}P_4$$

hold.

Let k be a non-negative integer. A (B)-geometry satisfies the kth rectangle condition if, for every k+1 rectangles $(P_1^i, P_2^j, P_3^j, P_4^j)$, j = 1, ..., k+1, with $P_i^1, ..., P_i^{k+1}$ pairwise distinct points, i = 1, 2, 3 and all lying on a common section s_i , then $P_4^1, ..., P_4^{k+1}$ are pairwise distinct points and there exists a section s_4 through all of them.

If this is the case, we say that the section s_4 closes the rectangles $(P_1^j, P_2^j, P_3^j, P_4^j)$, j = 1, ..., k + 1.

Theorem 2.1 (Bonisoli [7]). Let \mathcal{B} be a (B)-geometry such that if P, Q and R are pairwise non-parallel points then there exists at most one section which is incident with all of them. Let G be the permutation set defined by \mathcal{B} with $id \in G$. Then G is a group if and only if the 3rd rectangle condition holds in \mathcal{B} .

If G is such a group, for any $s_1, s_2 \in G$, we define the section $s_1 \circ s_2 \in G$ to be the section s_4 which closes the rectangles $(P_1^j, P_2^j, P_3^j, P_4^j)$, j = 1, 2, 3, 4 with $P_1^j \in id$, $P_2^j \in s_1$, $P_3^j \in s_2$.

The hyperbolic quadric \mathcal{Q} of PG(3, q) (or, more generally, of PG(3, K), K a field) defines a (B)-geometry in the following way:

Let **P** be the set of points of \mathcal{Q} , \mathscr{R}^+ and \mathscr{R}^- the two reguli of \mathcal{Q} and Σ the set of non-tangent plane sections of \mathcal{Q} . It is easily seen that $\mathscr{H} = (\mathbf{P}, \mathscr{R}^+, \mathscr{R}^-; \Sigma)$ turns out to be a (B)-geometry.

Denote by (X_0, X_1, X_2, X_3) the homogeneous projective coordinates in PG(3, q). Coordinates are chosen in such a way that the hyperbolic quadric \mathscr{D} of PG(3, q) has equation $X_0X_3 = X_1X_2$. So, the reguli of \mathscr{D} are $\mathscr{R}^+ = \{\ell^+_{(a,b)} : (a,b) \in K^2 \setminus \{(0,0)\}\}$ and $\mathscr{R}^- = \{\ell^-_{(a,b)} : (a,b) \in K^2 \setminus \{(0,0)\}\}$, where

$$\ell^+_{(a,b)} = \{ (\lambda a, \mu a, \lambda b, \mu b) : (\lambda, \mu) \in \mathbf{F}_q^2 \setminus \{ (0,0) \} \}$$

and

$$\ell^{-}_{(a,b)} = \{(\lambda a, \lambda b, \mu a, \mu b) : (\lambda, \mu) \in \mathbf{F}_q^2 \setminus \{(0,0)\}\}.$$

Denote by \perp the polarity defined by \mathscr{Q} . In the matrix model of PG(3, q), any point $P = (p_0, p_1, p_2, p_3)$ will be represented by its 2 × 2 coordinates matrix $\begin{pmatrix} p_0 & p_1 \\ p_2 & p_3 \end{pmatrix}$. So, $\mathscr{Q} = \{P \in PG(3,q) : \det(P) = 0\}$. If q is even, the set of points of PG(3,q) not on \mathscr{Q} represents PSL(2,q). If q is odd, the set $\{P \in PG(3,q) : \det(P) \text{ is a non-zero square}\}$ represents PSL(2,q) and $\{P \in PG(3,q) : \det(P) \text{ is a non-square}\}$ represents the coset of PSL(2,q) in PGL(2,q) [2].

The point I = (1, 0, 0, 1) gives the identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $I^{\perp} \cap \mathcal{Z}$ is the identity in the permutation set G defined by Σ .

Further, any
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PG(3,q), A \notin 2$$
, defines the collineation
 $\rho_A: PG(3,q) \rightarrow PG(3,q)$
 $P \mapsto A \cdot P$

where \cdot is the standard matrix product.

Proposition 2.2 (Bader et al. [2]). The collineation ρ_A has the following properties:

1. $\rho(A)$ fixes 2 setwise and \mathcal{R}^- linewise.

2. $\rho_A(P^{\perp}) = (A \cdot P)^{\perp}$, for every point P of PG(3,q), P not on 2. Further, $\rho_A(P^{\perp})$ intersects 2 in the section $A^{\perp} \circ P^{\perp}$.

Proof. (1) [2, Lemma 4.1].

(2) The collineation ρ_A is defined by the matrix

(a	0	b	0 \
0	а	0	b
с	0	d	0
$\int 0$	с	0	d /

of PG(3, q). Direct calculations show that $\rho_A(P^{\perp}) = (A \cdot P)^{\perp}$ for every $P \in PG(3, q)$ not on \mathcal{Q} . In particular, $\rho_A(I^{\perp}) = A^{\perp}$. Since ρ_A fixes \mathscr{R}^- linewise, it is easily seen that $\rho_A(P^{\perp})$ meets \mathcal{Q} in the section which closes all rectangles (P_1, P_2, P_3, P_4) , with $P_1 \in I^{\perp}$, $P_2 \in A^{\perp}$ and $P_3 \in P^{\perp}$. By definition, this is the section $A^{\perp} \circ P^{\perp}$. \Box

Corollary 2.3. The permutation set G is actually a group isomorphic to PGL(2,q). Such an isomorphism induces a 1–1 correspondence between subgroups of PGL(2,q) and (B)-subgeometries of \mathcal{H} containing a fixed section corresponding to the identity and satisfying the 3rd rectangle condition.

3. Flocks of \mathcal{Q} and (B)-subgeometries of \mathcal{H}

It was noted in [2] that an exterior set of \mathcal{Q} (i.e. a set of points of PG(3, q) such that a line joining any two of them misses \mathcal{Q}) is a subset of PGL(2, q) in the matrix model of PG(3, q). In particular, an MES is a regular subset of PGL(2, q), and conversely. Actually, the representation of the exceptional flocks in [10] gives the groups A_4 , S_4 , A_5 of PGL(2, q), for q = 11, 23, 59, respectively.

In this section, we give a geometric characteristic-free proof of the classification theorem of flocks of \mathcal{Q} by proving that every flock of \mathcal{Q} defines a (*B*)-subgeometry of \mathcal{H} which satisfies the 3rd rectangle condition.

Let $F = \{C_1, ..., C_{q+1}\}$ be a flock of \mathscr{D} and $X = \{x_1, ..., x_{q+1}\}$ the MES defined by *F*. Consider the (*B*)-subgeometry $\mathscr{F} = (\mathbf{P}, \mathscr{R}^+, \mathscr{R}^-, F)$ of \mathscr{H} .

For each conic $C = \pi \cap \mathcal{Q}$ of F with $\pi : aX_0 + bX_1 + cX_2 + dX_3 = 0$, $\rho_{A^{-1}}(\pi)$ is the plane $\pi_0 = I^{\perp}$, where $A = \pi^{\perp}$. Thus, we can always suppose that $I \in X$.

Theorem 3.1. The (B)-subgeometry \mathcal{F} satisfies the 3rd rectangle condition.

Proof. Let C_1 , C_2 and C_3 be three sections of \mathscr{F} , with $C_2 \neq C_1 \neq C_3$. From Theorem 2.1 there exists a section $C = \pi \cap \mathscr{Q}$ of \mathscr{H} which closes all rectangles (P_1, P_2, P_3, P_4) , with $P_i \in C_i$, i = 1, 2, 3.

Since $|C_1| = q + 1$, $|F \setminus \{C_2\}| = q$ and $P_4 \notin C_2$ for all such rectangles, there are two distinct rectangles (P_1, P_2, P_3, P_4) and (P'_1, P'_2, P'_3, P'_4) with $P_i, P'_i \in C_i$, i = 1, 2, 3,

such that P_4 and P'_4 are on the same conic, say C_4 , of F. To get the result it suffices to prove that the plane π_4 of C_4 shares one more point with the plane π of C.

Coordinates are chosen in such a way that $P_1 = (1, 0, 0, 0)$, $P_2 = (0, 0, 1, 0)$, $P_3 = (0, 1, 0, 0)$, $P_4 = (0, 0, 0, 1)$. Denote by L_1 the tangent line of C_1 at P_1 and by L_4 the tangent line of C_4 at P_4 . By arguing as in the proof of [13, Theorem 1], with easy calculations, we get that either L_1 meets L_4 or L_4 meets the line P_2P_3 . In both cases, the intersection point belongs to planes π and π_4 and the result follows. \Box

Corollary 3.2. A MES of \mathcal{Q} is, up to a collineation, a (regular) subgroup of order q + 1 of PGL(2, q).

By arguing as in Proposition 18 in [8] (which holds for every q) it is possible to give another proof of the following classification theorem.

Theorem 3.3. Every flock of 2 is linear, a Thas flock or one of the exceptional flocks.

Proof. Let X be the MES defined by a flock F of \mathcal{D} in the matrix model of PG(3,q). By checking in the list of subgroups of PGL(2,q) given in [9,14] one sees that the possibilities for X are:

- (i) the cyclic group C_{q+1} ;
- (ii) the dihedral group $D_{\underline{q+1}}$, q odd;
- (iii) A_4 , q = 11;
- (iv) S_4 , q = 23;
- (v) A_5 , q = 59.

In each case, the subgroups form a single conjugacy class in PGL(2, q) and so the corresponding MESs are equivalent. From Corollary 2.3, X acts on itself (viewed as a subset of points of PG(3, q)) via the matrix multiplication. In case (i), the orbits of X consist of the lines of a regular spread containing \mathcal{R}^- . In this case, the corresponding flock is linear.

In case (ii), q odd, the orbit of any point of PG(3,q) not on \mathcal{Q} consists of (q+1)/2 points on a line L and of (q+1)/2 points on L^{\perp} . In this case, the corresponding flock is a Thas flock.

From [6,10] in cases (iii), (iv) and (v), we get the exceptional MES. \Box

References

- [1] L. Bader, Some new examples of flocks of $Q^+(3,q)$, Geom. Dedicata 27 (1988) 213–218.
- [2] L. Bader, N. Durante, M. Law, G. Lunardon, T. Penttila, Flocks and partial flocks of hyperbolic quadrics via root systems, J. Algebraic Combin. 16 (2002) 21–30.
- [3] L. Bader, G. Lunardon, On the flocks of $Q^+(3,q)$, Geom. Dedicata 29 (1989) 177–183.

430

- [4] R.D. Baker, G.L. Ebert, A nonlinear flock in the Minkowski plane of order 11, in: Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer. 58 (1987) 75–81.
- [5] W. Benz, Permutation and plane sections of a ruled quadric, Sympos. Math. V (1971) 325–339.
- [6] A. Bonisoli, The regular subgroups of the sharply 3-transitive finite permutation groups, in: Combinatorics '86 (Trento, 1986), Ann. Discrete Math. 37 (1988), 75–86.
- [7] A. Bonisoli, Automorphisms of (B)-geometries, in: Combinatorics '88 (Ravello, 1988), Res. Lecture Notes Math. Mediterranean Press, Rende (CZ), 1991, pp. 209–219.
- [8] A. Bonisoli, G. Korchmàros, Flocks of hyperbolic quadrics and linear groups containing homologies, Geom. Dedicata 42 (1992) 295–309.
- [9] L.E. Dickson, Linear Groups with an Exposition in the Galois Field Theory, Teubner, Stuttgart, 1901.
- [10] N. Durante, Piani inversivi e flock di quadriche, Master Thesis, University of Napoli, 1992.
- [11] N.L. Johnson, Flocks of hyperbolic quadrics and translation planes admitting affine homologies, J. Geom. 34 (1989) 50–73.
- [12] J.A. Thas, Flocks of non-singular ruled quadrics in PG(3,q), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (1975) 83–85.
- [13] J.A. Thas, Flock, maximal exterior sets and inversive planes, Contemp. Math. 111 (1990) 187–218.
- [14] R.C. Valentini, M.L. Madan, A hauptsatz of L. E. Dickson and Artin–Schreier extensions, J. Reine Angew. Math. 318 (1980) 156–177.