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Abstract

We give a characteristic-free proof of the classification theorem for flocks of hyperbolic
quadrics of PG(3,q).
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1. Introduction

A flock of the hyperbolic quadric 2 of the finite projective space PG(3,q) is a
partition of 2 consisting of ¢ + 1 irreducible conics. In [12], Thas showed that all
flocks of 2 are linear if ¢ is even, and that 2 has non-linear flocks (called Thas flocks)
if ¢ is odd. Further, in [13], he showed that for ¢ = 3,7 and ¢ = 1 mod 4 2 has only
(up to a projectivity) the linear flock and the Thas flock.

For ¢ = 11,23,59 other flocks of 2 were discovered, independently, by Bader [1],
Baker and Ebert (for ¢ = 11,23) [4], Bonisoli [6] and Johnson [11]. Since these three
flocks are related to exceptional near fields, these flocks are called exceptional flocks.

Finally, flocks of 2, ¢ odd, were classified by Bader and Lunardon [3]: Every flock
of 2, q odd, is linear, a Thas flock or one of the exceptional flocks.

Bonisoli and Korchmaros presented in [8] another proof of the above classification
theorem, always for ¢ odd. Both proofs use the following fundamental theorem by
Thas in [13]: if q is odd, each plane containing a conic of a flock of 2 is the axis of an
involutorial homology which preserves the flock.
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The key result to prove Thas’ Theorem is Theorem 1 in [13] which is actually an
application of a generalization of Segre’s Lemma of Tangents. The main ideas of
Theorem 1, which holds for every ¢, are used in this paper to provide a geometric
characteristic-free proof of the classification theorem of flocks of 2.

A maximal exterior set (MES) of 2 is a set of ¢ + 1 points of PG(3, ¢) such that the
line joining any two of them has no point in common with 2. The polar planes, with
respect to 2, of the points of a MES define a flock, and conversely.

In the recent paper [2], Bader et al. noted a correspondence between regular
subgroups of PGL(2, ¢) and MES of 2 by using a matrix model of PG(3,¢), ¢ odd.
They got this result as a consequence of the result by Bonisoli and Korchmaros in
[8, p. 296].

In [2] was also stated a close connection between flocks and (B)-geometries
satisfying certain configurational properties, known as rectangle conditions [5,7].

In [5], Benz showed that each (B)-geometry can be associated with a suitable
permutation set. In [7], Bonisoli stated a necessary and sufficient condition for such a
permutation set to be a group.

The latter result is the starting point of our work. In this paper, we directly show
that every flock of 2 yields a (B)-geometry whose associated permutation set is
actually a group.

2. Hyperbolic quadrics of PG(3, ¢) and (B)-geometries

Let P be a non-empty set and X, #*, £~ three non-empty sets of subsets of P.
The elements of P are called points, the element of X sections (or circles) and the
elements of ¥ resp. &~ are called positive generators resp. negative generators.

Point-section and point-generator incidence is simply given by € in the natural
way.

For P, Qe P we say that P and Q are plus parallel and write P||, Q if P and Q liec on
the same positive generator; we say that P and Q are minus parallel and write P||_Q
if P and Q lie on the same negative generator. The structure 4 = (P, ", ¥ ; %) is
called a (B)-geometry if the following properties hold:

(1) for any P, QeP there exists a unique ReP with P||, R||_Q;

(2) for any PeP and se2 , there exist uniquely determined points P, P_es with
Pl Pl|_P;

(3) there exist three pairwise non-parallel points.

A (B)-geometry %' = (P, ¥, 4 75) is a (B)-subgeometry of %=
(P, #", %7 ;%) if P'=P and the incidence relations are induced on P’ by €.

By starting with a set X with at least three elements and a permutation set G on X,
we get a (B)-geometry .#(G) as follows, see [5,7]: the points of .#(G) are the
elements of the cartesian product X x X. The sections of .#(G) are the elements of
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G, i.e. for every se G we define
s={(x,x"):xeX}.

If a is an element of X we define (a)* = {(a,y): yeX} and (a)” = {(x,a) : xeX};
we set " ={(a)" :aeX} and ¥ = {(a)” :aeX}. Point-section incidence and
point-generator incidence is simply given by € in natural way.

Conversely, let Z = (P, ", #7;2) be a (B)-geometry and s be a section of 4.
For any teX and Pes, let Tet such that T||, P. Then P'es is defined to be the
(unique) point of s with P’||_T. Hence, the set X defines a permutation set G on s. It
was shown in [5] that % can be described as the (B)-geometry .#(G) associated with
G. Thus, it is always possible to identify sections of % with elements of G.

Two (B)-geometries 4 = (P, ¥, ¥ ;%) and %4 = (P, %", ¥ ;%) are iso-
morphic if there is a bijection

c: PP

such that
Pl.OQ<P°ILQ°,
seX<=s’el

for all PeP and seX; here ¢ = +. Two (B)-geometries .#(G) and .#(G’) defined by
(X,G) and (X', G'), respectively, are isomorphic if and only if there are bijections
o, f: X—>X'
such that
teGea 'tped,

see [5, Theorem 2].

Remark. If 4 is described as the (B)-geometry .#(G) associated with G, we see that
G contains the identity. For an arbitrary pair (X, G) it need not be true that G
contains the identity permutation. However, the latter result implies that up to an
isomorphism one can always assume ide G, as we do in the following.

An ordered quadruple (Py, P2, P3, P4) of points is a rectangle in 4 if the relations
Pi||_Py, Pil[, P3, Pif[,Ps, P3|l P4

hold.
Let k be a non-negative integer. A (B)-geometry satisfies the kth rectangle

condition if, for every k -+ 1 rectangles (PQ,PQ,PQ,PQ), j=1,...,k+1, with

P!, ...,Pf“ pairwise distinct points, i = 1,2,3 and all lying on a common section
s;, then P}, ..., P’ﬁl are pairwise distinct points and there exists a section s4 through
all of them.

If this is the case, we say that the section s4 closes the rectangles (P}, P}, P}, P)),
j=1 .. k+1
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Theorem 2.1 (Bonisoli [7]). Let # be a (B)-geometry such that if P,Q and R are
pairwise non-parallel points then there exists at most one section which is incident with
all of them. Let G be the permutation set defined by % with ide G. Then G is a group if
and only if the 3rd rectangle condition holds in 4.

If G is such a group, for any s;,s,€ G, we define the section sjo5, € G to be the
section 54 which closes the rectangles (P“i,Pé, PQ,PQ), j=1,2,3,4 with le €id,
Pé SRS PV3 €5).

The hyperbolic quadric 2 of PG(3, ¢) (or, more generally, of PG(3,K), K a field)
defines a (B)-geometry in the following way:

Let P be the set of points of 2, #* and %~ the two reguli of 2 and X the set of
non-tangent plane sections of 2. It is easily seen that # = (P, 2", % ; X) turns out
to be a (B)-geometry.

Denote by (X, X1, X2, X3) the homogeneous projective coordinates in PG(3, g).
Coordinates are chosen in such a way that the hyperbolic quadric 2 of PG(3, ¢) has
equation XoX3 = X, X>. So, the reguli of 2 are 2" = {/,, : (a,b) eK>\{(0,0)}} and
R = {l{p): (a,b)eK*\{(0,0)}}, where

/?;4[;) = {(A'(L ,ua, ;“b7 :ub> : (j'? :u) EF;\{ (07 0)}}
and
Ciuny = {0, 7, wa, ub) < (7, 1) €F2{(0,0)}}.

Denote by L the polarity defined by 2. In the matrix model of PG(3, ¢), any point

P = (po, p1, P2, p3) will be represented by its 2 x 2 coordinates matrix <$0 ? > So,
2 D3

2 ={PePG(3,q): det(P) = 0}. If ¢ is even, the set of points of PG(3,¢) not on 2

represents PSL(2, ¢). If ¢ is odd, the set {PePG(3,q) : det(P) is a non-zero square}

represents PSL(2,¢) and {PePG(3,q): det(P) is a non-square} represents the
coset of PSL(2,¢) in PGL(2,¢) [2].

The point I =(1,0,0,1) gives the identity matrix <(1) (1)) and I+ N2 is the
identity in the permutation set G defined by 2.

Further, any 4 = (i Z) ePG(3,q), A¢ 2, defines the collineation

pa: PG@3,9) — PG(3,9)
P — A-P

where - is the standard matrix product.
Proposition 2.2 (Bader et al. [2]). The collineation p 4 has the following properties:

1. p(A) fixes 2 setwise and R~ linewise.
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2. py(PY)=(A4-P)*", for every point P of PG(3,q), P not on 2. Further, p ,(P1)
intersects 2 in the section A+oP~*.

Proof. (1) [2, Lemma 4.1].
(2) The collineation p 4 is defined by the matrix

a 0 b O
0 a 0 b
¢ 0.4 0
0 ¢ 0 d

of PG(3, ¢). Direct calculations show that p ,(PL) = (4 - P)* for every PePG(3,¢)
not on 2. In particular, p ,(I*+) = A~ Since p , fixes #~ linewise, it is easily seen that
p4(Pt) meets 2 in the section which closes all rectangles (P, Pa, P3, Py), with
Pielt, P,eA' and P;eP1. By definition, this is the section AtoP+. [

Corollary 2.3. The permutation set G is actually a group isomorphic to PGL(2,q).
Such an isomorphism induces a 1-1 correspondence between subgroups of PGL(2, q)
and (B)-subgeometries of A containing a fixed section corresponding to the identity
and satisfying the 3rd rectangle condition.

3. Flocks of 2 and (B)-subgeometries of #

It was noted in [2] that an exterior set of 2 (i.e. a set of points of PG(3, g) such that
a line joining any two of them misses 2) is a subset of PGL(2, ¢) in the matrix model
of PG(3,¢). In particular, an MES is a regular subset of PGL(2, ¢), and conversely.
Actually, the representation of the exceptional flocks in [10] gives the groups
Ay, S4, As of PGL(2,q), for ¢ = 11,23, 59, respectively.

In this section, we give a geometric characteristic-free proof of the classification
theorem of flocks of 2 by proving that every flock of 2 defines a (B)-subgeometry of
A which satisfies the 3rd rectangle condition.

Let F = {Ci,...,Cyy1} be aflock of 2and X = {xi, ..., x,41} the MES defined by
F. Consider the (B)-subgeometry # = (P, 2", % ,F) of .

For each conic C = nn2 of F with n:aXy + bX) + cXo + dX5 =0, p i (n) is the
plane my = I+, where A = n'. Thus, we can always suppose that /€ X.

Theorem 3.1. The (B)-subgeometry F satisfies the 3rd rectangle condition.

Proof. Let C;, C, and Cj; be three sections of %, with C, # C; # C3. From Theorem
2.1 there exists a section C = nn 2 of # which closes all rectangles (Py, P2, P3, Ps),
with P;eC;, i=1,2,3.

Since |Ci| =g+ 1, |F\{C,}| = g and P4 ¢ C, for all such rectangles, there are two
distinct rectangles (P;, Py, P3, P4) and (P/l , P'27 P/3, P;) with P;, P/,-e G, i=1,2,3,
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such that P4 and P'4 are on the same conic, say Cy, of F. To get the result it suffices to
prove that the plane ny of C4 shares one more point with the plane = of C.

Coordinates are chosen in such a way that P; = (1,0,0,0), P, =(0,0,1,0), P; =
(0,1,0,0), P4=(0,0,0,1). Denote by L; the tangent line of C; at P, and by L4
the tangent line of C4 at P4. By arguing as in the proof of [13, Theorem 1],
with easy calculations, we get that either L; meets L, or Ly meets the line P, P3. In
both cases, the intersection point belongs to planes © and my and the result
follows. O

Corollary 3.2. A MES of 2 is, up to a collineation, a (regular) subgroup of order q + 1
of PGL(2,q).

By arguing as in Proposition 18 in [8] (which holds for every ¢) it is possible to give
another proof of the following classification theorem.

Theorem 3.3. Every flock of 2 is linear, a Thas flock or one of the exceptional flocks.

Proof. Let X be the MES defined by a flock F of 2 in the matrix model of PG(3, g).
By checking in the list of subgroups of PGL(2,¢) given in [9,14] one sees that the
possibilities for X are:

(i) the cyclic group Cyyi;
(ii) the dihedral group Dyy1, ¢ odd;
2

(i) Ag, g =11;
(iv) Ss, q=123;
(v) As, ¢ =159.

In each case, the subgroups form a single conjugacy class in PGL(2, ¢) and so the
corresponding MESs are equivalent. From Corollary 2.3, X acts on itself (viewed as
a subset of points of PG(3, ¢)) via the matrix multiplication. In case (i), the orbits of
X consist of the lines of a regular spread containing #~. In this case, the
corresponding flock is linear.

In case (ii), ¢ odd, the orbit of any point of PG(3, ¢) not on 2 consists of (¢ + 1)/2
points on a line L and of (¢ + 1)/2 points on L. In this case, the corresponding
flock is a Thas flock.

From [6,10] in cases (iii), (iv) and (v), we get the exceptional MES. [
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