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Abstract

We give a characteristic-free proof of the classification theorem for flocks of hyperbolic

quadrics of PGð3; qÞ:
r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

A flock of the hyperbolic quadric Q of the finite projective space PGð3; qÞ is a
partition of Q consisting of q þ 1 irreducible conics. In [12], Thas showed that all
flocks of Q are linear if q is even, and that Q has non-linear flocks (called Thas flocks)
if q is odd. Further, in [13], he showed that for q ¼ 3; 7 and q � 1 mod 4 Q has only
(up to a projectivity) the linear flock and the Thas flock.

For q ¼ 11; 23; 59 other flocks of Q were discovered, independently, by Bader [1],
Baker and Ebert (for q ¼ 11; 23) [4], Bonisoli [6] and Johnson [11]. Since these three
flocks are related to exceptional near fields, these flocks are called exceptional flocks.

Finally, flocks of Q; q odd, were classified by Bader and Lunardon [3]: Every flock

of Q; q odd, is linear, a Thas flock or one of the exceptional flocks.

Bonisoli and Korchmàros presented in [8] another proof of the above classification
theorem, always for q odd. Both proofs use the following fundamental theorem by
Thas in [13]: if q is odd, each plane containing a conic of a flock of Q is the axis of an

involutorial homology which preserves the flock.
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The key result to prove Thas’ Theorem is Theorem 1 in [13] which is actually an
application of a generalization of Segre’s Lemma of Tangents. The main ideas of
Theorem 1, which holds for every q; are used in this paper to provide a geometric
characteristic-free proof of the classification theorem of flocks of Q:

A maximal exterior set (MES) of Q is a set of q þ 1 points of PGð3; qÞ such that the
line joining any two of them has no point in common with Q: The polar planes, with
respect to Q; of the points of a MES define a flock, and conversely.

In the recent paper [2], Bader et al. noted a correspondence between regular
subgroups of PGLð2; qÞ and MES of Q by using a matrix model of PGð3; qÞ; q odd.
They got this result as a consequence of the result by Bonisoli and Korchmàros in
[8, p. 296].

In [2] was also stated a close connection between flocks and ðBÞ-geometries
satisfying certain configurational properties, known as rectangle conditions [5,7].

In [5], Benz showed that each ðBÞ-geometry can be associated with a suitable
permutation set. In [7], Bonisoli stated a necessary and sufficient condition for such a
permutation set to be a group.

The latter result is the starting point of our work. In this paper, we directly show
that every flock of Q yields a ðBÞ-geometry whose associated permutation set is
actually a group.

2. Hyperbolic quadrics of PGð3; qÞ and ðBÞ-geometries

Let P be a non-empty set and S; Lþ; L� three non-empty sets of subsets of P:
The elements of P are called points, the element of S sections (or circles) and the

elements of Lþ resp. L� are called positive generators resp. negative generators.
Point-section and point-generator incidence is simply given by A in the natural

way.
For P;QAP we say that P and Q are plus parallel and write PjjþQ if P and Q lie on

the same positive generator; we say that P and Q are minus parallel and write Pjj�Q

if P and Q lie on the same negative generator. The structure B ¼ ðP;Lþ;L�;SÞ is
called a ðBÞ-geometry if the following properties hold:

(1) for any P;QAP there exists a unique RAP with PjjþRjj�Q;

(2) for any PAP and sAS , there exist uniquely determined points Pþ;P�As with
PþjjþPjj�P�;

(3) there exist three pairwise non-parallel points.

A ðBÞ-geometry B0 ¼ ðP0;L
0þ;L

0�;S0Þ is a ðBÞ-subgeometry of B ¼
ðP;Lþ;L�;SÞ if P0DP and the incidence relations are induced on P0 by A:

By starting with a set X with at least three elements and a permutation set G on X ;
we get a ðBÞ-geometry MðGÞ as follows, see [5,7]: the points of MðGÞ are the
elements of the cartesian product X 	 X : The sections of MðGÞ are the elements of
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G; i.e. for every sAG we define

s ¼ fðx; xsÞ : xAXg:

If a is an element of X we define ðaÞþ ¼ fða; yÞ : yAXg and ðaÞ� ¼ fðx; aÞ : xAXg;
we set Lþ ¼ fðaÞþ : aAXg and L� ¼ fðaÞ� : aAXg: Point-section incidence and
point-generator incidence is simply given by A in natural way.

Conversely, let B ¼ ðP;Lþ;L�;SÞ be a ðBÞ-geometry and s be a section of B:
For any tAS and PAs; let TAt such that T jjþP: Then PtAs is defined to be the

(unique) point of s with Ptjj�T : Hence, the set S defines a permutation set G on s: It

was shown in [5] that B can be described as the ðBÞ-geometry MðGÞ associated with
G: Thus, it is always possible to identify sections of B with elements of G:

Two ðBÞ-geometries B ¼ ðP;L�;L�;SÞ and B0 ¼ ðP;L0þ;L0�;S0Þ are iso-

morphic if there is a bijection

s : P-P0

such that

PJeQ3PsJ0eQ
s;

sAS3ssAS0

for all PAP and sAS; here e ¼ 7: Two ðBÞ-geometries MðGÞ and MðG0Þ defined by
ðX ;GÞ and ðX 0;G0Þ; respectively, are isomorphic if and only if there are bijections

a; b : X-X 0

such that

tAG3a�1tbAG0;

see [5, Theorem 2].

Remark. If B is described as the ðBÞ-geometry MðGÞ associated with G; we see that
G contains the identity. For an arbitrary pair ðX ;GÞ it need not be true that G

contains the identity permutation. However, the latter result implies that up to an
isomorphism one can always assume idAG; as we do in the following.

An ordered quadruple ðP1;P2;P3;P4Þ of points is a rectangle in B if the relations

P1jj�P2; P1jjþP3; P2jjþP4; P3jj�P4

hold.
Let k be a non-negative integer. A ðBÞ-geometry satisfies the kth rectangle

condition if, for every k þ 1 rectangles ðPj
1;P

j
2;P

j
3;P

j
4Þ; j ¼ 1;y; k þ 1; with

P1
i ;y;Pkþ1

i pairwise distinct points, i ¼ 1; 2; 3 and all lying on a common section

si; then P1
4;y;Pkþ1

4 are pairwise distinct points and there exists a section s4 through

all of them.

If this is the case, we say that the section s4 closes the rectangles ðPj
1;P

j
2;P

j
3;P

j
4Þ;

j ¼ 1;y; k þ 1:
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Theorem 2.1 (Bonisoli [7]). Let B be a ðBÞ-geometry such that if P;Q and R are

pairwise non-parallel points then there exists at most one section which is incident with

all of them. Let G be the permutation set defined by B with idAG: Then G is a group if

and only if the 3rd rectangle condition holds in B:

If G is such a group, for any s1; s2AG; we define the section s13s2AG to be the

section s4 which closes the rectangles ðPj
1;P

j
2;P

j
3;P

j
4Þ; j ¼ 1; 2; 3; 4 with P

j
1Aid;

P
j
2As1; P

j
3As2:

The hyperbolic quadric Q of PGð3; qÞ (or, more generally, of PGð3;KÞ; K a field)
defines a ðBÞ-geometry in the following way:

Let P be the set of points of Q; Rþ and R� the two reguli of Q and S the set of

non-tangent plane sections of Q: It is easily seen that H ¼ ðP;Rþ;R�;SÞ turns out
to be a ðBÞ-geometry.

Denote by ðX0;X1;X2;X3Þ the homogeneous projective coordinates in PGð3; qÞ:
Coordinates are chosen in such a way that the hyperbolic quadric Q of PGð3; qÞ has

equation X0X3 ¼ X1X2: So, the reguli of Q are Rþ ¼ fcþða;bÞ : ða; bÞAK2
\fð0; 0Þgg and

R� ¼ fc�ða;bÞ : ða; bÞAK2
\fð0; 0Þgg; where

cþða;bÞ ¼ fðla; ma; lb; mbÞ : ðl; mÞAF2
q\fð0; 0Þgg

and

c�ða;bÞ ¼ fðla; lb; ma; mbÞ : ðl; mÞAF2
q\fð0; 0Þgg:

Denote by > the polarity defined by Q: In the matrix model of PGð3; qÞ; any point

P ¼ ðp0; p1; p2; p3Þ will be represented by its 2 	 2 coordinates matrix
p0 p1

p2 p3

� �
: So,

Q ¼ fPAPGð3; qÞ : detðPÞ ¼ 0g: If q is even, the set of points of PGð3; qÞ not on Q
represents PSLð2; qÞ: If q is odd, the set fPAPGð3; qÞ : detðPÞ is a non-zero squareg
represents PSLð2; qÞ and fPAPGð3; qÞ : detðPÞ is a non-squareg represents the
coset of PSLð2; qÞ in PGLð2; qÞ [2].

The point I ¼ ð1; 0; 0; 1Þ gives the identity matrix
1 0
0 1

� �
and I>-Q is the

identity in the permutation set G defined by S:

Further, any A ¼ a b

c d

� �
APGð3; qÞ; AeQ; defines the collineation

rA : PGð3; qÞ - PGð3; qÞ
P / A � P

where � is the standard matrix product.

Proposition 2.2 (Bader et al. [2]). The collineation rA has the following properties:

1. rðAÞ fixes Q setwise and R� linewise.

Note / Journal of Combinatorial Theory, Series A 102 (2003) 425–431428



2. rAðP>Þ ¼ ðA � PÞ>; for every point P of PGð3; qÞ; P not on Q: Further, rAðP>Þ
intersects Q in the section A>

3P>:

Proof. (1) [2, Lemma 4.1].
(2) The collineation rA is defined by the matrix

a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

0
BBB@

1
CCCA

of PGð3; qÞ: Direct calculations show that rAðP>Þ ¼ ðA � PÞ> for every PAPGð3; qÞ
not on Q: In particular, rAðI>Þ ¼ A>: Since rA fixes R� linewise, it is easily seen that

rAðP>Þ meets Q in the section which closes all rectangles ðP1;P2;P3;P4Þ; with

P1AI>; P2AA> and P3AP>: By definition, this is the section A>
3P>: &

Corollary 2.3. The permutation set G is actually a group isomorphic to PGLð2; qÞ:
Such an isomorphism induces a 1–1 correspondence between subgroups of PGLð2; qÞ
and ðBÞ-subgeometries of H containing a fixed section corresponding to the identity

and satisfying the 3rd rectangle condition.

3. Flocks of Q and ðBÞ-subgeometries of H

It was noted in [2] that an exterior set of Q (i.e. a set of points of PGð3; qÞ such that
a line joining any two of them misses Q) is a subset of PGLð2; qÞ in the matrix model
of PGð3; qÞ: In particular, an MES is a regular subset of PGLð2; qÞ; and conversely.
Actually, the representation of the exceptional flocks in [10] gives the groups
A4; S4; A5 of PGLð2; qÞ; for q ¼ 11; 23; 59; respectively.

In this section, we give a geometric characteristic-free proof of the classification
theorem of flocks of Q by proving that every flock of Q defines a ðBÞ-subgeometry of
H which satisfies the 3rd rectangle condition.

Let F ¼ fC1;y;Cqþ1g be a flock of Q and X ¼ fx1;y; xqþ1g the MES defined by

F : Consider the ðBÞ-subgeometry F ¼ ðP;Rþ;R�;FÞ of H:
For each conic C ¼ p-Q of F with p : aX0 þ bX1 þ cX2 þ dX3 ¼ 0; rA�1ðpÞ is the

plane p0 ¼ I>; where A ¼ p>: Thus, we can always suppose that IAX :

Theorem 3.1. The ðBÞ-subgeometry F satisfies the 3rd rectangle condition.

Proof. Let C1; C2 and C3 be three sections of F; with C2aC1aC3: From Theorem
2.1 there exists a section C ¼ p-Q of H which closes all rectangles ðP1;P2;P3;P4Þ;
with PiACi; i ¼ 1; 2; 3:

Since jC1j ¼ q þ 1; jF \fC2gj ¼ q and P4eC2 for all such rectangles, there are two

distinct rectangles ðP1;P2;P3;P4Þ and ðP0
1;P

0
2;P

0
3;P

0
4Þ with Pi;P

0
iACi; i ¼ 1; 2; 3;
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such that P4 and P
0
4 are on the same conic, say C4; of F : To get the result it suffices to

prove that the plane p4 of C4 shares one more point with the plane p of C:
Coordinates are chosen in such a way that P1 ¼ ð1; 0; 0; 0Þ; P2 ¼ ð0; 0; 1; 0Þ; P3 ¼

ð0; 1; 0; 0Þ; P4 ¼ ð0; 0; 0; 1Þ: Denote by L1 the tangent line of C1 at P1 and by L4

the tangent line of C4 at P4: By arguing as in the proof of [13, Theorem 1],
with easy calculations, we get that either L1 meets L4 or L4 meets the line P2P3: In
both cases, the intersection point belongs to planes p and p4 and the result
follows. &

Corollary 3.2. A MES of Q is, up to a collineation, a (regular) subgroup of order q þ 1
of PGLð2; qÞ:

By arguing as in Proposition 18 in [8] (which holds for every q) it is possible to give
another proof of the following classification theorem.

Theorem 3.3. Every flock of Q is linear, a Thas flock or one of the exceptional flocks.

Proof. Let X be the MES defined by a flock F of Q in the matrix model of PGð3; qÞ:
By checking in the list of subgroups of PGLð2; qÞ given in [9,14] one sees that the
possibilities for X are:

(i) the cyclic group Cqþ1;
(ii) the dihedral group Dqþ1

2

; q odd;

(iii) A4; q ¼ 11;
(iv) S4; q ¼ 23;
(v) A5; q ¼ 59:

In each case, the subgroups form a single conjugacy class in PGLð2; qÞ and so the
corresponding MESs are equivalent. From Corollary 2.3, X acts on itself ðviewed as
a subset of points of PGð3; qÞÞ via the matrix multiplication. In case (i), the orbits of
X consist of the lines of a regular spread containing R�: In this case, the
corresponding flock is linear.

In case (ii), q odd, the orbit of any point of PGð3; qÞ not on Q consists of ðq þ 1Þ=2
points on a line L and of ðq þ 1Þ=2 points on L>: In this case, the corresponding
flock is a Thas flock.

From [6,10] in cases (iii), (iv) and (v), we get the exceptional MES. &
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