

ACADEMIC PRESS

Journal of Combinatorial Theory, Series A 102 (2003) 425-431

Journal of
Combinatorial
Theory

(B)-Geometries and flocks of hyperbolic quadrics

Nicola Durante ${ }^{\mathrm{a}}$ and Alessandro Siciliano ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Matematica e Applicazioni, Università di Napoli " Federico II", Via Cintia-Monte S.Angelo, I-80126 Napoli, Italy
${ }^{\mathrm{b}}$ Dipartimento di Matematica, Università della Basilicata, Contrada Macchia Romana, I-85100 Potenza, Italy

Received 18 July 2002

Abstract

We give a characteristic-free proof of the classification theorem for flocks of hyperbolic quadrics of $\operatorname{PG}(3, q)$. © 2003 Elsevier Science (USA). All rights reserved.

Keywords: Finite geometries; Hyperbolic quadric; (B)-Geometry; Flock

1. Introduction

A flock of the hyperbolic quadric 2 of the finite projective space $\operatorname{PG}(3, q)$ is a partition of $\mathscr{2}$ consisting of $q+1$ irreducible conics. In [12], Thas showed that all flocks of $\mathscr{2}$ are linear if q is even, and that 2 has non-linear flocks (called Thas flocks) if q is odd. Further, in [13], he showed that for $q=3,7$ and $q \equiv 1 \bmod 4 \mathscr{2}$ has only (up to a projectivity) the linear flock and the Thas flock.

For $q=11,23,59$ other flocks of 2 were discovered, independently, by Bader [1], Baker and Ebert (for $q=11,23$) [4], Bonisoli [6] and Johnson [11]. Since these three flocks are related to exceptional near fields, these flocks are called exceptional flocks.

Finally, flocks of $\mathscr{2}, q$ odd, were classified by Bader and Lunardon [3]: Every flock of \mathscr{Q}, q odd, is linear, a Thas flock or one of the exceptional flocks.

Bonisoli and Korchmàros presented in [8] another proof of the above classification theorem, always for q odd. Both proofs use the following fundamental theorem by Thas in [13]: if q is odd, each plane containing a conic of a flock of $\mathscr{2}$ is the axis of an involutorial homology which preserves the flock.

[^0]The key result to prove Thas' Theorem is Theorem 1 in [13] which is actually an application of a generalization of Segre's Lemma of Tangents. The main ideas of Theorem 1, which holds for every q, are used in this paper to provide a geometric characteristic-free proof of the classification theorem of flocks of $\mathscr{2}$.

A maximal exterior set (MES) of $\mathscr{2}$ is a set of $q+1$ points of $\mathrm{PG}(3, q)$ such that the line joining any two of them has no point in common with $\mathscr{2}$. The polar planes, with respect to \mathscr{Q}, of the points of a MES define a flock, and conversely.

In the recent paper [2], Bader et al. noted a correspondence between regular subgroups of $\operatorname{PGL}(2, q)$ and MES of 2 by using a matrix model of $\operatorname{PG}(3, q), q$ odd. They got this result as a consequence of the result by Bonisoli and Korchmàros in [8, p. 296].

In [2] was also stated a close connection between flocks and (B)-geometries satisfying certain configurational properties, known as rectangle conditions [5,7].

In [5], Benz showed that each (B)-geometry can be associated with a suitable permutation set. In [7], Bonisoli stated a necessary and sufficient condition for such a permutation set to be a group.

The latter result is the starting point of our work. In this paper, we directly show that every flock of $\mathscr{2}$ yields a (B)-geometry whose associated permutation set is actually a group.

2. Hyperbolic quadrics of $\operatorname{PG}(3, q)$ and (B)-geometries

Let \mathbf{P} be a non-empty set and $\Sigma, \mathscr{L}^{+}, \mathscr{L}^{-}$three non-empty sets of subsets of \mathbf{P}. The elements of \mathbf{P} are called points, the element of Σ sections (or circles) and the elements of \mathscr{L}^{+}resp. \mathscr{L}^{-}are called positive generators resp. negative generators.

Point-section and point-generator incidence is simply given by \in in the natural way.

For $P, Q \in \mathbf{P}$ we say that P and Q are plus parallel and write $P \|_{+} Q$ if P and Q lie on the same positive generator; we say that P and Q are minus parallel and write $P \|_{-} Q$ if P and Q lie on the same negative generator. The structure $\mathscr{B}=\left(\mathbf{P}, \mathscr{L}^{+}, \mathscr{L}^{-} ; \Sigma\right)$ is called a (B)-geometry if the following properties hold:
(1) for any $P, Q \in \mathbf{P}$ there exists a unique $R \in \mathbf{P}$ with $P\left\|_{+} R\right\|_{-} Q$;
(2) for any $P \in \mathbf{P}$ and $s \in \Sigma$, there exist uniquely determined points $P_{+}, P_{-} \in s$ with $P_{+}\left\|_{+} P\right\|_{-} P_{-} ;$
(3) there exist three pairwise non-parallel points.

A (B)-geometry $\quad \mathscr{B}^{\prime}=\left(\mathbf{P}^{\prime}, \mathscr{L}^{\prime+}, \mathscr{L}^{\prime-} ; \Sigma^{\prime}\right) \quad$ is \quad a (B)-subgeometry of $\mathscr{B}=$ $\left(\mathbf{P}, \mathscr{L}^{+}, \mathscr{L}^{-} ; \Sigma\right)$ if $\mathbf{P}^{\prime} \subseteq \mathbf{P}$ and the incidence relations are induced on \mathbf{P}^{\prime} by \in.

By starting with a set X with at least three elements and a permutation set G on X, we get a (B)-geometry $\mathscr{M}(G)$ as follows, see [5,7]: the points of $\mathscr{M}(G)$ are the elements of the cartesian product $X \times X$. The sections of $\mathscr{M}(G)$ are the elements of
G, i.e. for every $s \in G$ we define

$$
s=\left\{\left(x, x^{s}\right): x \in X\right\}
$$

If a is an element of X we define $(a)^{+}=\{(a, y): y \in X\}$ and $(a)^{-}=\{(x, a): x \in X\}$; we set $\mathscr{L}^{+}=\left\{(a)^{+}: a \in X\right\}$ and $\mathscr{L}^{-}=\left\{(a)^{-}: a \in X\right\}$. Point-section incidence and point-generator incidence is simply given by \in in natural way.

Conversely, let $\mathscr{B}=\left(\mathbf{P}, \mathscr{L}^{+}, \mathscr{L}^{-} ; \Sigma\right)$ be a (B)-geometry and s be a section of \mathscr{B}. For any $t \in \Sigma$ and $P \in s$, let $T \in t$ such that $T \|_{+} P$. Then $P^{t} \in s$ is defined to be the (unique) point of s with $P^{t} \|_{-} T$. Hence, the set Σ defines a permutation set G on s. It was shown in [5] that \mathscr{B} can be described as the (B)-geometry $\mathscr{M}(G)$ associated with G. Thus, it is always possible to identify sections of \mathscr{B} with elements of G.

Two (B)-geometries $\mathscr{B}=\left(\mathbf{P}, \mathscr{L}^{-}, \mathscr{L}^{-} ; \Sigma\right)$ and $\mathscr{B}^{\prime}=\left(\mathbf{P}, \mathscr{L}^{\prime+}, \mathscr{L}^{\prime-} ; \Sigma^{\prime}\right)$ are isomorphic if there is a bijection

$$
\sigma: \mathbf{P} \rightarrow \mathbf{P}^{\prime}
$$

such that

$$
\begin{aligned}
& P\left\|_{\varepsilon} Q \Leftrightarrow P^{\sigma}\right\|_{\varepsilon}^{\prime} Q^{\sigma}, \\
& s \in \Sigma \Leftrightarrow s^{\sigma} \in \Sigma^{\prime}
\end{aligned}
$$

for all $P \in \mathbf{P}$ and $s \in \Sigma$; here $\varepsilon= \pm$. Two (B)-geometries $\mathscr{M}(G)$ and $\mathscr{M}\left(G^{\prime}\right)$ defined by (X, G) and $\left(X^{\prime}, G^{\prime}\right)$, respectively, are isomorphic if and only if there are bijections

$$
\alpha, \beta: X \rightarrow X^{\prime}
$$

such that

$$
t \in G \Leftrightarrow \alpha^{-1} t \beta \in G^{\prime}
$$

see [5, Theorem 2].
Remark. If \mathscr{B} is described as the (B)-geometry $\mathscr{M}(G)$ associated with G, we see that G contains the identity. For an arbitrary pair (X, G) it need not be true that G contains the identity permutation. However, the latter result implies that up to an isomorphism one can always assume $\mathrm{id} \in G$, as we do in the following.

An ordered quadruple $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ of points is a rectangle in \mathscr{B} if the relations

$$
P_{1}\left\|_{-} P_{2}, \quad P_{1}\right\|_{+} P_{3}, \quad P_{2}\left\|_{+} P_{4}, \quad P_{3}\right\|_{-} P_{4}
$$

hold.
Let k be a non-negative integer. A (B)-geometry satisfies the k th rectangle condition if, for every $k+1$ rectangles $\left(P_{1}^{j}, P_{2}^{j}, P_{3}^{j}, P_{4}^{j}\right), j=1, \ldots, k+1$, with $P_{i}^{1}, \ldots, P_{i}^{k+1}$ pairwise distinct points, $i=1,2,3$ and all lying on a common section s_{i}, then $P_{4}^{1}, \ldots, P_{4}^{k+1}$ are pairwise distinct points and there exists a section s_{4} through all of them.

If this is the case, we say that the section s_{4} closes the rectangles $\left(P_{1}^{j}, P_{2}^{j}, P_{3}^{j}, P_{4}^{j}\right)$, $j=1, \ldots, k+1$.

Theorem 2.1 (Bonisoli [7]). Let \mathscr{B} be $a(B)$-geometry such that if P, Q and R are pairwise non-parallel points then there exists at most one section which is incident with all of them. Let G be the permutation set defined by \mathscr{B} with $\mathrm{id} \in G$. Then G is a group if and only if the 3 rd rectangle condition holds in \mathscr{B}.

If G is such a group, for any $s_{1}, s_{2} \in G$, we define the section $s_{1}{ }^{\circ} s_{2} \in G$ to be the section s_{4} which closes the rectangles $\left(P_{1}^{j}, P_{2}^{j}, P_{3}^{j}, P_{4}^{j}\right), j=1,2,3,4$ with $P_{1}^{j} \in \mathrm{id}$, $P_{2}^{j} \in s_{1}, P_{3}^{j} \in s_{2}$.

The hyperbolic quadric 2 of $\operatorname{PG}(3, q)$ (or, more generally, of $\operatorname{PG}(3, K), K$ a field) defines a (B)-geometry in the following way:

Let \mathbf{P} be the set of points of $\mathscr{Q}, \mathscr{R}^{+}$and \mathscr{R}^{-}the two reguli of $\mathscr{2}$ and Σ the set of non-tangent plane sections of \mathscr{Q}. It is easily seen that $\mathscr{H}=\left(\mathbf{P}, \mathscr{R}^{+}, \mathscr{R}^{-} ; \Sigma\right)$ turns out to be a (B)-geometry.

Denote by $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$ the homogeneous projective coordinates in $\operatorname{PG}(3, q)$. Coordinates are chosen in such a way that the hyperbolic quadric 2 of $\operatorname{PG}(3, q)$ has equation $X_{0} X_{3}=X_{1} X_{2}$. So, the reguli of $\mathscr{2}$ are $\mathscr{R}^{+}=\left\{\ell_{(a, b)}^{+}:(a, b) \in K^{2} \backslash\{(0,0)\}\right\}$ and $\mathscr{R}^{-}=\left\{\ell_{(a, b)}^{-}:(a, b) \in K^{2} \backslash\{(0,0)\}\right\}$, where

$$
\ell_{(a, b)}^{+}=\left\{(\lambda a, \mu a, \lambda b, \mu b):(\lambda, \mu) \in \mathbf{F}_{q}^{2} \backslash\{(0,0)\}\right\}
$$

and

$$
\ell_{(a, b)}^{-}=\left\{(\lambda a, \lambda b, \mu a, \mu b):(\lambda, \mu) \in \mathbf{F}_{q}^{2} \backslash\{(0,0)\}\right\} .
$$

Denote by \perp the polarity defined by 2 . In the matrix model of $\operatorname{PG}(3, q)$, any point $P=\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$ will be represented by its 2×2 coordinates matrix $\left(\begin{array}{cc}p_{0} & p_{1} \\ p_{2} & p_{3}\end{array}\right)$. So, $\mathscr{Q}=\{P \in \operatorname{PG}(3, q): \operatorname{det}(P)=0\}$. If q is even, the set of points of $\operatorname{PG}(3, q)$ not on \mathscr{Q} represents $\operatorname{PSL}(2, q)$. If q is odd, the set $\{P \in \operatorname{PG}(3, q): \operatorname{det}(P)$ is a non-zero square $\}$ represents $\operatorname{PSL}(2, q)$ and $\{P \in \operatorname{PG}(3, q): \operatorname{det}(P)$ is a non-square $\}$ represents the coset of $\operatorname{PSL}(2, q)$ in $\operatorname{PGL}(2, q)$ [2].

The point $I=(1,0,0,1)$ gives the identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $I^{\perp} \cap \mathscr{Q}$ is the identity in the permutation set G defined by Σ.

Further, any $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PG}(3, q), A \notin \mathscr{Q}$, defines the collineation

$$
\begin{array}{rllc}
\rho_{A}: \quad \mathrm{PG}(3, q) & \rightarrow & \mathrm{PG}(3, q) \\
P & \mapsto & A \cdot P
\end{array}
$$

where • is the standard matrix product.
Proposition 2.2 (Bader et al. [2]). The collineation ρ_{A} has the following properties:

1. $\rho(A)$ fixes 2 setwise and \mathscr{R}^{-}linewise.
2. $\rho_{A}\left(P^{\perp}\right)=(A \cdot P)^{\perp}$, for every point P of $\operatorname{PG}(3, q)$, P not on 2. Further, $\rho_{A}\left(P^{\perp}\right)$ intersects 2 in the section $A^{\perp}{ }_{\circ} P^{\perp}$.

Proof. (1) [2, Lemma 4.1].
(2) The collineation ρ_{A} is defined by the matrix

$$
\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right)
$$

of $\operatorname{PG}(3, q)$. Direct calculations show that $\rho_{A}\left(P^{\perp}\right)=(A \cdot P)^{\perp}$ for every $P \in \operatorname{PG}(3, q)$ not on 2. In particular, $\rho_{A}\left(I^{\perp}\right)=A^{\perp}$. Since ρ_{A} fixes \mathscr{R}^{-}linewise, it is easily seen that $\rho_{A}\left(P^{\perp}\right)$ meets 2 in the section which closes all rectangles $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$, with $P_{1} \in I^{\perp}, P_{2} \in A^{\perp}$ and $P_{3} \in P^{\perp}$. By definition, this is the section $A^{\perp}{ }_{\circ} P^{\perp}$.

Corollary 2.3. The permutation set G is actually a group isomorphic to $\operatorname{PGL}(2, q)$. Such an isomorphism induces a 1-1 correspondence between subgroups of $\operatorname{PGL}(2, q)$ and (B)-subgeometries of \mathscr{H} containing a fixed section corresponding to the identity and satisfying the 3 rd rectangle condition.

3. Flocks of $\mathscr{2}$ and (B)-subgeometries of \mathscr{H}

It was noted in [2] that an exterior set of 2 (i.e. a set of points of $\operatorname{PG}(3, q)$ such that a line joining any two of them misses $\mathscr{2}$) is a subset of $\operatorname{PGL}(2, q)$ in the matrix model of $\mathrm{PG}(3, q)$. In particular, an MES is a regular subset of $\operatorname{PGL}(2, q)$, and conversely. Actually, the representation of the exceptional flocks in [10] gives the groups A_{4}, S_{4}, A_{5} of $\operatorname{PGL}(2, q)$, for $q=11,23,59$, respectively.

In this section, we give a geometric characteristic-free proof of the classification theorem of flocks of $\mathscr{2}$ by proving that every flock of $\mathscr{2}$ defines a (B)-subgeometry of \mathscr{H} which satisfies the 3 rd rectangle condition.

Let $F=\left\{C_{1}, \ldots, C_{q+1}\right\}$ be a flock of $\mathscr{2}$ and $X=\left\{x_{1}, \ldots, x_{q+1}\right\}$ the MES defined by F. Consider the (B)-subgeometry $\mathscr{F}=\left(\mathbf{P}, \mathscr{R}^{+}, \mathscr{R}^{-}, F\right)$ of \mathscr{H}.

For each conic $C=\pi \cap \mathscr{2}$ of F with $\pi: a X_{0}+b X_{1}+c X_{2}+d X_{3}=0, \rho_{A^{-1}}(\pi)$ is the plane $\pi_{0}=I^{\perp}$, where $A=\pi^{\perp}$. Thus, we can always suppose that $I \in X$.

Theorem 3.1. The (B)-subgeometry \mathscr{F} satisfies the 3 rd rectangle condition.
Proof. Let C_{1}, C_{2} and C_{3} be three sections of \mathscr{F}, with $C_{2} \neq C_{1} \neq C_{3}$. From Theorem 2.1 there exists a section $C=\pi \cap \mathscr{Q}$ of \mathscr{H} which closes all rectangles $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$, with $P_{i} \in C_{i}, i=1,2,3$.

Since $\left|C_{1}\right|=q+1,\left|F \backslash\left\{C_{2}\right\}\right|=q$ and $P_{4} \notin C_{2}$ for all such rectangles, there are two distinct rectangles $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ and $\left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, P_{4}^{\prime}\right)$ with $P_{i}, P_{i}^{\prime} \in C_{i}, i=1,2,3$,
such that P_{4} and P_{4}^{\prime} are on the same conic, say C_{4}, of F. To get the result it suffices to prove that the plane π_{4} of C_{4} shares one more point with the plane π of C.

Coordinates are chosen in such a way that $P_{1}=(1,0,0,0), P_{2}=(0,0,1,0), P_{3}=$ $(0,1,0,0), P_{4}=(0,0,0,1)$. Denote by L_{1} the tangent line of C_{1} at P_{1} and by L_{4} the tangent line of C_{4} at P_{4}. By arguing as in the proof of [13, Theorem 1], with easy calculations, we get that either L_{1} meets L_{4} or L_{4} meets the line $P_{2} P_{3}$. In both cases, the intersection point belongs to planes π and π_{4} and the result follows.

Corollary 3.2. A MES of $\mathscr{2}$ is, up to a collineation, a (regular) subgroup of order $q+1$ of $\operatorname{PGL}(2, q)$.

By arguing as in Proposition 18 in [8] (which holds for every q) it is possible to give another proof of the following classification theorem.

Theorem 3.3. Every flock of $\mathfrak{2}$ is linear, a Thas flock or one of the exceptional flocks.
Proof. Let X be the MES defined by a flock F of $\mathscr{2}$ in the matrix model of $\operatorname{PG}(3, q)$. By checking in the list of subgroups of $\operatorname{PGL}(2, q)$ given in $[9,14]$ one sees that the possibilities for X are:
(i) the cyclic group C_{q+1};
(ii) the dihedral group $D_{\frac{q+1}{2}}, q$ odd;
(iii) $A_{4}, q=11$;
(iv) $S_{4}, q=23$;
(v) $A_{5}, q=59$.

In each case, the subgroups form a single conjugacy class in $\operatorname{PGL}(2, q)$ and so the corresponding MESs are equivalent. From Corollary 2.3, X acts on itself (viewed as a subset of points of $\mathrm{PG}(3, q)$) via the matrix multiplication. In case (i), the orbits of X consist of the lines of a regular spread containing \mathscr{R}^{-}. In this case, the corresponding flock is linear.

In case (ii), q odd, the orbit of any point of $\operatorname{PG}(3, q)$ not on 2 consists of $(q+1) / 2$ points on a line L and of $(q+1) / 2$ points on L^{\perp}. In this case, the corresponding flock is a Thas flock.

From [6,10] in cases (iii), (iv) and (v), we get the exceptional MES.

References

[1] L. Bader, Some new examples of flocks of $Q^{+}(3, q)$, Geom. Dedicata 27 (1988) 213-218.
[2] L. Bader, N. Durante, M. Law, G. Lunardon, T. Penttila, Flocks and partial flocks of hyperbolic quadrics via root systems, J. Algebraic Combin. 16 (2002) 21-30.
[3] L. Bader, G. Lunardon, On the flocks of $Q^{+}(3, q)$, Geom. Dedicata 29 (1989) 177-183.
[4] R.D. Baker, G.L. Ebert, A nonlinear flock in the Minkowski plane of order 11, in: Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer. 58 (1987) 75-81.
[5] W. Benz, Permutation and plane sections of a ruled quadric, Sympos. Math. V (1971) 325-339.
[6] A. Bonisoli, The regular subgroups of the sharply 3-transitive finite permutation groups, in: Combinatorics '86 (Trento, 1986), Ann. Discrete Math. 37 (1988), 75-86.
[7] A. Bonisoli, Automorphisms of (B)-geometries, in: Combinatorics '88 (Ravello, 1988), Res. Lecture Notes Math. Mediterranean Press, Rende (CZ), 1991, pp. 209-219.
[8] A. Bonisoli, G. Korchmàros, Flocks of hyperbolic quadrics and linear groups containing homologies, Geom. Dedicata 42 (1992) 295-309.
[9] L.E. Dickson, Linear Groups with an Exposition in the Galois Field Theory, Teubner, Stuttgart, 1901.
[10] N. Durante, Piani inversivi e flock di quadriche, Master Thesis, University of Napoli, 1992.
[11] N.L. Johnson, Flocks of hyperbolic quadrics and translation planes admitting affine homologies, J. Geom. 34 (1989) 50-73.
[12] J.A. Thas, Flocks of non-singular ruled quadrics in PG(3,q), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (1975) 83-85.
[13] J.A. Thas, Flock, maximal exterior sets and inversive planes, Contemp. Math. 111 (1990) 187-218.
[14] R.C. Valentini, M.L. Madan, A hauptsatz of L. E. Dickson and Artin-Schreier extensions, J. Reine Angew. Math. 318 (1980) 156-177.

[^0]: E-mail addresses: ndurante@unina.it (N. Durante), sicilian@pzmath.unibas.it (A. Siciliano).

